Advertisement

Asymptotic Behaviour of Finite Length Solutions in a Thermosyphon Viscoelastic Model

  • Ángela Jiménez-CasasEmail author
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 18)

Abstract

A thermosyphon, in the engineering literature, is a device composed of a closed loop containing a fluid whose motion is driven by several actions, such as gravity and natural convection. In this work we prove some results about the asymptotic behaviour for solutions of a closed loop thermosyphon model with a viscoelastic fluid in the interior (Jiménez-Casas et al., Discrete Conti Dynam Syst (9th AIMS Conference Sool) 2013:375–384, 2013; Chaotic Model Simul 2:281–288, 2013). In this model a viscoelastic fluid described by the Maxwell constitutive equation is considered, this kind of fluids present elastic-like behavior and memory effects. Their dynamics are governed by a coupled differential nonlinear systems. In several previous works we have shown chaos in the fluid, even with this kind of viscoelastic fluid (Jiménez-Casas and Castro, Electron J Differ Equ (Conference 22), 53–61, 2015; Yasapan et al., Abstr Appl Anal 2013, Article ID: 748683, 2013; Discrete Conti Dynam Syst Ser B 20:3267–3299, 2015 among others). In this model, we consider a prescribed heat flux like Rodríguez-Bernal and Van Vleck (SIAM J Appl Math 58:1072–1093, 1998), Jiménez-Casas and Ovejero (Appl Math Comput 124:289–318, 2001) among others (all of them with Newtonian fluids). This work is, in some sense, a generalization of some previous results on standard (Newtonian) fluids obtained by Rodríguez-Bernal and Van Vleck (SIAM J Appl Math 58:1072–1093, 1998), when we consider a viscoelastic fluid.

Keywords

Thermosyphon Viscoelastic fluid Asymptotic behaviour 

Notes

Acknowledgements

I want to thank M. Castro and J. Yasappan for the numerical experiments and the referee for their helpful comments. This research was partially supported by grants MTM2012-31298,MTM2016-75465-P and Project FIS2013-47949-C2-2 from Ministerio de Economia y Competitividad, Spain; by GR58/08 Grupo 920894 BSCH-UCM from Grupo de Investigación CADEDIF, Grupo de Dinámica No Lineal (U.P. Comillas)Spain and by the Project FIS2016-78883-C2-2-P (AEI/FEDER,UE).

References

  1. 1.
    Bravo-Gutiérrez, M.E, Castro, M., Hernández-Machado, A., Poire, A.: Controlling viscoelastic flow in microchannels with slip. Langmuir (ACS Publ.) 27, 2075–2079 (2011)CrossRefGoogle Scholar
  2. 2.
    Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolution equations. J. Diff. Equ. 73, 309–353 (1985)CrossRefGoogle Scholar
  3. 3.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lectures Notes in Mathematics, vol. 840. Springer, Berlin (1981)CrossRefGoogle Scholar
  4. 4.
    Herrero, M.A., Velázquez, J.L.L.: Stability analysis of a closed thermosyphon. Eur. J. Appl. Math. 1, 1–24 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jiménez-Casas, A., Castro, M.: A thermosyphon model with a viscoelastic binary fluid. Electron. J. Differ. Equ. (Conference 22), 53–61 (2015). ISSN: 1072–6691Google Scholar
  6. 6.
    Jiménez-Casas, A., Ovejero, A.M.L.: Numerical analysis of a closed-loop thermosyphon including the Soret effect. Appl. Math. Comput. 124, 289–318 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Jiménez-Casas, A., Castro, M., Yasappan, J.: Finite-dimensional behaviour in a thermosyphon with a viscoelastic fluid. Discrete Conti. Dynam. Syst. (9th AIMS Conference Sool.) 2013, 375–384 (2013)Google Scholar
  8. 8.
    Jiménez-Casas, A., Castro, M., Yasappan, J.: Chaotic behavior of the closed loop thermosyphon model with memory effects. Chaotic Model. Simul. 2, 281–288 (2013)zbMATHGoogle Scholar
  9. 9.
    Keller, J.B.: Periodic oscillations in a model of thermal convection. J. Fluid Mech. 26, 599–606 (1966)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liñan, A.: Analytical description of chaotic oscillations in a toroidal thermosyphon. In: Velarde, M.G., Christov, C.I. (eds.) Fluid Physics, Lecture Notes of Summer Schools, pp. 507–523. World Scientific, River Edge (1994)Google Scholar
  11. 11.
    Morrison, F.: Understanding Rheology. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  12. 12.
    Rodríguez-Bernal, A.: Inertial manifolds for dissipative semiflows in Banach spaces. Appl. Anal. 37, 95–141 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rodríguez-Bernal, A.: Attractor and inertial manifolds for the dynamics of a closed thermosyphon. J. Math. Anal. Appl. 193, 942–965 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rodríguez-Bernal, A., Van Vleck, E.S.: Diffusion induced chaos in a closed loop thermosyphon. SIAM J. Appl. Math. 58, 1072–1093 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Velázquez, J.J.L.: On the dynamics of a closed thermosyphon. SIAM J. Appl. Math. 54, 1561–1593 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Welander, P.: On the oscillatory instability of a differentially heated fluid loop. J. Fluid Mech. 29, 17–30 (1967)CrossRefGoogle Scholar
  17. 17.
    Yasappan, J., Jiménez-Casas, A., Castro, M.: Asymptotic behavior of a viscoelastic fluid in a closed loop thermosyphon: physical derivation, asymptotic analysis and numerical experiments. Abstr. Appl. Anal. 2013, Article ID: 748683 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yasappan, J., Jiménez-Casas, A., Castro, M.: Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon. Discrete Conti. Dynam. Syst. Ser. B 20, 3267–3299 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dpto. de Matemática AplicadaGrupo de Dinámica No lineal, Universidad Pontificia Comillas de MadridMadridSpain

Personalised recommendations