Atomically Thin Resonant Tunnel Diodes

  • Yu-Chuan Lin
Part of the Springer Theses book series (Springer Theses)


Vertical integration of 2D vdW materials is predicted to display novel electronic and optical properties absent in their constituent layers [1]. In this chapter the direct synthesis of two unique, atomically thin, multi-junction heterostructures is demonstrated by combining graphene with some important 2D TMDC: MoS2, MoSe2, and WSe2, aiming to achieve “epitaxy-grade” material interfaces. Surprisingly, the realization of MoS2-WSe2-graphene and WSe2-MoSe2-graphene heterostructures leads to resonant tunneling in an atomically thin stack with spectrally narrow, room-temperature negative differential resistance characteristics.


  1. 1.
    Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science. 353, 80 (2016)CrossRefGoogle Scholar
  2. 2.
    Esaki, L.: New phenomenon in narrow Germanium p-n junctions. Phys. Rev. 109, 603–604 (1958)ADSCrossRefGoogle Scholar
  3. 3.
    Esaki, L., Tsu, R.: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970)CrossRefGoogle Scholar
  4. 4.
    Mitin, V.V., Kochelap, V., Stroscio, M.A.: Quantum heterostructures: microelectronics and optoelectronics. Cambridge University Press, Cambridge (1999)Google Scholar
  5. 5.
    Chan, H.L., Mohan, S., Mazumder, P., Haddad, G.I.: Compact multiple-valued multiplexers using negative differential resistance devices. IEEE J. Solid-State Circuits. 31, 1151–1156 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Bayram, C., Vashaei, Z., Razeghi, M.: AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 96, 042103 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA. 102, 10451–10453 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature. 499, 419–425 (2013)CrossRefGoogle Scholar
  10. 10.
    Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., Lou, J.: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 8, 966–971 (2012)Google Scholar
  11. 11.
    Lee, Y.-H., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)CrossRefGoogle Scholar
  12. 12.
    Gutiérrez, H.R., et al.: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Liu, K.-K., et al.: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Y., et al.: Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Ugeda, M.M., et al.: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Terrones, H., López-Urías, F., Terrones, M.: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Fang, H., et al.: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA. 111, 6198–6202 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Haigh, S.J., et al.: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Rivera, P., et al.: Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015)Google Scholar
  20. 20.
    Chiu, M.-H., et al.: Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano. 8, 9649–9656 (2014)Google Scholar
  21. 21.
    Robinson, J.A., et al.: Epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett. 11, 3875–3880 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Huang, J.-K., et al.: Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano. 8, 923–930 (2014)CrossRefGoogle Scholar
  23. 23.
    Eichfeld, S.M., et al.: Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano. 9, 2080–2087 (2015)CrossRefGoogle Scholar
  24. 24.
    Su, S.-H., et al.: Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small. 10, 2589–2594 (2014)CrossRefGoogle Scholar
  25. 25.
    Ghosh, R.K., Lin, Y.-C., Robinson, J.A., Datta, S.: Heterojunction resonant tunneling diode at the atomic limit. 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 266–269. IEEE (2015).Google Scholar
  26. 26.
    Lin, Y.-C., et al.: Direct synthesis of van der Waals solids. ACS Nano. 8, 3715–3723 (2014)CrossRefGoogle Scholar
  27. 27.
    Lin, Y.-C., et al.: Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015)CrossRefGoogle Scholar
  28. 28.
    Lee, G.-H., et al.: Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Gong, Y., et al.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)Google Scholar
  30. 30.
    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Chiu, M.-H., et al.: Determination of band alignment in transition metal dichalcogenides heterojunctions (2014)Google Scholar
  32. 32.
    Yang, W., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Parkinson, B.A., Ohuchi, F.S., Ueno, K., Koma, A.: Periodic lattice distortions as a result of lattice mismatch in epitaxial films of two-dimensional materials. Appl. Phys. Lett. 58, 472–474 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    Klein, A., Tiefenbacher, S., Eyert, V., Pettenkofer, C., Jaegermann, W.: Electronic band structure of single-crystal and single-layer WS2: influence of interlayer van der Waals interactions. Phys. Rev. B. 64, 205416 (2001)Google Scholar
  35. 35.
    Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J., Shih, C.-K.: Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Rawlett, A.M., et al.: Electrical measurements of a dithiolated electronic molecule via conducting atomic force microscopy. Appl. Phys. Lett. 81, 3043 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Georgiou, T., et al.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013)Google Scholar
  38. 38.
    Smet, J.H., Broekaert, T.P.E., Fonstad, C.G.: Peak-to-valley current ratios as high as 50:1 at room temperature in pseudomorphic In0.53Ga0.47As/AlAs/InAs resonant tunneling diodes. J. Appl. Phys. 71, 2475 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    Day, D.J., Yang, R.Q., Lu, J., Xu, J.M.: Experimental demonstration of resonant interband tunnel diode with room temperature peak-to-valley current ratio over 100. J. Appl. Phys. 73, 1542–1544 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    Su, Y.-K., et al.: Well width dependence for novel AlInAsSb/InGaAs double-barrier resonant tunneling diode. Solid State Electron. 46, 1109–1111 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    Tsai, H.H., Su, Y.K., Lin, H.H., Wang, R.L., Lee, T.L.: P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature. IEEE Electron Device Lett. 15, 357–359 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    Rommel, S.L., et al.: Epitaxially grown Si resonant interband tunnel diodes exhibiting high current densities. IEEE Electron Device Lett. 20, 329–331 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    See, P., et al.: High performance Si/Si1-x/Gex resonant tunneling diodes. IEEE Electron Device Lett. 22, 182–184 (2001)Google Scholar
  44. 44.
    Jin, N., et al.: Diffusion barrier cladding in Si/SiGe resonant interband tunneling diodes and their patterned growth on PMOS source/drain regions. IEEE Trans. Electron Devices. 50, 1876–1884 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Britnell, L., et al.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)CrossRefGoogle Scholar
  46. 46.
    Evers, N., et al.: Thin film pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes integrated onto Si substrates. IEEE Electron Device Lett. 17, 443–445 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    Mishchenko, A., et al.: Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Roy, T., et al.: Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano. 9, 2071–2079 (2015)Google Scholar
  49. 49.
    Lee, C.-H., et al.: Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yu-Chuan Lin
    • 1
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations