Advertisement

Random Network Coding

  • Rudolf Ahlswede
Chapter
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 15)

Abstract

We present a randomized coding approach for robust, distributed transmission and compression of information in networks, and demonstrate its advantages over routing-based approaches. It is due to Ho [1].

References

  1. 1.
    T. Ho, R. Kötter, M. Medard, D.R. Karger, M. Effros, The benefits of coding over routing in randomized setting, in Proceeding of the 2003 IEEE International Symposium on Information Theory, Yokohama, 20 June –3 July 2003, p. 442Google Scholar
  2. 2.
    R. Ahlswede, N. Cai, S.Y.R. Li, R.W. Yeung, Network information flow, Preprint 98–033, SFB 343, Diskrete Strukturen in der Mathematik, Universität Bielefeld. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S.D. Servetto, G. Barrenechea, Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks, in Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (2002)Google Scholar
  4. 4.
    R. Kötter, M. Médard, An algebraic approach to network coding. Trans. Netw. 11(5), 782–795 (2003)CrossRefGoogle Scholar
  5. 5.
    S.Y. Li, R.W. Yeung, N. Cai, Linear network coding. IEEE Trans. Inf. Theory IT-49, 371–381 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Ho, D.R. Karger, M. Médard, R. Kötter, Network coding from a network flow perspective, in Submitted to the 2003 IEEE International Symposium on Information TheoryGoogle Scholar
  7. 7.
    P.A. Wu, Y. Chou, K. Jain, Practical network coding, in Proceedings of the 2003 Allerton Conference on Communication, Control, and Computing (Monticello, IL, 2003)Google Scholar
  8. 8.
    S. Jaggi, P. Chou, K. Jain, Low complexity algebraic network codes, in Proceedings of the IEEE International Symposium on Information Theory (2003)Google Scholar
  9. 9.
    P. Sanders, S. Egner, L. Tolhuizen, Polynomial time algorithms for network information flow, in Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms and Architectures (San Diego, CA, 2003), pp. 286–294Google Scholar
  10. 10.
    S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain, L. Tolhuizen, Polynomial time algorithms for multicast network code construction. IEEE Trans. Inf. Theory 51(6), 1973–1982 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Ho, M. Medard, R. Kötter, D.R. Karger, M. Effros, J. Shi, B. Leong, A random linear network coding approach to multicast. IEEE Trans. Inf. Theory 52(10), 4413–4430 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    I. Csiszar, Linear codes for sources and source networks: error exponents, universal coding. IEEE Trans. Inf. Theory 28(4), 585–592 (1982)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D.S. Lun, N. Ratnakar, R. Kötter, M. Médard, E. Ahmed, H. Lee, Achieving minimum cost multicast: a decentralized approach based on network coding, in Proceedings of the IEEE Infocom (2005)Google Scholar
  14. 14.
    T. Ho, H. Viswanathan, Dynamic algorithms for multicast with intra-session network coding, in Proceedings of the 43rd Annual Allerton Conference on Communication, Control, and Computing (2005)Google Scholar
  15. 15.
    R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University, Cambridge, 1995)Google Scholar
  16. 16.
    T. Ho, M. Médard, J. Shi, M. Effros, D.R. Karger, On randomized network coding, in Proceedings of the 41st Annual Allerton Conference on Communication, Control, and Computing (2003)Google Scholar
  17. 17.
    T. Ho, M. Médard, M. Effros, R. Kötter, D.R. Karger, Network coding for correlated sources, in Proceedings Conference on Information Sciences and Systems (2004)Google Scholar
  18. 18.
    T. Ho, B. Leong, M. Médard, R. Kötter, Y. Chang, M. Effros, On the utility of network coding in dynamic environments, in International Workshop on Wireless Ad-Hoc Networks (2004)Google Scholar
  19. 19.
    H. Balli, X. Yan, Z. Zhang, Error correction capability of random network error correction codes, in IEEE International Symposium on Information Theory, Nice, France (2007), pp. 24–29Google Scholar
  20. 20.
    Z. Zhang, Network error correction coding in packetized networks. IEEE Trans. Inf. Theory (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BielefeldGermany

Personalised recommendations