Advertisement

Synchrotron Radiation X-Ray Phase-Contrast Microtomography: What Opportunities More for Regenerative Medicine?

  • Ginevra Begani Provinciali
  • Nicola Pieroni
  • Inna Bukreeva
Chapter
Part of the Fundamental Biomedical Technologies book series (FBMT)

Abstract

In regenerative medicine 3D X-ray imaging is indispensable for characterizing damaged tissue, for measuring the efficacy of the treatment, and for monitoring adverse reactions.

Among the X-ray imaging techniques, high-resolution X-Ray Phase Contrast Tomography (XRPCT) allows simultaneous three-dimensional visualization of both dense (e.g. bone) and soft objects (e.g. soft tissues) on scale of length ranging from millimeters to hundreds of nanometers, without the use of contrast agent, sectioning or destructive preparation of the sample. XRPCT overcomes the problem of incomplete spatial coverage of conventional 2D imaging (histology or electron microscopy), while reaches a higher resolution and contrast than standard 3D computer tomographic imaging.

It can be used as a prominent tool in regenerative medicine field, where a crucial step after artificial tissue implantation is to monitor its correct functioning and connection with the surrounding tissue.

Keywords

X-ray phase contrast tomography Regenerative medicine Free space propagation Tissue engineering 

References

  1. 1.
    Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818.  https://doi.org/10.1038/nbt.2993CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18.  https://doi.org/10.1186/1749-799X-9-18CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cedola A, Campi G, Pelliccia D, Bukreeva IN, Fratini M, Burghammer MC, Mastrogiacomo M (2014) Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys Med Biol 59(1):189–201.  https://doi.org/10.1088/0031-9155/59/1/189CrossRefPubMedGoogle Scholar
  4. 4.
    Bukreeva I, Fratini M, Campi G, Pelliccia D, Spanò R, Tromba G, Mastrogiacomo M (2015) High-resolution x-ray techniques as new tool to investigate the 3D vascularization of engineered-bone tissue. Front Bioeng Biotechnol 3:133.  https://doi.org/10.3389/fbioe.2015.00133CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Upputuri PK, Sivasubramanian K, Mark CSK, Pramanik M (2015) Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed Res Int 2015:783983., 9 pages, 2015.  https://doi.org/10.1155/2015/783983CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fitzgerald R (2000) Phase-sensitive x-ray imaging. Phys Today 2000(53):23CrossRefGoogle Scholar
  7. 7.
    Lewis RA (2004) Medical phase contrast x-ray imaging: current status and future prospects. Phys Med Biol 2004(49):3573CrossRefGoogle Scholar
  8. 8.
    Momose A (2005) Recent advances in x-ray phase imaging. Jpn J Appl Phys 44:6355CrossRefGoogle Scholar
  9. 9.
    Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee WK, Cloetens, P (2007) Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J Microsc, 227:51–71. Williams I, Siu K, Runxuan G, He X, Hart S, Styles C, Lewis R (2008) Towards the clinical application of x-ray phase contrast imaging. Eur J Radiol, 68:S73–S77CrossRefGoogle Scholar
  10. 10.
    Zhou SA, Brahme A (2008) Development of phase-contrast x-ray imaging techniques and potential medical applications. Phys Med 24:129–148CrossRefGoogle Scholar
  11. 11.
    Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58:R1CrossRefGoogle Scholar
  12. 12.
    Coan P, Bravin A, Tromba G (2013) Phase-contrast x-ray imaging of the breast: recent developments towards clinics. J Phys D 46:494007CrossRefGoogle Scholar
  13. 13.
    Koehler T, Daerr H, Martens G, Kuhn N, Löscher S, van Stevendaal U, Roessl E (2015) Slit-scanning differential x-ray phase-contrast mammography: proof-of-concept experimental studies. Med Phys 42:1959–1965CrossRefGoogle Scholar
  14. 14.
    Horn F, Hauke C, Lachner S, Ludwig V, Pelzer G, Rieger J, Schuster M, Seifert M, Wandner J, Wolf A, et al. (2016) High-energy X-ray grating-based phase-contrast radiography of human anatomy. Proc. SPIE, 9783Google Scholar
  15. 15.
    Momose A, Yashiro W, Kido K, Kiyohara J, Makifuchi C, Ito T, Nagatsuka S, Honda C, Noda D, Hattori T et al (2014) X-ray phase imaging: from synchrotron to hospital. Philos Trans Royal Soc A 372:20130023CrossRefGoogle Scholar
  16. 16.
    Campi G, Bukreeva I, Fratini M, Mastrogiacomo M, Cedola A (2014) Imaging tissue regeneration/degeneration by combined x-ray micro-diffraction and phase contrast micro-tomography. J Tissue Eng Regen Med 8:66–67Google Scholar
  17. 17.
    Giuliani A, Mazzoni S, Mele L, Liccardo D, Tromba G, Langer M (2017) Synchrotron phase tomography: an emerging imaging method for microvessel detection in engineered bone of craniofacial districts. Front Physiol 8:769.  https://doi.org/10.3389/fphys.2017.00769CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Núñez JA, Goring A, Hesse E, Thurner PJ, Schneider P, Clarkin CE (2017) Simultaneous visualisation of calcified bone microstructure and intracortical vasculature using synchrotron x-ray phase contrast-enhanced tomography. Sci Rep 7:13289CrossRefGoogle Scholar
  19. 19.
    Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92. At Data Nucl Data Tables 54:181–342CrossRefGoogle Scholar
  20. 20.
    Als-Nielsen, J. & McMorrow, D. (2011) Elements of Modern X-Ray Physics. Wiley, 2 editionGoogle Scholar
  21. 21.
    Wilkins SW, Nesterets YA, Gureyev TE, Mayo SC, Pogany A, Stevenson AW (2014) On the evolution and relative merits of hard x-ray phase-contrast imaging methods. Phil Trans R Soc A 372:20130021CrossRefGoogle Scholar
  22. 22.
    Bilderback DH, Elleaume P, Weckert E (2005) Review of third and next generation synchrotron light sources. J Phys 38:S773–S797Google Scholar
  23. 23.
    Wu X, Liu H (2003) A general formalism for x-ray phase contrast imaging. J Xray Sci Technol 11:33–42 2003PubMedGoogle Scholar
  24. 24.
    Langer M, Cloetens P, Guigay JP, Peyrin F (2008) Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography. Med Phys 35:4556–4566CrossRefGoogle Scholar
  25. 25.
    Burvall A, Lundström U, Takman AC, Larsson DH, Hertz HM (2011) Phase retrieval in x-ray phase-contrast imaging suitable for tomography. Opt Express 19:10359–10376CrossRefGoogle Scholar
  26. 26.
    Thibault P (2007) Algorithmic methods in diffraction microscopy. Cornell University, IthacaGoogle Scholar
  27. 27.
    Pogany A, Gao D, Wilkins SW (1997) Contrast and resolution in imaging with a microfocus x-ray source. Rev Sci Instrum 68(7):2774–2782CrossRefGoogle Scholar
  28. 28.
    Paganin D, Mayo SC, Gureyev TE, Wilkins PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40CrossRefGoogle Scholar
  29. 29.
    Bonse U, Hart M (1965) An x-ray interferometer. Appl Phys Lett 6:155–156CrossRefGoogle Scholar
  30. 30.
    Momose A, Takeda IY, Yoneyama A, Hirano K (1998) Phase-contrast tomographic imaging using an x-ray interferometer. J Synchrotron Radiat 5:309–314CrossRefGoogle Scholar
  31. 31.
    Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025CrossRefGoogle Scholar
  32. 32.
    David C, Nöhammer B, Solak HH, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 21:3287–3289CrossRefGoogle Scholar
  33. 33.
    Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of X-ray phase contrast microimaging by coherent high energy synchrotron radiation. Rev Sci Instrum 66:5486CrossRefGoogle Scholar
  34. 34.
    Cloetens P, Pateyron-Salome M, Buffiere JY, Peix G, Baruchel J, Peyrin V, Schlenker M (1997) Observation in microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81:5878–5886CrossRefGoogle Scholar
  35. 35.
    Born M, Wolf E (1980) Principles of optics, 6th edn. Pergamon, OxfordGoogle Scholar
  36. 36.
    Teague MR (1983) Deterministic phase retrieval: a green’s function. J Opt Soc Am 73:1434–1441CrossRefGoogle Scholar
  37. 37.
    Cowley, J. M. (1975). Diffraction physics. Amsterdam: New York: North-Holland Pub. Co., American ElsevierGoogle Scholar
  38. 38.
    Groso A, Abela R, Stampanoni M (2006) Implementation of a fast method for high resolution phase contrast tomography. Opt Express 14:8103–8110CrossRefGoogle Scholar
  39. 39.
    Bronnikov AV (1999) Reconstruction formulas for phase-contrast imaging. Opt Commun 171:239–244CrossRefGoogle Scholar
  40. 40.
    Hehn L, Morgan K, Bidola P, Noichl W, Gradl R, Dierolf M, Noël PB, Pfeiffer F (2018) Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography. APL Bioengineering 2:016105.  https://doi.org/10.1063/1.4990387CrossRefGoogle Scholar
  41. 41.
    Wu X, Liu H (2005) X-ray cone-beam phase tomography formulas based on phase-attenuation duality. Opt Express 13:6000–6014CrossRefGoogle Scholar
  42. 42.
    Beltran MA, Paganin DM, Uesugi K, Kitchen MJ (2010) 2D and 3D x-ray phase retrieval of multi-material objects using a single defocus distance. Opt Express 18:6423–6436CrossRefGoogle Scholar
  43. 43.
    Gureyev TE, Davis TJ, Pogany A, Mayo SC, Wilkins SW (2004) Optical phase retrieval by use of first born- and Rytov-type approximations. Appl Opt 43:2418–2430CrossRefGoogle Scholar
  44. 44.
    Cloetens P, Ludwig W, Baruchel J, Van Dyck D, Van Landuyt J, Guigay JP (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett 75(19):2912–2914CrossRefGoogle Scholar
  45. 45.
    Noh DY, Kim C, Kim Y, Song C (2016) Enhancing resolution in coherent x-ray diffraction imaging. J Phys Condens Matter 28:493001CrossRefGoogle Scholar
  46. 46.
    Mayo SC, Davis TJ, Gureyev TE, Miller PR, Paganin D, Pogany A, Stevenson AW, Wilkins SW (2003) X-ray phase-contrast microscopy and microtomography. Opt Express 11:2289–2302CrossRefGoogle Scholar
  47. 47.
    Paganin D, Gureyev TE, Mayo SC, Stevenson AW, Nesterets YAI, Wilkins SW (2004) X-ray omni microscopy. J Microsc 214:315–327CrossRefGoogle Scholar
  48. 48.
    Turner D, Weber KP, Paganin D, Scholten RE (2004) Off-resonant defocus-contrast imaging of cold atoms. Opt Lett 29:232–234CrossRefGoogle Scholar
  49. 49.
    Irvine SC, Paganin DM, Dubsky W, Lewis RA, Fouras A (2008) Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle. Appl Phys Lett 93:153901CrossRefGoogle Scholar
  50. 50.
    Stevenson AW, Mayo SC, Hausermann D, Maksimenko A, Garrett RF, Hall CJ, Wilkins SW, Lewis RA, Myers DE (2010) First experiments on the Australian synchrotron imaging and medical beamline, including investigations of the effective source size in respect of x-ray imaging. J Synchrotron Radiat 17:75–80CrossRefGoogle Scholar
  51. 51.
    Herman GT (1980) Image reconstruction from projections: the fundamentals of computerized tomography. Academic Press, 2 editionGoogle Scholar
  52. 52.
    Atala A, Allickson J (2014) Translational regenerative medicine. Academic Press, 1 editionGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ginevra Begani Provinciali
    • 1
  • Nicola Pieroni
    • 1
  • Inna Bukreeva
    • 1
  1. 1.Institute of Nanotechnology, CNRRomeItaly

Personalised recommendations