Advertisement

Formulation and Analysis of a Class of Direct Implicit Integration Methods for Special Second-Order I.V.P.s in Predictor-Corrector Modes

  • Higinio RamosEmail author
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 18)

Abstract

A detailed analysis of different formulations of a class of explicit direct integration methods in predictor-corrector modes for solving special second-order initial-value problems has been carried out (Comput. Phys. Comm. 181 (2010) 1833–1841), showing that the adequate combination of the involved formulas led to an increase in the order of the method. In this paper we consider different formulations of the implicit direct integration methods in predictor-corrector modes. An analysis of the accumulated truncation errors is made and the stability analysis is addressed, including the intervals of stability. Some numerical examples are presented to show the performance of the different formulations. These methods may constitute a reliable alternative to other methods in the literature for solving special second order problems.

Keywords

Error analysis Stability analysis Falkner implicit methods Direct integration methods Second-order initial-value problems Predictor-corrector modes 

Notes

Acknowledgement

The author is pleased to acknowledge a referee for carefully reading the manuscript.

References

  1. 1.
    Beeman, D.: Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. 20, 130–139 (1976)CrossRefGoogle Scholar
  2. 2.
    Calvo, M., Montijano, J.I., Rández, L.: A new stepsize change technique for Adams methods. Appl. Math. Nonlinear Sci. 1, 547–558 (2016)CrossRefGoogle Scholar
  3. 3.
    Chawla, M.M., Rao, P.S.: Numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II. Explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)CrossRefGoogle Scholar
  4. 4.
    Chen, Z., You, X., Shu, X., Zhang, M.: A new family of phase-fitted and amplification-fitted Runge-Kutta type methods for oscillators. J. Appl. Math. (2012). https://doi.org/10.1155/2012/236281 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Coleman, J.P., Ixaru, L.Gr.: P-stability and exponential-fitting methods for y″ = f(x, y). IMA J. Numer. Anal. 16, 179–199 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coleman, J.P., Mohamed, J.: De Vogelaere’s methods with automatic error control. Comput. Phys. Commun. 17, 283–300 (1979)CrossRefGoogle Scholar
  7. 7.
    Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin (1966)Google Scholar
  8. 8.
    Dormand, J.R., El-Mikkawy, M., Prince, P.J.: High order embedded Runge-Kutta-Nystrom formulae. IMA J. Numer. Anal. 7, 423–430 (1987)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Falkner, V.M.: A method of numerical solution of differential equations. Phil. Mag. (7) 21, 621–640 (1936)Google Scholar
  10. 10.
    Franco, J.M., Gómez, I.: Accuracy and linear stability of RKN methods for solving second-order stiff problems. Appl. Numer. Math. 59, 959–975 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gear, C.W.: Argonne National Laboratory, Report no. ANL-7126 (1966)Google Scholar
  12. 12.
    Gladwell, I., Thomas, R.: Stability properties of the Newmark, Houbolt and Wilson θ methods. I. J. Numer. Anal. Meth. Geomech. 4, 143–158 (1980)CrossRefGoogle Scholar
  13. 13.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1987)CrossRefGoogle Scholar
  14. 14.
    Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)zbMATHGoogle Scholar
  15. 15.
    Kramarz, L.: Stability of collocation methods for the numerical solution of y” = f(x, y). BIT 20, 215–222 (1980). https://doi.org/10.1007/BF01933194 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Krishnaiah, U.A.: Adaptive methods for periodic initial value problems of second order differential equations. J. Comput. Appl. Math. 8, 101–104 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Krogh, F.T.: Issues in the Design of a Multistep Code. JPL Technical Report (1993). http://hdl.handle.net/2014/34958
  18. 18.
    Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. Wiley, Chichester (1991)zbMATHGoogle Scholar
  19. 19.
    Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, J.: A family of improved Falkner-type methods for oscillatory systems. Appl. Math. Comput. 293, 345–357 (2017)MathSciNetGoogle Scholar
  21. 21.
    Li, J., Wu, X.: Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algorithms 62, 355–381 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Paternoster, B.: Runge-Kutta-Nyström methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28, 401–412 (1998)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ramos, H., Lorenzo, C.: Review of explicit Falkner methods and its modifications for solving special second-order IVPs. Comput. Phys. Commun. 181, 1833–1841 (2010)CrossRefGoogle Scholar
  24. 24.
    Ramos, H., Singh, G., Kanwar, V., Bhatia, S.: An efficient variable step-size rational Falkner-type method for solving the special second-order IVP. Appl. Math. Comput. 291, 39–51 (2016)MathSciNetGoogle Scholar
  25. 25.
    Ramos, H., Mehta, S., Vigo-Aguiar, J.: A unified approach for the development of k-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. J. Comput. Appl. Math. 318, 550–564 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shampine, L.F., Gordon, M.K.: Computer Solution of Ordinary Differential Equations. The Initial Value Problem. Freeman, San Francisco (1975)Google Scholar
  27. 27.
    Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Toxvaerd, S.: A new algorithm for molecular dynamics calculations. J. Comput. Phys. 47, 444–451 (1982)CrossRefGoogle Scholar
  29. 29.
    Tsitouras, Ch., Simos, T.E.: Explicit high order methods for the numerical integration of periodic initial-value problems. Appl. Math. Comput. 95, 15–26 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for y″ = f(x, y, y′). J. Comput. Appl. Math. 192, 114–131 (2006)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wilson, E.L.: A computer program for the dynamic stress analysis of underground structures. SESM Report No. 68-1, Division Structural Engineering and Structural Mechanics, University of California, Berkeley (1968)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo de Computación CientíficaUniversidad de Salamanca, Escuela Politécnica Superior de ZamoraZamoraSpain

Personalised recommendations