Advertisement

Kinase Inhibitors in Large Cell Lymphoma

  • Franck Morschhauser
  • Salomon Manier
  • Nathan FowlerEmail author
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Regulation of a broad array of cellular functions in both normal cells and cancer is controlled through the phosphorylation of unique proteins within multistep signaling pathways. Phosphorylation is directed through hundreds of specific kinases which can be activated through a variety of mechanisms. Not surprisingly, these tightly regulated networks are critical to nearly all cellular functions and can be abnormally activated or suppressed in cancer through both genetic and epigenetic mechanisms (Gross et al., J Clin Invest 125:1780–1789, 2015). Often, these alterations in kinase activity result in tumorigenic changes leading to increased survival and resistance, as well as tumor growth and spread (Fig. 15.1). It has also become evident that aberrant kinase activity plays a central role in a tumor’s ability to evade immune surveillance. As a result, kinase inhibition has emerged as a field of intense study across multiple cancer subtypes, and currently over 25 oncology drugs that target kinases are approved in the United States (Gross et al., J Clin Invest 125:1780–1789, 2015).

References

  1. 1.
    Gross S, Rahal R, Stransky N, et al. Targeting cancer with kinase inhibitors. J Clin Invest. 2015;125:1780–9.CrossRefGoogle Scholar
  2. 2.
    Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK. Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med. 2010;207:1095–111.CrossRefGoogle Scholar
  3. 3.
    Neimann C, Weistner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol. 2015;23:410–21.CrossRefGoogle Scholar
  4. 4.
    Davis E, Ngo V, Lenz G, et al. Chronic active B-cell receptor signaling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.CrossRefGoogle Scholar
  5. 5.
    Havranek O, Xu J, Davis E, et al. Molecular aspects of tonic B-cell receptor signaling in diffuse large B-cell lymphoma provide biomarkers and targets for specific inhibition. Blood. 2016;128:779.Google Scholar
  6. 6.
    Honigberg L, Smith A, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. PNAS. 2010;107:13075–80.CrossRefGoogle Scholar
  7. 7.
    Advani R, Buggy J, Sharman J, et al. Bruton tyrosine kinase inhibitor Ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94.CrossRefGoogle Scholar
  8. 8.
    Wilson W, Young R, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21(8):922–6.CrossRefGoogle Scholar
  9. 9.
    Younes A, Theiblemont C, Morchhauser F, et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 2015;15(9):1019–26.CrossRefGoogle Scholar
  10. 10.
    Byrd J, Harrington B, O’Brien S, et al. Acalabrutinib in relapsed chronic lymphocytic leukemia. N Eng J Med. 2016;374:323–32.CrossRefGoogle Scholar
  11. 11.
    Li C, Yang L, Bell T, et al. Novel Bruton’s tyrosine kinase inhibitor Bgb-3111 demonstrates potent activity in mantle cell lymphoma. Blood. 2016;128:5374.Google Scholar
  12. 12.
    Tam C, Simpson D, Opat S, et al. Safety and activity of the highly specific BTK inhibitor BGB-3111 in patients with indolent and aggressive non Hodgkin’s lymphoma. Blood. 2017;130:152.Google Scholar
  13. 13.
    Mocsai A, Ruland J, Tybulewiicz V, et al. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10(6):387–402.CrossRefGoogle Scholar
  14. 14.
    Friedberg J, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010;115:2578–85.CrossRefGoogle Scholar
  15. 15.
    Flinn I, Bartlett N, Blum K, et al. A phase II trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). Eur J Cancer. 2016;54:11–7.CrossRefGoogle Scholar
  16. 16.
    Sharman J, Klein L, Boxer M, et al. Phase 2 trial of Entospletinib (GS-9973), a selective Syk inhibitor, in indolent non-Hodgkin’s lymphoma (iNHL). Blood. 2015;126:1545.Google Scholar
  17. 17.
    Cheng S, Coffey G, Zhang XH, et al. SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood. 2011;118:6342–52.CrossRefGoogle Scholar
  18. 18.
    Barr P, Saylors G, et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood. 2016;127(20):2411–5.CrossRefGoogle Scholar
  19. 19.
    Ma J, Xing W, Coffey G, et al. Cerdulatinib, a novel dual SYK/JAK kinase inhibitor, has broad anti-tumor activity in both ABC and GCB types of diffuse large B cell lymphoma. Oncotarget. 2015;22:43881–96.Google Scholar
  20. 20.
    Hamlin P, Farber C, Fenske T, et al. The dual SYK/JAK inhibitor cerdulatinib demonstrates rapid tumor responses in a Phase 2 Study in patients with relapsed B-cell malignancies. Hematol Oncol. 2017;35:74.CrossRefGoogle Scholar
  21. 21.
    Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.CrossRefGoogle Scholar
  22. 22.
    Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44.CrossRefGoogle Scholar
  23. 23.
    Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.CrossRefGoogle Scholar
  24. 24.
    Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988–1004.CrossRefGoogle Scholar
  25. 25.
    Meadows SA, Vega F, Kashishian A, Johnson D, Diehl V, Miller LL, et al. PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood. 2012;119(8):1897–900.CrossRefGoogle Scholar
  26. 26.
    Go H, Jang JY, Kim PJ, Kim YG, Nam SJ, Paik JH, et al. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma. Oncotarget. 2015;6(17):15035–49.CrossRefGoogle Scholar
  27. 27.
    Psyrri A, Papageorgiou S, Liakata E, Scorilas A, Rontogianni D, Kontos CK, et al. Phosphatidylinositol 3′-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res. 2009;15(18):5724–32.CrossRefGoogle Scholar
  28. 28.
    Yahiaoui OI, Nunes JA, Castanier C, Devillier R, Broussais F, Fabre AJ, et al. Constitutive AKT activation in follicular lymphoma. BMC Cancer. 2014;14:565.CrossRefGoogle Scholar
  29. 29.
    Rommel C, Camps M, Ji H. PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol. 2007;7(3):191–201.CrossRefGoogle Scholar
  30. 30.
    Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood. 2014;123(22):3406–13.CrossRefGoogle Scholar
  31. 31.
    Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.CrossRefGoogle Scholar
  32. 32.
    Kahl BS, Spurgeon SE, Furman RR, Flinn IW, Coutre SE, Brown JR, et al. A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood. 2014;123(22):3398–405.CrossRefGoogle Scholar
  33. 33.
    Wagner-Johnston ND, De Vos S, Leonard J, Sharman JP, Schreeder MT, Fowler NH. Preliminary results of PI3Kδ inhibitor idelalisib (GS-1101) treatment in combination with everolimus, bortezomib, or bendamustine/rituximab in patients with previously treated mantle cell lymphoma (MCL). ASCO Meeting Abstr. 2013;31:8501.Google Scholar
  34. 34.
    Flinn I, Patel MR, Maris MB, Matous J, Cherry M, Berdeja JG. An open-label, phase Ib study of Duvelisib (IPI-145) in combination with Bendamustine, Rituximab or Bendamustine/Rituximab in select subjects with lymphoma or chronic lymphocytic leukemia. Blood. 2014;124:4422.Google Scholar
  35. 35.
    Horwitz SM, Porcu P, Flinn I, Kahl BS, Sweeney J, Stern HM, Douglas M, Allen K, Kelly P, Foss FM. Duvelisib (IPI-145), a Phosphoinositide-3-Kinase-δ,γ inhibitor, shows activity in patients with relapsed/refractory T-cell lymphoma. Blood. 2014;124:803.CrossRefGoogle Scholar
  36. 36.
    Erdmann T, Klener P, Lynch JT, Grau M, Vockova P, Molinsky J, et al. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood. 2017;130(3):310–22.CrossRefGoogle Scholar
  37. 37.
    Lenz G, Hawkes E, Verhoef G, et al. Clinical outcomes and molecular characterization from a phase II study of copanlisib in patients with relapsed or refractory diffuse large B-cell lymphoma. Hematol Oncol. 2017;35:68–9.CrossRefGoogle Scholar
  38. 38.
    Dreyling M, Morschhauser F, Bouabdallah K, Bron D, Cunningham D, Assouline SE, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28(9):2169–78.CrossRefGoogle Scholar
  39. 39.
    Freidman D, Lanasa M, Brander D, et al. Comparison of the PI3K-δ inhibitors TGR1202 and GS-1101 in inducing cytotoxicity and inhibiting phosphorylation of Akt in CLL cells in vitro. Blood. 2012;120:3914.Google Scholar
  40. 40.
    Maharaj KK, Powers J, Fonseca R, et al. Abstract 545: differential regulation of human T-cells by TGR-1202, a novel PI3Kδ inhibitor. Cancer Res. 2016;76(14 Supplement):545.CrossRefGoogle Scholar
  41. 41.
    O’Connor OO, Flinn IW, Patel MR, et al. TGR-1202, a novel once daily PI3K-delta inhibitor, demonstrates clinical activity with a favorable safety profile in patients with CLL and B-cell lymphoma [abstract]. Blood. 2015;126(23).Google Scholar
  42. 42.
    Lunning MA, Vose J, Fowler N, et al. Ublituximab + TGR-1202 demonstrates activity and a favorable safety profile in relapsed/refractory B-cell NHL and high-risk CLL: phase I results [abstract]. Blood. 2015;126(23). Abstract 1538.Google Scholar
  43. 43.
    Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23(23):5347–56.CrossRefGoogle Scholar
  44. 44.
    Smith SM, van Besien K, Karrison T, Dancey J, McLaughlin P, Younes A, et al. Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: the University of Chicago phase II consortium. J Clin Oncol. 2010;28(31):4740–6.CrossRefGoogle Scholar
  45. 45.
    Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia. 2011;25(2):341–7.CrossRefGoogle Scholar
  46. 46.
    Oki Y, Buglio D, Fanale M, Fayad L, Copeland A, Romaguera J, et al. Phase I study of panobinostat plus everolimus in patients with relapsed or refractory lymphoma. Clin Cancer Res. 2013;19(24):6882–90.CrossRefGoogle Scholar
  47. 47.
    Witzig TE, Tobinai K, Rigacci L, Lin T, Ikeda T, Vanazzi A. PILLAR-2: a randomized, double-blind, placebo-controlled, phase III study of adjuvant everolimus (EVE) in patients (pts) with poor-risk diffuse large B-cell lymphoma (DLBCL). J Clin Oncol. 2016;34:7506.CrossRefGoogle Scholar
  48. 48.
    Guidetti A, Viviani S, Marchiano A, et al. Dual targeted therapy with the AKT inhibitor perifosine and the multikinase inhibitor sorafenib in patients with relapsed/refractory lymphomas: final results of a phase II trial. Blood. 2012;120:3679.Google Scholar
  49. 49.
    Oki Y, Fanale M, Romaguera J, Fayad L, Fowler N, Copeland A, et al. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br J Haematol. 2015;171(4):463–70.CrossRefGoogle Scholar
  50. 50.
    Hapgood G, Savage KJ. The biology and management of systemic anaplastic large cell lymphoma. Blood. 2015;126(1):17–25.CrossRefGoogle Scholar
  51. 51.
    Laurent C, Do C, Gascoyne RD, Lamant L, Ysebaert L, Laurent G, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis. J Clin Oncol. 2009;27(25):4211–6.CrossRefGoogle Scholar
  52. 52.
    Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–97.CrossRefGoogle Scholar
  53. 53.
    Richly H, Kim TM, Schuler M, Kim DW, Harrison SJ, Shaw AT, et al. Ceritinib in patients with advanced anaplastic lymphoma kinase-rearranged anaplastic large-cell lymphoma. Blood. 2015;126(10):1257–8.CrossRefGoogle Scholar
  54. 54.
    Bavetsias V, Linardopoulos S. Aurora kinase inhibitors: current status and outlook. Front Oncol. 2015;5:278.CrossRefGoogle Scholar
  55. 55.
    Manfredi MG, Ecsedy JA, Chakravarty A, et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res. 2011;17:7614–24.CrossRefGoogle Scholar
  56. 56.
    Kelly KR, Shea TC, Goy A, Berdeja JG, Reeder CB, McDonagh KT, et al. Phase I study of MLN8237—investigational aurora A kinase inhibitor—in relapsed/refractory multiple myeloma, non-Hodgkin lymphoma and chronic lymphocytic leukemia. Investig New Drugs. 2014;32:489–99.CrossRefGoogle Scholar
  57. 57.
    Friedberg JW, Mahadevan D, Cebula E, Persky D, Lossos I, Agarwal AB, et al. Phase II study of alisertib, a selective aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas. J Clin Oncol. 2014;32:44–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Franck Morschhauser
    • 1
  • Salomon Manier
    • 1
  • Nathan Fowler
    • 2
    Email author
  1. 1.Department of HematologyLille University HospitalLilleFrance
  2. 2.Department of Lymphoma/MyelomaMD Anderson Cancer CenterHoustonUSA

Personalised recommendations