Synthesis and Properties of 2D Semiconductors

  • Yu-Chuan Lin
Part of the Springer Theses book series (Springer Theses)


In the previous chapter, brief history of the development and fundamentals of 2D materials and vdW heterostructures and the very first methods to isolate them are provided. Graphene can be considered as the funding layer for the field of 2D materials. And we are able to continuously branch out from graphene to other kinds of 2D layers, which sometimes is so called “beyond graphene” 2D layers, and also the sciences and engineering behind them. A heterostructure made of 2D semiconducting materials is an important remark toward flexible and low-power optoelectronics in the future. Analogously, 2D TMDCs represent a new class of building blocks. By combining certain of them, interesting physical sciences and practical applications can be created out of our hands. However, current methods for making a vdW heterostructure may not always provide good material interfaces. This challenge inspired my graduate research on synthetic 2D layers and their heterostructures and discovery of their properties. This chapter covers some practical aspects of thin-film deposition and also methods used for depositing 2D TMDC domains and films. The transport mechanism for 2D material devices is dominated by a few scattering events, which a lot of time are related to the interface of 2D materials and their substrates. This chapter, therefore, provides all necessary knowledges that are not all included in the later chapter which focused on the properties, devices of synthetic 2D layers, 2D/2D vdW heterostructures, and 2D/3D heterostructures.


  1. 1.
    Smith, D.: Thin-film deposition: principles and practice. McGraw-Hill, New York (1995)Google Scholar
  2. 2.
    Ohring, M.: Materials science of thin films : deposition and structure. Academic, New York (2002)Google Scholar
  3. 3.
    Gupta, P., et al.: Layered transition metal dichalcogenides: promising near- lattice-matched substrates for GaN growth. Sci. Rep. 6, 23708 (2016). Google Scholar
  4. 4.
    Zhang, C., et al.: Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026 (2016)CrossRefGoogle Scholar
  5. 5.
    Das, S., Robinson, J.A., Dubey, M., Terrones, H., Terrones, M.: Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45, 1–27 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Lin, Y.-C., et al.: Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale. 4, 1–8 (2012)Google Scholar
  7. 7.
    Lee, Y.-H., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)CrossRefGoogle Scholar
  8. 8.
    Li, H., Li, Y., Aljarb, A., Shi, Y., Li, L.-J.: Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 118, 6134–6150 (2017)CrossRefGoogle Scholar
  9. 9.
    Vilá, R.A., et al.: Bottom-up synthesis of vertically oriented two-dimensional materials. 2D Mater. 3, 041003 (2016)CrossRefGoogle Scholar
  10. 10.
    Kang, K., et al.: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 520, 656–660 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Eichfeld, S.M., et al.: Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano. 9, 2080–2087 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhang, X., et al.: Influence of carbon in metalorganic chemical vapor deposition of few-layer WSe2 thin films. J. Electron. Mater. 45, 6273–6279 (2016)Google Scholar
  13. 13.
    de Heer, W.A., et al.: Epitaxial graphene. Solid State Commun. 143, 92–100 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Van Bommel, A.J., Crombeen, J.E., Van Tooren, A.: LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    de Heer, W.A., et al.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U. S. A. 108, 16900–16905 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Forti, S., Starke, U.: Epitaxial graphene on SiC: from carrier density engineering to quasi-free standing graphene by atomic intercalation. J. Phys. D. Appl. Phys. 47, 094013 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Lin, Y.-C., et al.: Direct synthesis of van der Waals solids. ACS Nano. 8, 3715–3723 (2014)CrossRefGoogle Scholar
  18. 18.
    Kroemer, H.: Heterostructure bipolar transistors and integrated circuits. Proc. IEEE. 70, 13–25 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    Van der Koma, A.: Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth. 201–202, 236–241 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Yang, W., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Ago, H., et al.: Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces. 7, 5265–5273 (2015)CrossRefGoogle Scholar
  22. 22.
    Lin, Y.-C., et al.: Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. Nano Lett. 14, 6936–6941 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Lin, Y.-C., et al.: Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015)CrossRefGoogle Scholar
  24. 24.
    Gong, Y., et al.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)Google Scholar
  25. 25.
    Li, M.-Y., et al.: Nanoelectronics. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science. 349, 524–528 (2015)Google Scholar
  26. 26.
    Shi, Y., et al.: van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Zhang, K., Lin, Y.-C., Robinson, J.A.: Semiconductors and semimetals, vol. 95, pp. 189–219. Elsevier, Amsterdam (2016)Google Scholar
  28. 28.
    Bradley, A.J., et al.: Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 15, 2594–2599 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Tan, C., Zhang, H.: Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137, 12162–12174 (2015)CrossRefGoogle Scholar
  30. 30.
    Ugeda, M.M., et al.: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Jung, Y., Shen, J., Sun, Y., Cha, J.J.: Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. ACS Nano. 8, 9550–9557 (2014)CrossRefGoogle Scholar
  32. 32.
    Kang, J., Liu, W., Sarkar, D., Jena, D., Banerjee, K.: Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X. 4, 031005 (2014)Google Scholar
  33. 33.
    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Yoon, Y., Ganapathi, K., Salahuddin, S.: How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Fiori, G., et al.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Xie, L., et al.: Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29, (2017). CrossRefGoogle Scholar
  38. 38.
    Robinson, J.A., et al.: Epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett. 11, 3875–3880 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Yu, H., et al.: Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano. 11, 12001–12007 (2017)CrossRefGoogle Scholar
  40. 40.
    Kang, K., et al.: Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature. 550, 229–233 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Li, S., et al.: Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today. 1, 60–66 (2015)Google Scholar
  42. 42.
    Chen, J., et al.: Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139, 1073–1076 (2017)CrossRefGoogle Scholar
  43. 43.
    Yang, P., et al.: Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yu-Chuan Lin
    • 1
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations