Advertisement

Preliminaries

  • Rudolf AhlswedeEmail author
Chapter
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 15)

Abstract

The arbitrarily varying channel (AVC) was introduced under a different name by Blackwell, Breiman, and Thomasian [1] and considerable progress has been made in the study of these channels. It is probably one of the most interesting models in information theory because of the following phenomena which are not present in simpler models.

References

  1. 1.
    D. Blackwell, L. Breiman, A.J. Thomasian, The capacities of certain channel classes under random coding. Ann. Math. Stat. 31, 558–567 (1960)CrossRefGoogle Scholar
  2. 2.
    R. Ahlswede, Elimination of correlation in random codes for arbitrarily varying channels. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 33, 159–175 (1978)Google Scholar
  3. 3.
    J. Kiefer, J. Wolfowitz, Channels with arbitrarily varying channel probability functions. Inf. Control 5, 44–54 (1962)MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Ericson, Exponential error bounds for random codes in the arbitrarily varying channel. IEEE Trans. Inf. Theory 31, 42–48 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Csiszár, P. Narayan, The capacity of arbitrarily channels revisited, positivity, constraints. IEEE Trans. Inf. Theory 34, 181–193 (1988)Google Scholar
  6. 6.
    R. Ahlswede, J. Wolfowitz, The capacity of a channel with arbitrarily varying channel probability functions and binary outputalphabet. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 15, 186–194 (1970)Google Scholar
  7. 7.
    R. Ahlswede, N. Cai, The AVC with noiseless feedback and maximal error probability, a capacity formula with a trichotomy, in Numbers, Information and Complexity, Special volume in honour of R. Ahlswede on occasion of his 60th birthday, ed. by I. Althöfer, N. Cai, G. Dueck, L.H. Khachatrian, M. Pinsker, A. Sárközy, I. Wegener, Z. Zhang (Kluwer Academic Publishers, Boston, 2000), pp. 151–176Google Scholar
  8. 8.
    I. Csiszár, J. Körner, On the capacity of the arbitrarily varying channel for maximum probability of error. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 57, 87–101 (1981)Google Scholar
  9. 9.
    R. Ahlswede, A note on the existence of the weak capacity for channels with arbitrarily varying probability functions and its relation to Shannon’s zero error capacity. Ann. Math. Stat. 41, 1027–1033 (1970)Google Scholar
  10. 10.
    C.E. Shannon, The zero error capacity of a noisy channel. IRE Trans. Inf. Theory IT–2, 8–19 (1956)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Ahlswede, Channels with arbitrarily varying channel probability functions in the presence of noiseless feedback. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 25, 239–252 (1973)Google Scholar
  12. 12.
    R. Ahlswede, N. Cai, Two proofs of Pinsker’s conjecture concerning arbitrarily varying channels. IEEE Trans. Inf. Theory 37, 1647–1649 (1991)MathSciNetCrossRefGoogle Scholar
  13. 13.
    V.M. Blinovsky, O. Narayan, M.S. Pinsker, Capacity of the arbitrarily varying channel under list decoding. Probl. Inf. Transm. 31, 99–113 (1995), translated from Problemy Peredačii Informacii 31(2), 3–19 (1995)Google Scholar
  14. 14.
    B.L. Hughes, The smallest list for arbitrarily varying channel. IEEE Trans. Inf. Theory 43(3), 803–815 (1997)Google Scholar
  15. 15.
    R. Ahlswede, Channel capacities for list codes. J. Appl. Probab. 10, 824–836 (1973)MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Ahlswede, The maximal error capacity of arbitrarily varying channels for constant list size. IEEE Trans. Inf. Theory 39, 1416–1417 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    P. Elias, Zero error capacity under list decoding. IEEE Trans. Inf. Theory 34, 1070–1074 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Ahlswede, Arbitrarily varying channels with states sequence known to the sender. IEEE Trans. Inf. Theory 32, 621–629 (1986)MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Ahlswede, N. Cai, Correlated sources help the transmission over AVC. IEEE Trans. Inf. Theory 43(4), 1254–1255 (1997)Google Scholar
  20. 20.
    R. Ahlswede, The capacity of a channel with arbitrarily varying additive Gaussian channel probability functions, in Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (1971), pp. 13–21Google Scholar
  21. 21.
    I. Csiszár, P. Narayan, Capacity of the Gaussian arbitrarily varying channel. IEEE Trans. Inf. Theory 37, 18–26 (1991)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J.-H. Jahn, Coding of arbitrarily varying multiuser channels. IEEE Trans. Inf. Theory 27, 212–226 (1981)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J.A. Gubner, On the deterministic–code capacity of the multiple–access arbitrarily varying channel. IEEE Trans. Inf. Theory 36, 262–275 (1990)MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Ahlswede, N. Cai, Arbitrarily varying multiple–access channels, part I, Ericson’s symmetrizability is adequate, Gubner’s conjecture is true. IEEE Trans. Inf. Theory 45(2), 742–749 (1999)Google Scholar
  25. 25.
    R. Ahlswede, N. Cai, Arbitrarily varying multiple–access channels, part II, correlated sender’s side information, correlated messages and ambiguous transmission. IEEE Trans. Inf. Theory 45(2), 749–756 (1999)Google Scholar
  26. 26.
    I. Csiszár, Arbitrarily varying channels with general alphabets and states. IEEE Trans. Inf. Theory 38, 1725–1742 (1992)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Ahlswede, Coloring hypergraphs, a new approach to multi–user source coding. J. Comb. Inf. Syst. Sci. I 4, 76–115 (1979) and II 5, 220–268 (1980)Google Scholar
  28. 28.
    I. Csiszár, P. Narayan, Capacity and decoding rules for arbitrarily varying channels. IEEE Trans. Inf. Theory 35, 752–769 (1989)Google Scholar
  29. 29.
    T.M. Cover, A. ElGamal, M. Salehi, Multiple–access channel with arbitrarily correlated sources. IEEE Trans. Inf. Theory IT–26, 648–659 (1980)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Hizlan, B.L. Hughes, On the optimal of direct sequence for arbitrary interference rejection. IEEE Trans. Commun. 39, 1193–1196 (1991)CrossRefGoogle Scholar
  31. 31.
    D. Blackwell, L. Breiman, A.J. Thomasian, The capacity of a class of channels. Ann. Math. Stat. 30, 1229–1241 (1959)MathSciNetCrossRefGoogle Scholar
  32. 32.
    I. Csiszár, P. Narayan, Arbitrary varying channels with constrained input and states. IEEE Trans. Inf. Theory 34, 27–44 (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BielefeldGermany

Personalised recommendations