Advertisement

CD20-Negative Aggressive Lymphomas

  • Jorge J. CastilloEmail author
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

CD20-negative diffuse large B-cell lymphoma (DLBCL) is a rare and heterogeneous group of aggressive lymphoproliferative disorders. Described variants of CD20-negative DLBCL include plasmablastic lymphoma, primary effusion lymphoma, large B-cell lymphoma arising in HHV-8-associated multicentric Castleman disease, and anaplastic lymphoma kinase-positive DLBCL. CD20-negative aggressive lymphoma represents a diagnostic challenge given atypical morphology and lack of expression of B-cell markers. These are also hard-to-treat lymphomas with high rates of chemoresistance and relapse in addition to poor survival rates. The present chapter aims at summarizing the current knowledge on the biology of the distinct variants of CD20-negative DLBCL, to provide future therapeutic directions based on the limited data available and to increase awareness toward these rare lymphomas among pathologists and clinicians.

Keywords

Plasmablastic lymphoma Primary effusion lymphoma Multicentric Castleman disease ALK-positive DLBCL CD20-negative 

References

  1. 1.
    Feugier P, Van Hoof A, Sebban C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol. 2005;23:4117–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Pfreundschuh M, Kuhnt E, Trumper L, et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. 2011;12:1013–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Garg M, Lee BE, McGarry K, et al. CD20-negative diffuse large B-cell lymphoma presenting with lactic acidosis. Am J Hematol. 2015;90:E49–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Gaur S, Padilla O, Nahleh Z. Clinical features and prognosis of CD20 negative aggressive B-cell non-Hodgkins lymphoma. Lymphoma. 2013;2013:290585.CrossRefGoogle Scholar
  5. 5.
    Li YJ, Li ZM, Rao HL, et al. CD20-negative de novo diffuse large B-cell lymphoma in HIV-negative patients: a matched case-control analysis in a single institution. J Transl Med. 2012;10:84.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.PubMedGoogle Scholar
  7. 7.
    Campo E, Stein H, Harris NL. Plasmablastic lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of the haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 321–2.Google Scholar
  8. 8.
    Montes-Moreno S, Gonzalez-Medina AR, Rodriguez-Pinilla SM, et al. Aggressive large B-cell lymphoma with plasma cell differentiation: immunohistochemical characterization of plasmablastic lymphoma and diffuse large B-cell lymphoma with partial plasmablastic phenotype. Haematologica. 2010;95:1342–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Vega F, Chang CC, Medeiros LJ, et al. Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles. Mod Pathol. 2005;18:806–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Castillo JJ, Winer ES, Stachurski D, et al. Clinical and pathological differences between human immunodeficiency virus-positive and human immunodeficiency virus-negative patients with plasmablastic lymphoma. Leuk Lymphoma. 2010;51:2047–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Castillo JJ, Furman M, Beltran BE, et al. Human immunodeficiency virus-associated plasmablastic lymphoma: poor prognosis in the era of highly active antiretroviral therapy. Cancer. 2012;118:5270–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Valera A, Balague O, Colomo L, et al. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am J Surg Pathol. 2010;34:1686–94.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Castillo J, Pantanowitz L, Dezube BJ. HIV-associated plasmablastic lymphoma: lessons learned from 112 published cases. Am J Hematol. 2008;83:804–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Morscio J, Dierickx D, Nijs J, et al. Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: single-center series of 25 cases and meta-analysis of 277 reported cases. Am J Surg Pathol. 2014;38:875–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Castillo JJ, Winer ES, Stachurski D, et al. HIV-negative plasmablastic lymphoma: not in the mouth. Clin Lymphoma Myeloma Leuk. 2011;11:185–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu JJ, Zhang L, Ayala E, et al. Human immunodeficiency virus (HIV)-negative plasmablastic lymphoma: a single institutional experience and literature review. Leuk Res. 2011;35:1571–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Noy A, Chadburn A, Lensing SY, Moore P. Plasmablastic lymphoma is curable the HAART era. A 10 year retrospective by the AIDS Malignancy Consortium (AMC). Leuk Lymphoma. 2013;122:1801.Google Scholar
  18. 18.
    Schommers P, Wyen C, Hentrich M, et al. Poor outcome of HIV-infected patients with plasmablastic lymphoma: results from the German AIDS-related lymphoma cohort study. AIDS. 2013;27:842–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Cattaneo C, Re A, Ungari M, et al. Plasmablastic lymphoma among human immunodeficiency virus-positive patients: results of a single center’s experience. Leuk Lymphoma. 2015;56:267–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Castillo JJ, Winer ES, Stachurski D, et al. Prognostic factors in chemotherapy-treated patients with HIV-associated plasmablastic lymphoma. Oncologist. 2010;15:293–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    NCCN guidelines version 3.2017. AIDS-related B-cell lymphomas. AIDS-4. http://www.nccn.org/professionals/physician_gls/pdf/nhl.pdf. Accessed 30 May 2017.
  22. 22.
    Al-Malki MM, Castillo JJ, Sloan JM, Re A. Hematopoietic cell transplantation for plasmablastic lymphoma: a review. Biol Blood Marrow Transplant. 2014;20:1877–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Bibas M, Grisetti S, Alba L, et al. Patient with HIV-associated plasmablastic lymphoma responding to bortezomib alone and in combination with dexamethasone, gemcitabine, oxaliplatin, cytarabine, and pegfilgrastim chemotherapy and lenalidomide alone. J Clin Oncol. 2010;28:e704–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Dasanu CA, Bauer F, Codreanu I, et al. Plasmablastic haemato-lymphoid neoplasm with a complex genetic signature of Burkitt lymphoma responding to bortezomib. Hematol Oncol. 2013;31:164–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Yan M, Dong Z, Zhao F, et al. CD20-positive plasmablastic lymphoma with excellent response to bortezomib combined with rituximab. Eur J Haematol. 2014;93:77–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Castillo JJ, Reagan JL, Sikov WM, Winer ES. Bortezomib in combination with infusional dose-adjusted EPOCH for the treatment of plasmablastic lymphoma. Br J Haematol. 2015;169:352–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Fedele PL, Gregory GP, Gilbertson M, et al. Infusional dose-adjusted epoch plus bortezomib for the treatment of plasmablastic lymphoma. Ann Hematol. 2016;95:667–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Fernandez-Alvarez R, Gonzalez-Rodriguez AP, Rubio-Castro A, et al. Bortezomib plus CHOP for the treatment of HIV-associated plasmablastic lymphoma: clinical experience in three patients. Leuk Lymphoma. 2016;57(2):463–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Carras S, Regny C, Peoc'h M, et al. Dramatic efficacy of low dose lenalidomide as single agent in a patient with refractory gastric non-human immunodeficiency virus-associated plasmablastic lymphoma. Leuk Lymphoma. 2015;56:2986–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Schmit JM, DeLaune J, Norkin M, Grosbach A. A case of plasmablastic lymphoma achieving complete response and durable remission after lenalidomide-based therapy. Oncol Res Treat. 2017;40:46–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Colomo L, Loong F, Rives S, et al. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am J Surg Pathol. 2004;28:736–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Holderness BM, Malhotra S, Levy NB, Danilov AV. Brentuximab vedotin demonstrates activity in a patient with plasmablastic lymphoma arising from a background of chronic lymphocytic leukemia. J Clin Oncol. 2013;31:e197–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rahl PB, Lin CY, Seila AC, et al. c-Myc regulates transcriptional pause release. Cell. 2010;141:432–45.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Guo L, Bodo J, Durkin L, Hsi ED. Evaluation of PD1/PDL1 expression and their clinicopathologic association in EBV-associated lymphoproliferative disorders in nonimmunosuppressed patients. Appl Immunohistochem Mol Morphol. 2017; Epub ahead of print.Google Scholar
  37. 37.
    Kim SJ, Hyeon J, Cho I, Ko YH, Kim WS. Comparison of efficacy of pembrolizumab between Epstein-Barr virus–positive and –negative relapsed or refractory non-Hodgkin lymphomas. Cancer Res Treat. 2018; Epub ahead of print.Google Scholar
  38. 38.
    Said J, Cesarman E. Primary effusion lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lmyphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 323–4.Google Scholar
  39. 39.
    Knowles DM, Inghirami G, Ubriaco A, Dalla-Favera R. Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood. 1989;73:792–9.PubMedGoogle Scholar
  40. 40.
    Cesarman E, Chang Y, Moore PS, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186–91.CrossRefPubMedGoogle Scholar
  41. 41.
    Said J, Cesarman E. Primary effusion lymphoma. In: Swerdlow S, Campo E, Harris N, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2008. p. 260–1.Google Scholar
  42. 42.
    Wilson KS, McKenna RW, Kroft SH, et al. Primary effusion lymphomas exhibit complex and recurrent cytogenetic abnormalities. Br J Haematol. 2002;116:113–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Boulanger E, Agbalika F, Maarek O, et al. A clinical, molecular and cytogenetic study of 12 cases of human herpesvirus 8 associated primary effusion lymphoma in HIV-infected patients. Hematol J. 2001;2:172–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Kim Y, Park CJ, Roh J, Huh J. Current concepts in primary effusion lymphoma and other effusion-based lymphomas. Korean J Pathol. 2014;48:81–90.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Luan SL, Boulanger E, Ye H, et al. Primary effusion lymphoma: genomic profiling revealed amplification of SELPLG and CORO1C encoding for proteins important for cell migration. J Pathol. 2010;222:166–79.PubMedCrossRefGoogle Scholar
  46. 46.
    Gantt S, Casper C. Human herpesvirus 8-associated neoplasms: the roles of viral replication and antiviral treatment. Curr Opin Infect Dis. 2011;24:295–301.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Shi Y, Hou Y, Hu Q, et al. A rare case of HHV-8-positive/HIV-negative/EBV-negative primary effusion lymphoma in a renal transplant recipient. Cytopathology. 2012;23:137–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Matsumoto Y, Nomura K, Ueda K, et al. Human herpesvirus 8-negative malignant effusion lymphoma: a distinct clinical entity and successful treatment with rituximab. Leuk Lymphoma. 2005;46:415–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Kaplan LD. Human herpesvirus-8: Kaposi sarcoma, multicentric Castleman disease, and primary effusion lymphoma. Hematology Am Soc Hematol Educ Program. 2013;2013:103–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Carbone A, Gloghini A, Vaccher E, et al. Kaposi’s sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn. 2005;7:17–27.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chadburn A, Hyjek E, Mathew S, et al. KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol. 2004;28:1401–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Pan ZG, Zhang QY, Lu ZB, et al. Extracavitary KSHV-associated large B-cell lymphoma: a distinct entity or a subtype of primary effusion lymphoma? Study of 9 cases and review of an additional 43 cases. Am J Surg Pathol. 2012;36:1129–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Simonelli C, Spina M, Cinelli R, et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol. 2003;21:3948–54.PubMedCrossRefGoogle Scholar
  54. 54.
    Boulanger E, Gerard L, Gabarre J, et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol. 2005;23:4372–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Lim ST, Karim R, Nathwani BN, et al. AIDS-related Burkitt’s lymphoma versus diffuse large-cell lymphoma in the pre-highly active antiretroviral therapy (HAART) and HAART eras: significant differences in survival with standard chemotherapy. J Clin Oncol. 2005;23:4430–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Castillo JJ, Shum H, Lahijani M, et al. Prognosis in primary effusion lymphoma is associated with the number of body cavities involved. Leuk Lymphoma. 2012;53:2378–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Simonelli C, Tedeschi R, Gloghini A, et al. Characterization of immunologic and virological parameters in HIV-infected patients with primary effusion lymphoma during antiblastic therapy and highly active antiretroviral therapy. Clin Infect Dis. 2005;40:1022–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Boulanger E, Daniel MT, Agbalika F, Oksenhendler E. Combined chemotherapy including high-dose methotrexate in KSHV/HHV8-associated primary effusion lymphoma. Am J Hematol. 2003;73:143–8.PubMedCrossRefGoogle Scholar
  59. 59.
    El-Ayass W, Yu EM, Karcher DS, Aragon-Ching JB. Complete response to EPOCH in a patient with HIV and extracavitary primary effusion lymphoma involving the colon: a case report and review of literature. Clin Lymphoma Myeloma Leuk. 2012;12:144–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Barta SK, Lee JY, Kaplan LD, et al. Pooled analysis of AIDS malignancy consortium trials evaluating rituximab plus CHOP or infusional EPOCH chemotherapy in HIV-associated non-Hodgkin lymphoma. Cancer. 2012;118:3977–83.PubMedCrossRefGoogle Scholar
  61. 61.
    Ripamonti D, Marini B, Rambaldi A, Suter F. Treatment of primary effusion lymphoma with highly active antiviral therapy in the setting of HIV infection. AIDS. 2008;22:1236–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Won JH, Han SH, Bae SB, et al. Successful eradication of relapsed primary effusion lymphoma with high-dose chemotherapy and autologous stem cell transplantation in a patient seronegative for human immunodeficiency virus. Int J Hematol. 2006;83:328–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Bryant A, Milliken S. Successful reduced-intensity conditioning allogeneic HSCT for HIV-related primary effusion lymphoma. Biol Blood Marrow Transplant. 2008;14:601–2.PubMedCrossRefGoogle Scholar
  64. 64.
    Keller SA, Schattner EJ, Cesarman E. Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood. 2000;96:2537–42.PubMedGoogle Scholar
  65. 65.
    An J, Sun Y, Fisher M, Rettig MB. Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia. 2004;18:1699–704.PubMedCrossRefGoogle Scholar
  66. 66.
    Boulanger E, Meignin V, Oksenhendler E. Bortezomib (PS-341) in patients with human herpesvirus 8-associated primary effusion lymphoma. Br J Haematol. 2008;141:559–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Bhatt S, Ashlock BM, Toomey NL, et al. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest. 2013;123:2616–28.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Antar A, El Hajj H, Jabbour M, et al. Primary effusion lymphoma in an elderly patient effectively treated by lenalidomide: case report and review of literature. Blood Cancer J. 2014;4:e190.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Davis DA, Mishra S, Anagho HA, et al. Restoration of immune surface molecules in Kaposi sarcoma-associated herpesvirus infected cells by lenalidomide and pomalidomide. Oncotarget. 2017;8:50342–58.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Bhatt S, Ashlock BM, Natkunam Y, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood. 2013;122:1233–42.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19:3462–73.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wang HY, Fuda FS, Chen W, Karandikar NJ. Notch1 in primary effusion lymphoma: a clinicopathological study. Mod Pathol. 2010;23:773–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Granato M, Rizzello C, Gilardini Montani MS, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124–36.PubMedCrossRefGoogle Scholar
  74. 74.
    Dupin N, Diss TL, Kellam P, et al. HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood. 2000;95:1406–12.PubMedGoogle Scholar
  75. 75.
    Oksenhendler E, Boulanger E, Galicier L, et al. High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood. 2002;99:2331–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Du MQ, Liu H, Diss TC, et al. Kaposi sarcoma-associated herpesvirus infects monotypic (IgM lambda) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood. 2001;97:2130–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Issacson P, Campo E, Harris NL. Large B-cell lymphoma arising in HHV8-associated multicentric Castlemans disease. In: Swerdlow S, Campo E, Harris N, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2008. p. 258–9.Google Scholar
  78. 78.
    Montes-Moreno S, Montalban C, Piris MA. Large B-cell lymphomas with plasmablastic differentiation: a biological and therapeutic challenge. Leuk Lymphoma. 2012;53:185–94.PubMedCrossRefGoogle Scholar
  79. 79.
    Oksenhendler E, Boutboul D, Beldjord K, et al. Human herpesvirus 8+ polyclonal IgMlambda B-cell lymphocytosis mimicking plasmablastic leukemia/lymphoma in HIV-infected patients. Eur J Haematol. 2013;91:497–503.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Suda T, Katano H, Delsol G, et al. HHV-8 infection status of AIDS-unrelated and AIDS-associated multicentric Castleman’s disease. Pathol Int. 2001;51:671–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Cronin DM, Warnke RA. Castleman disease: an update on classification and the spectrum of associated lesions. Adv Anat Pathol. 2009;16:236–46.PubMedCrossRefGoogle Scholar
  82. 82.
    Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22:347–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Hsi ED, Lorsbach RB, Fend F, Dogan A. Plasmablastic lymphoma and related disorders. Am J Clin Pathol. 2011;136:183–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Pagni F, Bosisio FM, Sala E, et al. The plasmablasts in Castleman disease. Am J Clin Pathol. 2013;139:555–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Gerard L, Michot JM, Burcheri S, et al. Rituximab decreases the risk of lymphoma in patients with HIV-associated multicentric Castleman disease. Blood. 2012;119:2228–33.PubMedCrossRefGoogle Scholar
  86. 86.
    Sarosiek KA, Cavallin LE, Bhatt S, et al. Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci U S A. 2010;107:13069–74.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fajgenbaum DC, van Rhee F, Nabel CS. HHV-8-negative, idiopathic multicentric Castleman disease: novel insights into biology, pathogenesis, and therapy. Blood. 2014;123:2924–33.PubMedCrossRefGoogle Scholar
  88. 88.
    van Rhee F, Wong RS, Munshi N, et al. Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2014;15:966–74.PubMedCrossRefGoogle Scholar
  89. 89.
    Szturz P, Adam Z, Rehak Z, et al. Salvage lenalidomide in four rare oncological diseases. Tumori. 2013;99:e251–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhou X, Wei J, Lou Y, et al. Salvage therapy with lenalidomide containing regimen for relapsed/refractory Castleman disease: a report of three cases. Front Med. 2017;11:287–92.PubMedCrossRefGoogle Scholar
  91. 91.
    Rimokh R, Magaud JP, Berger F, et al. A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’). Br J Haematol. 1989;71:31–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Delsol G, Lamant L, Mariame B, et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2;5 translocation. Blood. 1997;89:1483–90.PubMedGoogle Scholar
  93. 93.
    Momose S, Tamaru J, Kishi H, et al. Hyperactivated STAT3 in ALK-positive diffuse large B-cell lymphoma with clathrin-ALK fusion. Hum Pathol. 2009;40:75–82.PubMedCrossRefGoogle Scholar
  94. 94.
    Beltran B, Castillo J, Salas R, et al. ALK-positive diffuse large B-cell lymphoma: report of four cases and review of the literature. J Hematol Oncol. 2009;2:11.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sachdev R, Goel S, Gupta S, Sood N. Anaplastic lymphoma kinase (ALK) positive diffuse large B cell lymphoma in a 20 year old: a rare entity. Indian J Pathol Microbiol. 2014;57:157–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Stachurski D, Miron PM, Al-Homsi S, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma with a complex karyotype and cryptic 3′ ALK gene insertion to chromosome 4 q22-24. Hum Pathol. 2007;38:940–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Hematology Am Soc Hematol Educ Program. 2013;2013:575–83.PubMedCrossRefGoogle Scholar
  98. 98.
    Valera A, Colomo L, Martinez A, et al. ALK-positive large B-cell lymphomas express a terminal B-cell differentiation program and activated STAT3 but lack MYC rearrangements. Mod Pathol. 2013;26:1329–37.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Nieborowska-Skorska M, Slupianek A, Xue L, et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 2001;61:6517–23.PubMedGoogle Scholar
  100. 100.
    Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21:1038–47.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang Q, Wang HY, Liu X, Wasik MA. STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression. Nat Med. 2007;13:1341–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Bai RY, Ouyang T, Miething C, et al. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood. 2000;96:4319–27.PubMedGoogle Scholar
  103. 103.
    Laurent C, Do C, Gascoyne RD, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis. J Clin Oncol. 2009;27:4211–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Wass M, Behlendorf T, Schadlich B, et al. Crizotinib in refractory ALK-positive diffuse large B-cell lymphoma: a case report with a short-term response. Eur J Haematol. 2014;92:268–70.PubMedCrossRefGoogle Scholar
  105. 105.
    Cerchietti L, Damm-Welk C, Vater I, et al. Inhibition of anaplastic lymphoma kinase (ALK) activity provides a therapeutic approach for CLTC-ALK-positive human diffuse large B cell lymphomas. PLoS One. 2011;6:e18436.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Amin HM, McDonnell TJ, Ma Y, et al. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene. 2004;23:5426–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Hematologic Malignancies, Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA

Personalised recommendations