Advertisement

Therapeutic Modulators of Apoptosis and Epigenetics in Aggressive Lymphoma

  • Michael J. Dickinson
  • John F. SeymourEmail author
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Elsewhere throughout this text, other authors have discussed the role of targeted immunotherapies, small molecules targeting the B-cell receptor complex and tyrosine kinases that regulate cellular function. In this chapter we address other small molecules that target cellular signalling pathways involved in malignant cell survival, not otherwise addressed in this book.

References

  1. 1.
    Cory S, Roberts AW, Colman PM, Adams JM. Targeting BCL-2-like proteins to kill cancer cells. Trends Cancer. 2016;2(8):443–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Roberts AW, Huang D. Targeting BCL2 with BH3 mimetics: basic science and clinical application of Venetoclax in chronic lymphocytic leukemia and related malignancies. Clin Pharmacol Ther. 2017;101(1):89–98.PubMedCrossRefGoogle Scholar
  3. 3.
    Hermine O, Haioun C, Lepage E, d’Agay MF, Briere J, Lavignac C, et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 1996;87(1):265–72.PubMedGoogle Scholar
  4. 4.
    Gascoyne RD, Adomat SA, Krajewski S, Krajewska M, Horsman DE, Tolcher AW, et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood. 1997;90(1):244–51.PubMedGoogle Scholar
  5. 5.
    Winter JN, Andersen J, Reed JC, Krajewski S, Variakojis D, Bauer KD, et al. BCL-2 expression correlates with lower proliferative activity in the intermediate- and high-grade non-Hodgkin’s lymphomas: an Eastern Cooperative Oncology Group and Southwest Oncology Group Cooperative Laboratory Study. Blood. 1998;91(4):1391–8.PubMedGoogle Scholar
  6. 6.
    Friedberg JW. Double-hit diffuse large B-cell lymphoma. J Clin Oncol. 2012;30(28):3439–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS, et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3460–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Pedersen MO, Gang AO, Poulsen TS, Knudsen H, Lauritzen AF, Nielsen SL, et al. Double-hit BCL2/MYC translocations in a consecutive cohort of patients with large B-cell lymphoma—a single centre’s experience. Eur J Haematol. 2012;89(1):63–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Landsburg DJ, Nasta SD, Svoboda J, Morrissette JJ, Schuster SJ. ‘Double-Hit’ cytogenetic status may not be predicted by baseline clinicopathological characteristics and is highly associated with overall survival in B cell lymphoma patients. Br J Haematol. 2014;166(3):369–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Landsburg DJ, Petrich AM, Abramson JS, Sohani AR, Press O, Cassaday R, et al. Impact of oncogene rearrangement patterns on outcomes in patients with double-hit non-Hodgkin lymphoma. Cancer. 2016;122(4):559–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11(12):1149–59.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012;30(5):488–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Kipps TJ, Eradat H, Grosicki S, Catalano J, Cosolo W, Dyagil IS, et al. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2015;56(10):2826–33.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128(6):1173–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Roberts AW, Stilgenbauer S, Seymour JF, Huang DCS. Venetoclax in patients with previously treated chronic lymphocytic leukemia. Clin Cancer Res. 2017;23(16):4527–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson MA, Deng J, Seymour JF, Tam C, Kim SY, Fein J, et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood. 2016;127(25):3215–24.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Anderson MA, Tam C, Lew TE, Juneja S, Juneja M, Westerman D, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362–70.PubMedGoogle Scholar
  19. 19.
    Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, et al. Phase I first-in-human study of Venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J Clin Oncol. 2017;35(8):826–33.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D’Rozario J, Assouline S, et al. Venetoclax-Rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018;378(12):1107–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, et al. Ibrutinib plus Venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378(13):1211–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Zelenetz AD, Salles GA, Mason KD, Casulo C, Gouill SL, Sehn LH, et al. Phase 1b study of venetoclax plus R- or G-CHOP in patients with B-cell non-Hodgkin lymphoma. J Clin Oncol. 2016;34.(15_suppl:7566.CrossRefGoogle Scholar
  23. 23.
    Zelenetz AD, Salles GA, Mason KD, Casulo C, Le Gouill S, Sehn LH, et al. Results of a Phase Ib study of Venetoclax Plus R- or G-CHOP in patients with B-cell non-Hodgkin lymphoma. Blood. 2016;128:3032.Google Scholar
  24. 24.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dawson MA, Kouzarides T, Huntly BJ. Targeting epigenetic readers in cancer. N Engl J Med. 2012;367(7):647–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Bertrand P. Inside HDAC with HDAC inhibitors. Eur J Med Chem. 2010;45(6):2095–116.PubMedCrossRefGoogle Scholar
  27. 27.
    Dickinson M, Johnstone RW, Prince HM. Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs. 2010;28(Suppl 1):S3–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30(6):631–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Piekarz RL, Frye R, Prince HM, Kirschbaum MH, Zain J, Allen SL, et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood. 2011;117(22):5827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, et al. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J Hematol Oncol. 2014;7:11.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Foss F, Pro B, Miles Prince H, Sokol L, Caballero D, Horwitz S, et al. Responses to romidepsin by line of therapy in patients with relapsed or refractory peripheral T-cell lymphoma. Cancer Med. 2017;6(1):36–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Dupuis J, Morschhauser F, Ghesquieres H, Tilly H, Casasnovas O, Thieblemont C, et al. Combination of romidepsin with cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated patients with peripheral T-cell lymphoma: a non-randomised, phase 1b/2 study. Lancet Haematol. 2015;2(4):e160–5.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33(23):2492–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Younes A, Sureda A, Ben-Yehuda D, Zinzani PL, Ong TC, Prince HM, et al. Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: results of a phase II study. J Clin Oncol. 2012;30(18):2197–203.PubMedCrossRefGoogle Scholar
  36. 36.
    Younes A, Oki Y, Bociek RG, Kuruvilla J, Fanale M, Neelapu S, et al. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2011;12(13):1222–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Assouline SE, Nielsen TH, Yu S, Alcaide M, Chong L, MacDonald D, et al. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. Blood. 2016;128(2):185–94.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bishton MJ, Harrison SJ, Martin BP, McLaughlin N, James C, Josefsson EC, et al. Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood. 2011;117(13):3658–68.PubMedCrossRefGoogle Scholar
  39. 39.
    Cabell C, Bates S, Piekarz R, Whittaker S, Kim Y, Godfrey C, et al. Systematic assessment of potential cardiac effects of the novel histone deacetylase (HDAC) inhibitor romidepsin. ASCO Meeting Abstr. 2009;27(15S):e19533 EP.Google Scholar
  40. 40.
    Pohlman B, Advani R, Duvic M, Hymes K, Intragumtornchai T, Lekhakula A, et al. Final results of a phase II trial of Belinostat (PXD101) in patients with recurrent or refractory peripheral or cutaneous T-cell lymphoma. ASH Annual Meeting Abstr. 2009;114(22):920 EP.Google Scholar
  41. 41.
    Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014;28(3):485–96.PubMedCrossRefGoogle Scholar
  42. 42.
    Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 2011;25(7):1147–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Couronne L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366(1):95–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Lemonnier F, Couronne L, Parrens M, Jais JP, Travert M, Lamant L, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120(7):1466–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Van Arnam JS, Lim MS, Elenitoba-Johnson KSJ. Novel insights into the pathogenesis of T-cell lymphomas. Blood. 2018.Google Scholar
  46. 46.
    Fujisawa M, Sakata-Yanagimoto M, Nishizawa S, Komori D, Gershon P, Kiryu M, et al. Activation of RHOA-VAV1 signaling in angioimmunoblastic T-cell lymphoma. Leukemia. 2018;32(3):694–702.PubMedCrossRefGoogle Scholar
  47. 47.
    Muto H, Sakata-Yanagimoto M, Nagae G, Shiozawa Y, Miyake Y, Yoshida K, et al. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice. Blood Cancer J. 2014;4:e264.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Saillard C, Guermouche H, Derrieux C, Bruneau J, Frenzel L, Couronne L, et al. Response to 5-azacytidine in a patient with TET2-mutated angioimmunoblastic T-cell lymphoma and chronic myelomonocytic leukaemia preceded by an EBV-positive large B-cell lymphoma. Hematol Oncol. 2017;35(4):864–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Cheminant M, Bruneau J, Kosmider O, Lefrere F, Delarue R, Gaulard P, et al. Efficacy of 5-azacytidine in a TET2 mutated angioimmunoblastic T cell lymphoma. Br J Haematol. 2015;168(6):913–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Moreno A, Szmania S, Shi J, Barlogie B, Prentice G, van Rhee F. Induction of the cancer-testis antigen MAGE-A3 in myeloma cell lines by 5'azacitidine and MGCD0103. ASCO Meeting Abstr. 2008;26(15_suppl):14008.Google Scholar
  51. 51.
    Goodyear O, Agathanggelou A, Ryan G, Novitsky-Basso I, Stankovic T, Moss P, et al. The epigenetic therapies Azacitidine and Sodium Valproate augment immune responses to the MAGE cancer testis antigen in acute myeloid leukemia and myeloma. ASH Annual Meeting Abstr. 2009;114(22):2086 EP.Google Scholar
  52. 52.
    Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G, et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood. 2010;116(11):1908–18.PubMedCrossRefGoogle Scholar
  53. 53.
    Li H, Chiappinelli KB, Guzzetta AA, Easwaran H, Yen RW, Vatapalli R, et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014;5(3):587–98.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Toor AA, Payne KK, Chung HM, Sabo RT, Hazlett AF, Kmieciak M, et al. Epigenetic induction of adaptive immune response in multiple myeloma: sequential azacitidine and lenalidomide generate cancer testis antigen-specific cellular immunity. Br J Haematol. 2012;158(6):700–11.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Clozel T, Yang S, Elstrom RL, Tam W, Martin P, Kormaksson M, et al. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. 2013;3(9):1002–19.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Moss JJ, Howard D, Van Meter E, Hayslip J. A phase I study of the combination of Azacitidine, Cyclophosphamide, Vincristine, and Rituximab in relapsed and refractory lymphoma. Blood. 2011;118:1624.Google Scholar
  57. 57.
    Martin P, Bartlett NL, Rivera IIR, Revuelta M, Chavez JC, Reagan JL, et al. A phase I, open label, multicenter trial of oral Azacitidine (CC-486) Plus R-CHOP in patients with high-risk, previously untreated diffuse large B-cell lymphoma, Grade 3B follicular lymphoma, or transformed lymphoma. Blood. 2017;130:192.CrossRefGoogle Scholar
  58. 58.
    Laille E, Shi T, Garcia-Manero G, Cogle CR, Gore SD, Hetzer J, et al. Pharmacokinetics and pharmacodynamics with extended dosing of CC-486 in patients with hematologic malignancies. PLoS One. 2015;10(8):e0135520.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wang W, Wang J, Li M, Ying J, Jing H. 5-Azacitidine induces demethylation of PTPL1 and inhibits growth in non-Hodgkin lymphoma. Int J Mol Med. 2015;36(3):698–704.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hiraga J, Tomita A, Suzuki N, Takagi Y, Narita M, Kagami Y. Partial restoration of CD20 protein expression and rituximab sensitivity after treatment with azacitidine in CD20-negative transformed diffuse large B cell lymphoma after using rituximab. Ann Hematol. 2018.Google Scholar
  61. 61.
    Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22(2):128–34.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117(8):2451–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ryan RJ, Nitta M, Borger D, Zukerberg LR, Ferry JA, Harris NL, et al. EZH2 codon 641 mutations are common in BCL2-rearranged germinal center B cell lymphomas. PLoS One. 2011;6(12):e28585.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bodor C, O'Riain C, Wrench D, Matthews J, Iyengar S, Tayyib H, et al. EZH2 Y641 mutations in follicular lymphoma. Leukemia. 2011;25(4):726–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM, et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood. 2010;116(24):5247–55.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A. 2012;109(52):21360–5.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–12.PubMedCrossRefGoogle Scholar
  70. 70.
    Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012;8(11):890–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Italiano A, Soria JC, Toulmonde M, Michot JM, Lucchesi C, Varga A, et al. B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649–59.PubMedCrossRefGoogle Scholar
  72. 72.
    Wire GN. Epizyme announces Tazemetostat fast track designation for follicular lymphoma and plenary session on Phase 2 NHL data at ICML 2017. https://globenewswire.com/news-release/2017/04/25/970819/0/en/Epizyme-Announces-Tazemetostat-Fast-Track-Designation-for-Follicular-Lymphoma-and-Plenary-Session-on-Phase-2-NHL-Data-at-ICML.html. Accessed 10 Jan 2018.
  73. 73.
    Morschhauser F, Salles G, McKay P, Tilly H, Schmitt A, Gerecitano J, et al. Interim report from phase 2 multicentre study of tazemetostat, an EZH2 inhibitor, in patients with relapsed or refractory B cell non-Hodgkin lymphomas. 2017. http://www.epizyme.com/wp-content/uploads/2017/06/ICML-Tazemetostat-F-Morschhauser-FINAL-2.pdf.
  74. 74.
    Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904–17.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Boi M, Gaudio E, Bonetti P, Kwee I, Bernasconi E, Tarantelli C, et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin Cancer Res. 2015;21(7):1628–38.PubMedCrossRefGoogle Scholar
  76. 76.
    Amorim S, Stathis A, Gleeson M, Iyengar S, Magarotto V, Leleu X, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 2016;3(4):e196–204.PubMedCrossRefGoogle Scholar
  77. 77.
    Dawson M, Stein EM, Huntly BJP, Karadimitris A, Kamdar M, Fernandez de Larrea C, et al. A phase I study of GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) inhibitor: results from part 1 of phase I/II open label single agent study in patients with acute myeloid leukemia (AML). Blood. 2017;130:1377.CrossRefGoogle Scholar
  78. 78.
    Borthakur G, Dawson MA, Stein EM, Karadimitris A, Huntly BJP, Dickinson MJ, et al. A phase I/II open-label, dose escalation study to investigate the safety, pharmacokinetics, pharmacodynamics and clinical activity of GSK525762 in subjects with relapsed, refractory hematologic malignancies. Blood. 2016;128:5223.Google Scholar
  79. 79.
    Hogg SJ, Newbold A, Vervoort SJ, Cluse LA, Martin BP, Gregory GP, et al. BET inhibition induces apoptosis in aggressive B-cell lymphoma via epigenetic regulation of BCL-2 family members. Mol Cancer Ther. 2016;15(9):2030–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Johnson-Farley N, Veliz J, Bhagavathi S, Bertino JR. ABT-199, a BH3 mimetic that specifically targets Bcl-2, enhances the antitumor activity of chemotherapy, bortezomib and JQ1 in “double hit” lymphoma cells. Leuk Lymphoma. 2015;56(7):2146–52.PubMedCrossRefGoogle Scholar
  81. 81.
    Li Q, Lozano G. Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin Cancer Res. 2013;19(1):34–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Moller MB, Ino Y, Gerdes AM, Skjodt K, Louis DN, Pedersen NT. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma. Leukemia. 1999;13(3):453–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–9.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Solenthaler M, Matutes E, Brito-Babapulle V, Morilla R, Catovsky D. p53 and mdm2 in mantle cell lymphoma in leukemic phase. Haematologica. 2002;87(11):1141–50.PubMedGoogle Scholar
  85. 85.
    Lo Coco F, Gaidano G, Louie DC, Offit K, Chaganti RS, Dalla-Favera R. p53 mutations are associated with histologic transformation of follicular lymphoma. Blood. 1993;82(8):2289–95.PubMedGoogle Scholar
  86. 86.
    Tzardi M, Kouvidou C, Panayiotides I, Stefanaki K, Rontogianni D, Zois E, et al. p53 protein expression in non-Hodgkin’s lymphoma. Comparative study with the wild type p53 induced proteins mdm2 and p21/waf1. Clin Mol Pathol. 1996;49(5):M278–82.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Xu-Monette ZY, Moller MB, Tzankov A, Montes-Moreno S, Hu W, Manyam GC, et al. MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program. Blood. 2013;122(15):2630–40.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Drakos E, Singh RR, Rassidakis GZ, Schlette E, Li J, Claret FX, et al. Activation of the p53 pathway by the MDM2 inhibitor nutlin-3a overcomes BCL2 overexpression in a preclinical model of diffuse large B-cell lymphoma associated with t(14;18)(q32;q21). Leukemia. 2011;25(5):856–67.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Herting F, Herter S, Friess T, Muth G, Bacac M, Sulcova J, et al. Antitumour activity of the glycoengineered type II anti-CD20 antibody obinutuzumab (GA101) in combination with the MDM2-selective antagonist idasanutlin (RG7388). Eur J Haematol. 2016;97(5):461–70.PubMedCrossRefGoogle Scholar
  90. 90.
    Herting F, Friess T, Umana P, Middleton S, Klein C. Chemotherapy-free, triple combination of obinutuzumab, venetoclax and idasanutlin: antitumor activity in xenograft models of non-Hodgkin lymphoma. Leuk Lymphoma. 2018;59(6):1482–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Yee K, Martinelli G, Vey N, Dickinson MJ, Seiter K, Assouline S, et al. Phase 1/1b study of RG7388, a potent MDM2 antagonist, in acute myelogenous leukemia (AML) patients (Pts). Blood. 2014;124(21):116.Google Scholar
  92. 92.
    Reis B, Jukofsky L, Chen G, Martinelli G, Zhong H, So WV, et al. Acute myeloid leukemia patients’ clinical response to idasanutlin (RG7388) is associated with pre-treatment MDM2 protein expression in leukemic blasts. Haematologica. 2016;101(5):e185–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378(15):1396–407.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Karube K, Enjuanes A, Dlouhy I, Jares P, Martin-Garcia D, Nadeu F, et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets. Leukemia. 2018;32(3):675–84.PubMedCrossRefGoogle Scholar
  95. 95.
    Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–90.CrossRefPubMedGoogle Scholar
  96. 96.
    Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481–94 e15.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Pasqualucci L, Dalla-Favera R. Genetics of diffuse large B cell lymphoma. Blood. 2018;131(21):2307–19.PubMedCrossRefGoogle Scholar
  98. 98.
    Stathis A, Iasonos A, Seymour JF, Thieblemont C, Ribrag V, Zucca E, et al. Report of the 14th International Conference on Malignant Lymphoma (ICML) closed workshop on future design of clinical trials in lymphomas. Clin Cancer Res. 2018;24(13):2993–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneAustralia
  2. 2.Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleAustralia

Personalised recommendations