Advertisement

Subdivision Schemes and Multiresolution Analyses: Focus on the Shifted Lagrange and Shifted PPH Schemes

  • Zhiqing Kui
  • Jean Baccou
  • Jacques LiandratEmail author
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 18)

Abstract

Subdivision schemes have been extensively developed since the eighties with very powerful applications for surface generation. To be implemented for compression, subdivision schemes have to be coupled with decimation operators sharing some consistency relation and with detail operators. The flexibility of subdivision schemes (they can be non-stationary, position or zone dependent, non-linear,…) makes that the construction of consistent decimation operators is a difficult task. In this paper, following the first results introduced in Kui et al. (On the coupling of decimation operator with subdivision schemes for multi-scale analysis. In: Lecture notes in computer science, vol. 10521. Springer, Berlin, pp. 162–185, 2016), we present the construction of multiresolution analyses connected to general subdivision schemes with detailed application to a non-interpolatory linear scheme called shifted Lagrange (Dyn et al., A C2 four-point subdivision scheme with fourth order accuracy and its extensions. In: Mathematical methods for curves and surfaces: Tromsø 2004. Citeseer, 2005) and its non-linear version called shifted PPH (Amat et al., Math. Comput. 80:959–959, 2011).

Keywords

Subdivision schemes Multiresolutions Decimation Non-linear 

References

  1. 1.
    Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: Analysis of a fully nonlinear multiresolution scheme for image processing. Found. Comput. Math. 6, 193–225 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amat, S., Dadourian, K., Liandrat, J.: On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards C s functions with s > 1. Math. Comput. 80, 959 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baccou, J., Liandrat, J.: Position-dependent Lagrange interpolating multiresolutions. Int. J. Wavelet Multiresolution Inf. 5, 513–539 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefGoogle Scholar
  6. 6.
    Deslaurier, G., Dubuc, S.: Interpolation dyadique. In: Fractals, dimensions non entières et applications, pp. 44–45. Masson, Paris (1987)Google Scholar
  7. 7.
    Dyn, N.: Subdivision schemes in computer-aided geometric design. In: Light, W.A. (ed.) Advances in Numerical Analysis II, Wavelets, Subdivision Algorithms and Radial Basis Functions, pp. 36–104. Clarendon Press, Oxford (1992)Google Scholar
  8. 8.
    Dyn, N., Floater, M.S., Hormann, K.: A C2 four-point subdivision scheme with fourth order accuracy and its extensions. In: Mathematical Methods for Curves and Surfaces: Tromsø 2004. Citeseer (2005)Google Scholar
  9. 9.
    Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33, 1205–1256 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kui, Z., Baccou, J., Liandrat, J.: On the coupling of decimation operator with subdivision schemes for multi-scale analysis. Lecture Notes in Computer Science, vol. 10521, pp. 162–185. Springer, Berlin (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aix Marseille UniversitéCNRS, Centrale Marseille, I2M, UMR 7353MarseilleFrance
  2. 2.Institut de Radioprotection et de Sureté Nucléaire (IRSN)PSN-RES/SEMIA/LIMAR, CE CadaracheSaint Paul Les DuranceFrance

Personalised recommendations