Available Systems and State of the Art

  • Stephan StuerwaldEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 221)


This section gives a brief overview of the state of the art of (commercially) available systems for digital holographic microscopy (DHM) and quantitative phase contrast, 3D-nanopositioning, optical tweezers as well as 3-dimensional lithography by direct laser writing. Those systems, that are utilized for the experimental setups in the following chapters, are introduced in more detail.


  1. 1.
    Elliot Scientific: E3300 Series Single Spot Tweezers Systems.
  2. 2.
  3. 3.
    Bass, M., America, Optical S.: Handbook of Optics. McGraw-Hill Professional Publishing, New York (1994)., ISBN 9780070479746
  4. 4.
    Vogel, M.: Entwicklung und Aufbau einer modularen Konfokal-Multiphotonen-Laserscanning-Messapparatur (CMLTT) für Second Harmonic Generation-, Total Internal Reflectance und Laser Tweezers-Anwendungen an myofibrillären Präparaten. Dissertation, Ruprecht-Karls-Universität, Heidelberg 15.12.2004Google Scholar
  5. 5.
    Aresis: TWEEZ 200si.
  6. 6.
    Arryx: BioRyx 200 Optical Trapping System.
  7. 7.
    Marquet, P., Rappaz, B., Magistretti, P.J., Cuche, E., Emery, Y., Colomb, T., Depeursinge, C.: Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30(5), 468–470 (2005). Scholar
  8. 8.
    Imaging, Phase H.: HoloMonitor.
  9. 9.
    Tec, L.: DHM, The Digital Holographic Microscopes.
  10. 10.
    Restrepo, J., Garcia-Succerquia, J.: Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy. Opt. Lett. 37(4), 752–754 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, T., Yamaguchi, I.: Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23, 1221–1223 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Cuche, E., Depeursinge, C.: Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24(5), 291–293 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Ashkin, A.: History of optical trapping and manipulation of small neutral particles, atoms, and molecules. Springer Series in Chemical Physics, vol. 67, pp. 1–31. Springer, Berlin (2001)., ISBN 978–3–642–62702–6Google Scholar
  14. 14.
    Svoboda, K., Block, S.M.: Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994)., PMID: 7919782CrossRefGoogle Scholar
  15. 15.
    Fällman, E., Axner, O.: Design for fully steerable dual-trap optical tweezers. Appl. Opt. 36(10), 2107–2113 (1997). Scholar
  16. 16.
    Sasaki, K., Koshioka, M., Misawa, H., Kitamura, N., Masuhara, H.: Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt. Lett. 16(19), 1463–1465 (1991). Scholar
  17. 17.
    Brouhard, G.J., Schek, H.T., Hunt, A.J.: Advanced optical tweezers for the study of cellular and molecular biomechanics. IEEE Trans. Biomed. Eng. 50(1), 121–125 (2003). Scholar
  18. 18.
    Dufresne, E.R., Spalding, G.C., Matthew, T., Sheets, A., Grier, D.G.: Computer-generated holographic optical tweezer arrays. Rev. Sci. Instr. 72(3), 1810–1816 (2001). Scholar
  19. 19.
    Dufresne, E.R., Grier, D.G.: Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instr. 69(5), 1974–1977 (1998). Scholar
  20. 20.
    Reicherter, M., Haist, T., Wagemann, E.U., Tiziani, H.J.: Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24(9), 608–610 (1999). Scholar
  21. 21.
    Curtis, J.E., Koss, B.A., Grier, D.G.: Dynamic holographic optical tweezers. Opt. Commun. 207(1–6), 169–175 (2002)., ISSN 0030–4018ADSCrossRefGoogle Scholar
  22. 22.
    Beck, R.J., Parry, J.P., MacPherson, W.N., Waddie, A., Weston, N.J., Shephard, J.D., Hand, D.P.: Application of cooled spatial light modulator for high power nanosecond laser micromachining. Opt. Express 18(16), 17059–17065 (2010). Scholar
  23. 23.
    Schaeffer, S.: Characterization of two-photon induced cross-linking of proteins. Master thesis, RWTH Aachen (2013)Google Scholar
  24. 24.
    Gansel, J.K.: Helical optical metamaterials. Dissertation, Karlsruher Institut for Technologie (2012)Google Scholar
  25. 25.
  26. 26.
    Barroso Peña, Á., Kemper, B., Woerdemann, M., Vollmer, A., Ketelhut, S., Bally, G.v., Denz, C., Popp, J., Drexler, W., Tuchin, V.V., Matthews, D.L.: Optical tweezers induced photodamage in living cells quantified with digital holographic phase microscopy. In: SPIE Photonics Europe, SPIE, 2012 (SPIE Proceedings), pp. 84270A–84270A–7Google Scholar
  27. 27.
    Jaeger, G., Manske, E., Hausotte, T., Buechner, H.-J.: The Metrological basis and operation of nanopositioning and nanomeasuring machine NMM-1. J. Vac. Sci. Technol. B (2009)Google Scholar
  28. 28.
    Manske, E., Hausotte, T., Mastylo, R., Machleidt, T., Franke, K.-H., Jäger, G.: New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes. Meas. Sci. Technol. 18(2), 520 (2007). Scholar
  29. 29.
    Dai, G., Koenders, L., Pohlenz, F., Dziomba, T., Danzebrink, H.-U.: Accurate and traceable calibration of one-dimensional gratings. Meas. Sci. Technol. 16(6), 1241–1249 (2005)., ISSN 0957–0233ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of California, BerkeleyBerkeleyUSA

Personalised recommendations