Appendix to Part I: The AVC and AVWC

  • Rudolf AhlswedeEmail author
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 15)


In this lecture, Holger Boche and Ahmed Mansour give a quick overview about the arbitrarily varying channel (AVC) and its corresponding wiretap channel (AVWC). We then highlight some of the code concepts used for such channels and focus on the concept of list decoding. Finally, we present some coding theorems for reliable and secure communication over AVCs and AVWCs.


  1. 1.
    I. Csiszár, P. Narayan, The capacity of arbitrarily channels revisited, positivity, constraints. IEEE Trans. Inf. Theory 34, 181–193 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    V.M. Blinovsky, O. Narayan, M.S. Pinsker, Capacity of the arbitrarily varying channel under list decoding. Probl. Inf. Transm. 31, 99–113 (1995), translated from Problemy Peredačii Informacii 31(2), 3–19 (1995)Google Scholar
  3. 3.
    B.L. Hughes, The smallest list for arbitrarily varying channel. IEEE Trans. Inf. Theory 43(3), 803–815 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Blackwell, L. Breiman, A.J. Thomasian, The capacities of certain channel classes under random coding. Ann. Math. Stat. 31, 558–567 (1960)CrossRefGoogle Scholar
  5. 5.
    R. Ahlswede, Elimination of correlation in random codes for arbitrarily varying channels. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 33, 159–175 (1978)MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. Bjelaković, H. Boche, J. Sommerfeld, Capacity results for arbitrarily varying wiretap channels, Information Theory, Combinatorics, and Search Theory (Springer, New York, 2013), pp. 123–144CrossRefGoogle Scholar
  7. 7.
    M. Wiese, J. Nötzel, H. Boche, A channel under simultaneous jamming and eavesdropping attack - correlated random coding capacities under strong secrecy criteria. IEEE Trans. Inf. Theory 62(7), 3844–3862 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Nötzel, M. Wiese, H. Boche, The arbitrarily varying wiretap channel - secret randomness, stability, and super-activation. IEEE Trans. Inf. Theory 62(6), 3504–3531 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A.S. Mansour, H. Boche, R.F. Schaefer, Stabilizing the secrecy capacity of the arbitrarily varying wiretap channel and transceiver synchronization using list decoding, in IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan (2017), pp. 1–5Google Scholar
  10. 10.
    A.S. Mansour, H. Boche, R.F. Schaefer, Secrecy capacity under list decoding for a channel with a passive eavesdropper and an active jammer, in IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Alberta, Canada (2018)Google Scholar
  11. 11.
    C.E. Shannon, The zero error capacity of a noisy channel. IRE Trans. Inf. Theory IT–2, 8–19 (1956)MathSciNetCrossRefGoogle Scholar
  12. 12.
    W. Haemers, On some problems of Lovasz concerning the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(2), 231–232 (1979)MathSciNetCrossRefGoogle Scholar
  13. 13.
    N. Alon, The Shannon capacity of a union. Combinatorica 18(3), 301–310 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    P. Keevash, E. Long, On the normalized Shannon capacity of a union. Comb. Probab. Comput. 25(5), 766–767 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Ahlswede, A note on the existence of the weak capacity for channels with arbitrarily varying probability functions and its relation to Shannon’s zero error capacity. Ann. Math. Stat. 41, 1027–1033 (1970)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Boche, R.F. Schaefer, H.V. Poor, Analytical properties of Shannon’s capacity of arbitrarily varying channels under list decoding: super-additivity and discontinuity behavior (2018)Google Scholar
  17. 17.
    H. Boche, R.F. Schaefer, H.V. Poor, On the continuity of the secrecy capacity of compound and arbitrarily varying wiretap channels. IEEE Trans. Inf. Forensics Secur. 10(12), 2531–2546 (2015)CrossRefGoogle Scholar
  18. 18.
    R.F. Schaefer, H. Boche, H.V. Poor, Super-activation as a unique feature of arbitrarily varying wiretap channels, in 2016 IEEE International Symposium on Information Theory (ISIT) (2016), pp. 3077–3081Google Scholar
  19. 19.
    G. Giedke, M.M. Wolf, Quantum communication: super-activated channels. Nat. Photonics 5(10), 578–580 (2011)CrossRefGoogle Scholar
  20. 20.
    R.F. Schaefer, H. Boche, H.V. Poor, Super-activation as a unique feature of secure communication in malicious environments. Information 7(24) (2016)CrossRefGoogle Scholar
  21. 21.
    R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35(1), 15–29 (1989)MathSciNetCrossRefGoogle Scholar
  22. 22.
    H. Boche, C. Deppe, Secure identification for wiretap channels; robustness, super-additivity and continuity. IEEE Trans. Inf. Forensics Secur. 13(7) (2018)CrossRefGoogle Scholar
  23. 23.
    R. Ahlswede, Z. Zhang, New directions in the theory of identification via channels. IEEE Trans. Inf. Theory 41(4), 1040–1050 (1995)CrossRefGoogle Scholar
  24. 24.
    H. Boche, C. Deppe, Secure identification under passive eavesdroppers and active jamming attacks. IEEE Trans. Inf. Forensics Secur (2018)Google Scholar
  25. 25.
    A.D. Sarwate, Robust and adaptive communication under uncertain interference. Ph.D. dissertation, EECS Department, University of California, Berkeley (2008)Google Scholar
  26. 26.
    A.D. Sarwate, M. Gastpar, Channels with nosy noise, in IEEE International Symposium on Information Theory, Nice, France (2007), pp. 996–1000Google Scholar
  27. 27.
    A.D. Sarwate, An AVC perspective on correlated jamming, in International Conference on Signal Processing and Communications (SPCOM) (2012), pp. 1–5Google Scholar
  28. 28.
    R. Ahlswede, The maximal error capacity of arbitrarily varying channels for constant list size. IEEE Trans. Inf. Theory 39, 1416–1417 (1993)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A.D. Sarwate, M. Gastpar, List-decoding for the arbitrarily varying channel under state constraints. IEEE Trans. Inf. Theory 58(3), 1372–1384 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Boche, M. Cai, N. Cai, Message transmission over classical quantum channels with a jammer with side information: message transmission capacity and resources (2018), arXiv:1801.10550
  31. 31.
    I. Bjelakovic, H. Boche, Classical capacities of compound and averaged quantum channels. IEEE Trans. Inf. Theory 55(7), 3360–3374 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BielefeldGermany

Personalised recommendations