Advertisement

Non-standard Decoders

  • Rudolf AhlswedeEmail author
Chapter
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 15)

Abstract

There are two important methods for the proof of the coding theorem for the AVC. One is the elimination (and robustification) technique in Sect. 5.3.

References

  1. 1.
    R. Ahlswede, A method of coding and application to arbitrarily varying channels. J. Comb. Inform. & System Sci. 5, 10–35 (1980)MathSciNetGoogle Scholar
  2. 2.
    I. Csiszár, J. Körner, On the capacity of the arbitrarily varying channel for maximium probability of error. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 57, 87–101 (1981)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Ahlswede, Storing and Transmitting Data, Rudolf Ahlswede’s Lectures on Information Theory 1, editors A. Ahlswede, I. Althöfer, C. Deppe and U. Tamm, Series: Foundations in Signal Processing, Communications and Networking, Vol. 10, Springer-Verlag (2014)Google Scholar
  4. 4.
    R. Ahlswede, Coloring hypergraphs, a new approach to multi–user source coding, J. Comb. Inform. & System Sci., –I, Vol. 4, 76–115, 1979 and -II, Vol. 5, 220–268 (1980)Google Scholar
  5. 5.
    I. Csiszár, P. Narayan, The capacity of arbitrarily channels revisited, positivity, constraints. IEEE Trans. Inform. Theory 34, 181–193 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    V.M. Blinovsky, O. Narayan and M.S. Pinsker, Capacity of the arbitrarily varying channel under list decoding, Prob. Inform. Transmis., Vol. 31, 99–113, 1995, translated from Problemy Peredačii Informacii, Vol. 31, No. 2, 3–19 (1995)Google Scholar
  7. 7.
    B.L. Hughes, The smallest list for arbitrarily varying channel. IEEE Trans. Inform. Theory 43(3), 803–815 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    V.M. Blinovsky, M.S. Pinsker, Estimation on size of the list when decoding in arbitrary varying channel, Lect. Notes in. Comp. Sci. N781 Springer-Verlag, 28–33 (1993)zbMATHGoogle Scholar
  9. 9.
    I. Csiszár, P. Narayan, Capacity of the Gaussian arbitrarily varying channel. IEEE Trans. Inform. Theory 37, 18–26 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    C.E. Shannon, Probability of error in a Gaussian channel. Bell System Ted. J. 38, 611–656 (1959)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.A. Gubner, On the capacity region of the discrete additive multiple-access arbitrarily varying channel. IEEE Trans. Inform. Theory 38, 1344–1347 (1992)CrossRefGoogle Scholar
  12. 12.
    R. Ahlswede, N. Cai, Arbitrarily varying multiple-access channels, Part I, Ericson’s symmetrizability is adequate, Gubner’s conjecture is true. IEEE Trans. Inf. Theory 45(2), 742–749 (1999)CrossRefGoogle Scholar
  13. 13.
    R. Ahlswede, N. Cai, Arbitrarily varying multiple-access channels, Part II, Correlated sender’s side information, correlated messages and ambiguous transmission. IEEE Trans. Inf. Theory 45(2), 749–756 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BielefeldGermany

Personalised recommendations