Advertisement

Abstract

Nickel (Ni) is a transition metal whose average concentration in the Earth’s crust is not high. Very high concentrations are thought to be found in the Earth’s inner core and have been discovered in soils based on serpentine rocks. The most common forms of Ni are oxides, and of the five stable isotopes, 58Ni is the most abundant. The present occurrence of Ni in the environment is mainly connected with industrial use, especially in metallurgy. Because of its density, Ni is considered a heavy metal. It is an essential element for plants and microorganisms, but its physical role in vertebrates is still not fully understood. On the other hand, its toxic, genotoxic, and carcinogenic properties are known. Nickel concentrations considered normal in birds and mammals fall into a range of 0.05–0.5 for kidneys and 0.04–0.3 mg kg−1 for liver, but other materials, such as feathers and fur, usually accumulate it in higher amounts. Studies on the evaluation of possible biomarkers of Ni exposure have been carried out mainly on humans, but no clear and measurable relationship has been found so far. Some initial findings linked Ni exposure with a decrease in δ-aminolevulinic acid dehydratase activity, but the most useful methods of its detection continue to be based on the measurement of concentrations in select tissues or materials.

References

  1. Adriano DC (2001) Nickel. In: Trace elements in terrestrial environments, pp 677–705CrossRefGoogle Scholar
  2. Altinozlu H, Karagoz A, Polat T, Unver I (2012) Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot 36:269–280Google Scholar
  3. Anke M, Angelow L, Muller M, Glei M (1993) Dietary trace element intake and excretion of man. In: Anke M, Meissner D, Mills CF (eds) Trace elements in man and animals – TEMA-8. Verlag Media Touristik, Gersdorf, pp 180–188Google Scholar
  4. Arpasova H, Capcarova M, Kalafova A, Lukac N, Kovacik J, Formicki G, Massanyi P (2007) Nickel induced alteration of hen body weight, egg production and egg quality after an experimental peroral administration. J Environ Sci Health Part B 42:913–918CrossRefGoogle Scholar
  5. ATSDR (2005) Toxicological profile for nickel. U.S. Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  6. Bajpai R, Waseem M, Khanna AK, Kaw JL (1999) Comparative pulmonary toxicity of cadmium and nickel: histopathological and bronchoalveolar lavage analysis. Indian J Exp Biol 37:541–545Google Scholar
  7. Barbieri E, Passos Ede A, Filippini A, dos Santos IS, Garcia CAB (2010) Assessment of trace metal concentration in feathers of seabird (Larus dominicanus) sampled in the Florianópolis, SC, Brazilian coast. Environ Monit Assess 169:631–638CrossRefGoogle Scholar
  8. Basketter DA, Angelini G, Ingber A, Kern PS, Menné T (2003) Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium. Contact Dermatitis 49:1–7CrossRefGoogle Scholar
  9. Bennett BJ (1994) Environmental nickel pathways to man. In: Sunderman FWJ (ed) Nickel in the human environment. IARC, Lyon, pp 487–495Google Scholar
  10. Binkowski ŁJ (2012) The effect of material preparation on the dry weight used in trace elements determination in biological samples. Fresenius Environ Bull 21:1956–1960Google Scholar
  11. Binkowski ŁJ, Meissner W (2013) Levels of metals in blood samples from Mallards (Anas platyrhynchos) from urban areas in Poland. Environ Pollut 178:336–342CrossRefGoogle Scholar
  12. Binkowski ŁJ, Sawicka-Kapusta K (2015) Lead poisoning and its in vivo biomarkers in Mallard and Coot from hunting activity areas. Chemosphere 127:101–108CrossRefGoogle Scholar
  13. Brewer L, Fairbrother A, Clark J, Amick D (2003) Acute toxicity of lead, steel, and an iron-tungsten-nickel shot to mallard ducks (Anas platyrhynchos). J Wildl Dis 39:638–648CrossRefGoogle Scholar
  14. Brooks RR (1999) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, PortlandGoogle Scholar
  15. Bruckwicki P (2006) An investigation of the contaminant levels in white-tailed deer (Odocoileus virginianus) collected from Caddo Lake National Wildlife Refuge, Harrison County, Texas 2005. US Fish and Wildlife ServiceGoogle Scholar
  16. Brzeziński M, Zalewski A, Niemczynowicz A, Jarzyna I, Suska-Malawska M (2014) The use of chemical markers for the identification of farm escapees in feral mink populations. Ecotoxicology 23:767–778CrossRefGoogle Scholar
  17. Burgaz S, Demircigil GÇ, Yılmazer M, Ertaş N, Kemaloǧlu Y, Burgaz Y (2002) Assessment of cytogenetic damage in lymphocytes and in exfoliated nasal cells of dental laboratory technicians exposed to chromium, cobalt, and nickel. Mutat Res Toxicol Environ Mutagen 521:47–56CrossRefGoogle Scholar
  18. Caciari T, Rosati MV, Di Giorgio V, Casale T, Pimpinella B, Scala B, Giubilati R, Capozzella A, Tomei G, Tomei F (2013) Urinary nickel and prolactin in workers exposed to urban stressors. Environ Sci Process Impacts 15(11):1–8CrossRefGoogle Scholar
  19. Capcarova M, Kolesarova A, Arpasova H, Massanyi P, Lukac N, Kovacik J, Kalafova A, Schneidgenova M (2008) Blood biochemical dynamics and correlations in laying hens after experimental nickel administration. Int J Poult Sci 7:538–547CrossRefGoogle Scholar
  20. Cardwell RD, DeForest DK, Brix KV, Adams WJ (2013) Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems? Rev Environ Contam Toxicol 226:101–122Google Scholar
  21. Casalegno C, Schifanella O, Zennaro E, Marroncelli S, Chemservice S (2015) Collate literature data on toxicity of chromium (Cr) and nickel (Ni) in experimental animals and humans. CehService Support Publ EN 478:1–287Google Scholar
  22. Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15:375–382Google Scholar
  23. Chen CY, Lin TH (1998) Nickel toxicity to human term placenta: in vitro study on lipid peroxidation. J Toxicol Environ Health Part A 54:37–47CrossRefGoogle Scholar
  24. Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean: Soil, Air, Water 37:304–313Google Scholar
  25. Chmielnicka J (2002) Metals and Metalloids (in Polish, Metale i metaloidy). In: Toksykologia. Wydawnictwo Lekarskie PZWL, Warszawa, pp 484–490Google Scholar
  26. Cloutier NR, Clulow FV, Lim TP, Davé NK (1986) Metal (Cu, Ni, Fe, Co, Zn, Pb) and Ra-226 levels in tissues of meadow voles Microtus pennsylvanicus living on nickel and uranium mine tailings in Ontario, Canada: site, sex, age and season effects with calculation of average skeletal radiation dose. Environ Pollut 41:295–314CrossRefGoogle Scholar
  27. Darolova A, Reichtrova E, Pavelka J (1989) Bioaccumulation of metals from nickel works waste in the gull (Larus ridibundus L., 1766). Biologia (Bratisl) 44:567–573Google Scholar
  28. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128:412–425Google Scholar
  29. Dauvalter V (2003) Impact of mining and refining on the distribution and accumulation of nickel and other heavy metals in sediments of subarctic Lake Kuetsjärvi, Murmansk Region, Russia. J Environ Monit 5:210–215CrossRefGoogle Scholar
  30. Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2005) Heavy-metal concentrations in female laying great tits (Parus major) and their clutches. Arch Environ Contam Toxicol 49:249–256CrossRefGoogle Scholar
  31. DeForest DK, Schlekat CE, Brix KV, Fairbrother A (2012) Secondary poisoning risk assessment of terrestrial birds and mammals exposed to nickel. Integr Environ Assess Manag 8:107–119CrossRefGoogle Scholar
  32. Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56CrossRefGoogle Scholar
  33. Długaszek M, Kopczyński K (2011) Comparative analysis of liver mineral status of wildlife. Probl Hig i Epidemilogii 92:859–863Google Scholar
  34. Domingo JL (1994) Metal-induced developmental toxicity in mammals: a review. J Toxicol Environ Health 42:123–141CrossRefGoogle Scholar
  35. Duffus JH (2002) “Heavy metals” – a meaningless term? Pure Appl Chem 74:793–807CrossRefGoogle Scholar
  36. Earnshaw AA, Greenwood N (1997) Chemistry of the elements. Elsevier, New YorkGoogle Scholar
  37. Eastin WC, O’Shea TJ (1981) Effects of dietary nickel on mallards. J Toxicol Environ Health 7:883–892CrossRefGoogle Scholar
  38. EEA (2009) European Environment Agency website. http://www.eea.europa.eu/data-and-maps/figures/concentration-of-heavy-metals-in-the-rivers-rhine-and-elbe. Accessed 19 July 2016
  39. Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. USGS, LaurelGoogle Scholar
  40. EPA (2011) Bioacummulation summary – NickelGoogle Scholar
  41. Falandysz J, Ichihashi H, Mizera T, Yamasaki S-I (2000) Skład mineralny wybranych tkanek i narządów bielika (Mineral composition of selected tissues and organs of white-tailed sea eagle). Rocz Państwowego Zakładu Hig 51:1–5 (in Polish)Google Scholar
  42. Forgacs Z, Massanyi P, Lukac N, Somosy Z (2012) Reproductive toxicology of nickel – review. J Environ Sci Health Part A 47:1249–1260CrossRefGoogle Scholar
  43. Gamberg M (1998) Contaminants in Yukon Moose and Caribou. p 16Google Scholar
  44. Gathwan KH, Al-Karkhi IHT, Jaffar AL-Mulla EA (2012) Hepatic toxicity of nickel chloride in mice. Res Chem Intermed 39:2537–2542CrossRefGoogle Scholar
  45. Hammond CR (2004) The elements. In: Lide DR (ed) CRC handbook of chemistry and physics, 86th edn. CRC Press, Boca Raton, pp 1–34Google Scholar
  46. Harding LE (2004) Environmental contaminants in wild martens (Martes americana) and wolverines (Gulo luscus). Bull Environ Contam Toxicol 73:98–105CrossRefGoogle Scholar
  47. Hassan AA, Rylander C, Brustad M, Sandanger TM (2012) Level of selected toxic elements in meat, liver, tallow and bone marrow of young semi-domesticated reindeer (Rangifer tarandus tarandus L.) from Northern Norway. Int J Circumpolar Health 71:1–7CrossRefGoogle Scholar
  48. Hoffman DJ (1979) Embryotoxic effects of crude oil containing nickel and vanadium in mallards. Bull Environ Contam Toxicol 23:203–206CrossRefGoogle Scholar
  49. Hui C (1998) Elemental contaminants in the livers and ingesta of four subpopulations of the American coot (Fulica americana): an herbivorous winter migrant in San Francisco Bay. Environ Pollut 101:321–329CrossRefGoogle Scholar
  50. Hui A, Takekawa JY, Baranyuk V, Litvin KV (1998) Trace element concentrations in two subpopulations of lesser snow geese from Wrangel Island, Russia. Arch Environ Contam Toxicol 34:197–203CrossRefGoogle Scholar
  51. Iamiceli AL, Ubaldi A, Lucchetti D, Brambilla G, Abate V, De Felip E, De Filippis SP, Dellatte E, De Luca S, Ferri F, Fochi I, Fulgenzi AR, Iacovella N, Moret I, Piazza R, Roncarati A, Melotti P, Fanelli R, Fattore E, di Domenico A, Miniero R (2015) Metals in Mediterranean aquatic species. Mar Pollut Bull 94:278–283CrossRefGoogle Scholar
  52. IARC (1990) Chromium, nickel and welding. IARC, LyonGoogle Scholar
  53. IARC (2016) IARC monographs on the evaluation of cancerogenic risk to humans. http://monographs.iarc.fr/ENG/Classification/index.php. Accessed 27 July 2016
  54. Ikeda M, Ohashi F, Fukui Y, Sakuragi S, Moriguchi J (2011) Cadmium, chromium, lead, manganese and nickel concentrations in blood of women in non-polluted areas in Japan, as determined by inductively coupled plasma-sector field-mass spectrometry. Int Arch Occup Environ Health 84:139–150CrossRefGoogle Scholar
  55. Ingervo S, Stranberg C, Nuorteva P (1995) Trace metals in the livers of Finnish Parus species. Ornis Fenn 72:127–131Google Scholar
  56. INSG (2016) International nickel study group website. http://www.insg.org. Accessed 15 July 2016
  57. Jerez S, Motas M, Benzal J, Diaz J, Barbosa A (2013) Monitoring trace elements in Antarctic penguin chicks from South Shetland Islands, Antarctica. Mar Pollut Bull 69:67–75CrossRefGoogle Scholar
  58. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca RatonGoogle Scholar
  59. Kabata-Pendias A, Pendias H (1999) Biogeochemistry of trace elements (in Polish, Biogeochemia pierwiastków śladowych), 2nd edn. Wydawnictwo Naukowe PWN, WarszawaGoogle Scholar
  60. Kalisińska E, Lisowski P, Czernomysy-Furowicz D, Kavetska KM (2008) Serratospiculiasis, mycosis, and haemosiderosis in wild peregrine falcon from Poland: a case report. Bull Vet Inst Pulawy 52:75–79Google Scholar
  61. Khlifi R, Olmedo P, Gil F, Feki-Tounsi M, Chakroun A, Rebai A, Hamza-Chaffai A (2013) Blood nickel and chromium levels in association with smoking and occupational exposure among head and neck cancer patients in Tunisia. Environ Sci Pollut Res Int 20:8282–8294CrossRefGoogle Scholar
  62. Kiilunen M, Utela J, Rantanen T, Norppa H, Tossavainen A, Koponen M, Paakkulainen H, Aitio A (1997) Exposure to soluble nickel in electrolytic nickel refining. Ann Occup Hyg 41:167–188CrossRefGoogle Scholar
  63. Kirchgessner M, Schnegg A (1976) Malate dehydrogenase and glucose-6-phosphate dehydrogenase activity in livers of Ni-deficient rats. Bioinorg Chem 6:155–161CrossRefGoogle Scholar
  64. Kolesarova A, Capcarova M, Arpasova H, Kalafova A, Massanyi P, Lukac N, Kovacik J, Schneidgenova M (2008) Nickel-induced blood biochemistry alterations in hens after an experimental peroral administration. J Environ Sci Health Part B 43:625–632CrossRefGoogle Scholar
  65. Kong L, Tang M, Zhang T, Wang D, Hu K, Lu W, Wei C, Liang G, Pu Y (2014) Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. Int J Mol Sci 15:21253–21269CrossRefGoogle Scholar
  66. Kozulin A, Pavluschick T (1993) Content of heavy metals in tissues of mallards Anas platyrhynchos wintering in polluted and unpolluted habitats. Acta Ornithol 28:55–61Google Scholar
  67. Lande E (1977) Heavy metal pollution in trondheimsfjorden, Norway, and the recorded effects on the fauna and flora. Environ Pollut 12:187–198CrossRefGoogle Scholar
  68. Laskowski R (1991) Are the top carnivores endangered by heavy metal biomagnification? Oikos 60:387–390CrossRefGoogle Scholar
  69. Li Y-M, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115CrossRefGoogle Scholar
  70. Livett EA (1992) Heavy metal pollution of the atmosphere. In: Nierenberg WA (ed) Encyclopedia of earth system science. Academic Press, San Diego, pp 507–518Google Scholar
  71. Lucia M, André JM, Gontier K, Diot N, Veiga J, Davail S (2010) Trace element concentrations (mercury, cadmium, copper, zinc, lead, aluminium, nickel, arsenic, and selenium) in some aquatic birds of the southwest atlantic coast of France. Arch Environ Contam Toxicol 58:844–853CrossRefGoogle Scholar
  72. Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3:1153CrossRefGoogle Scholar
  73. Maenhaut W, Cornille P, Pacyna JM, Vitols V (1989) Trace element composition and origin of the atmospheric aerosol in the Norwegian arctic. Atmos Environ 23:2551–2569CrossRefGoogle Scholar
  74. Magaye R, Zhao J, Bowman L, Ding M (2012) Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review). Exp Ther Med 4:551–561CrossRefGoogle Scholar
  75. Marques CC, Sánchez-Chardi A, Gabriel SI, Nadal J, Viegas-Crespo AM, da Luz Mathias M (2007) How does the greater white-toothed shrew, Crocidura russula, responds to long-term heavy metal contamination? A case study. Sci Total Environ 376:128–133CrossRefGoogle Scholar
  76. Marsh E, Anderson E (2011) Ni-Co laterites – a deposit model. U.S. Geological SurveyGoogle Scholar
  77. Mason CF, Stephenson A (2001) Metals in tissues of European otters (Lutra lutra) from Denmark, Great Britain and Ireland. Chemosphere 44:351–353CrossRefGoogle Scholar
  78. Mathur AK, Shanker R (2001) Dermal toxicity of linear alkylbenzene sulphonate and nickel in guinea pigs. Cutan Ocul Toxicol 20:23–27CrossRefGoogle Scholar
  79. Mathur N, Pandey G, Jain GC (2010) Male reproductive toxicity of some selected metals: a review. J Biol Sci 10:396–404CrossRefGoogle Scholar
  80. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  81. Miles AK, Ohlendorf HM (1993) Environmental contaminants in canvasbacks wintering on San Francisco Bay, California. Calif Fish Game 79:28–38Google Scholar
  82. Muyssen BT, Brix KV, DeForest DK, Janssen CR (2004) Nickel essentiality and homeostasis in aquatic organisms. Environ Rev 12:113–131CrossRefGoogle Scholar
  83. Nielsen FH (1974) Essentiality and function of nickel. In: Hoekstra WG, Suttie JW, Ganther HE, Mertz W (eds) Trace element metabolism in animals – 2. University Park Press, Baltimore, pp 381–395Google Scholar
  84. Nielsen FH (2000) Importance of making dietary recommendations for elements designated as nutritionally beneficial, pharmacologically beneficial, or conditioinally essential. J Trace Elem Exp Med 13:113–129CrossRefGoogle Scholar
  85. Nielsen FH, Myron DR, Givand SH, Ollerich DA (1975) Nickel deficiency and nickel-rhodium interaction in chicks. J Nutr 105:1607–1619CrossRefGoogle Scholar
  86. Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals. Elsevier, LondonGoogle Scholar
  87. Novelli ELB, Novelli Filho JLVB, Rodrigues NL, Ribas BO, Barbosa LL (1998) Long-term toxicity following acute administration of nickel. Toxicol Subst Mech 17:175–185CrossRefGoogle Scholar
  88. NPI (2015) Nickel and compounds. National Pollutant Invectory website. http://www.npi.gov.au/resource/nickel-compounds. Accessed 28 Feb 2015
  89. Obone É, Chakrabarti SK, Bai C, Anwar Malick M, Lamontagne L, Subramanian KS (1999) Toxicity and bioaccumulation of nickel sulfate in Sprague-Dawley rats following 13 weeks of subchronic exposure. J Toxicol Environ Health Part A 57:379–401CrossRefGoogle Scholar
  90. Orłowski G, Kasprzykowski Z, Dobicki W, Pokorny P, Wuczyński A, Polechoński R, Mazgajski TD (2014) Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland. Sci Total Environ 490:1057–1064CrossRefGoogle Scholar
  91. Outridge PM, Scheuhammer AM (1993) Bioaccumulation and toxicology of nickel: implications for wild mammals and birds. Environ Rev 1:172–197CrossRefGoogle Scholar
  92. Pandey R, Singh SP (2001) Seminal toxicity of nickel sulfate in mice. Biol Trace Elem Res 82:211–215CrossRefGoogle Scholar
  93. Pari L, Amudha K (2011) Hepatoprotective role of naringin on nickel-induced toxicity in male Wistar rats. Eur J Pharmacol 650:364–370CrossRefGoogle Scholar
  94. Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–1154Google Scholar
  95. Pennington JA, Jones JW (1987) Molybdenum, nickel, cobalt, vanadium, and strontium in total diets. J Am Diet Assoc 87:1644–1650Google Scholar
  96. Pereira R, Pereira ML, Ribeiro R, Gonçalves F (2006) Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environ Pollut 139:561–575CrossRefGoogle Scholar
  97. Phipps T, Tank SL, Wirtz J, Brewer L, Coyner A, Ortego LS, Fairbrother A (2002) Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms. Environ Rev 10:209–261CrossRefGoogle Scholar
  98. Rasmussen KL, Malvin DJ, Wasson JT (1988) Trace element partitioning between taenite and kamacite; relationship to the cooling rates of iron meteorites. Meteorit Planet Sci 23:107–112CrossRefGoogle Scholar
  99. Ray PC, Hongtao Y, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C 27:1–35CrossRefGoogle Scholar
  100. Reeves RD, Baker AJM, Borhidi A, Berazain R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224CrossRefGoogle Scholar
  101. Reichrtova E, Takac L, Sulicova L, Foltinova J (1988) Biological monitoring of airborne metal particles originated from nickel refinery dump. In: Abbou R (ed) Hazardous waste: detection, control, treatment. Elsevier, Amsterdam, pp 931–936Google Scholar
  102. Rendall REG, Phillips JI, Renton KA (1994) Death following exposure to fine particulate nickel from a metal arc process. Ann Occup Hyg 38:921–930Google Scholar
  103. Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86CrossRefGoogle Scholar
  104. Rojas E, Herrera LA, Poirier LA, Ostrosky-Wegman P (1999) Are metals dietary carcinogens? Mutat Res Genet Toxicol Environ Mutagen 443:157–181CrossRefGoogle Scholar
  105. Ruiz-Olmo J, Lafontaine L, Prignioni C, Lopez-Martin J, Santos-Reis M (2000) Pollution and its effects on otter populations in south-western Europe. In: Conroy JWH, Yoxon P, Gutleb AC (eds) Proceedings of the first otter toxicology conference. International Otter Survival Fund, Isle of Skye, pp 1–20Google Scholar
  106. Saini S, Nair N, Saini MR (2014) Prenatal exposure to nickel on pregnant Swiss albino mice and fetal development. Toxicol Environ Chem 96:650–659CrossRefGoogle Scholar
  107. Salnikow K, Gao M, Voitkun V, Huang X, Costa M (1994) Altered oxidative stress responses in nickel-resistant mammalian cells. Cancer Res 54:6407–6412Google Scholar
  108. Sánchez-Chardi A, Marques CC, Nadal J, da Luz Mathias M (2007) Metal bioaccumulation in the greater white-toothed shrew, Crocidura russula, inhabiting an abandoned pyrite mine site. Chemosphere 67:121–130CrossRefGoogle Scholar
  109. Sánchez-Chardi A, Marques CC, Gabriel SI, Capela-Silva F, Cabrita AS, López-Fuster MJ, Nadal J, Mathias ML (2008) Haematology, genotoxicity, enzymatic activity and histopathology as biomarkers of metal pollution in the shrew Crocidura russula. Environ Pollut 156:1332–1339CrossRefGoogle Scholar
  110. Sandström AIM, Wall SGI, Taube A (1989) Cancer incidence and mortality among Swedish smelter workers. Br J Ind Med 46:82–89Google Scholar
  111. Sawicka-Kapusta K (1979) Roe deer antlers as bioindicators of environmental pollution in southern Poland. Environ Pollut 19:283–293CrossRefGoogle Scholar
  112. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209:133–142CrossRefGoogle Scholar
  113. Sienko MJ, Plane RA (1979) Chemistry: principles and applications. McGraw Hill, New YorkGoogle Scholar
  114. Silva N, Senanayake H, Waduge V (2013) Elevated levels of whole blood nickel in a group of Sri Lankan women with endometriosis: a case control study. BMC Res Notes 6:13CrossRefGoogle Scholar
  115. Smith GJ, Rongstad OJ (1982) Small mammal heavy metal concentrations from mined and control sites. Environ Pollut 28:121–134CrossRefGoogle Scholar
  116. Stangl GI, Kirchgessner M (1996) Nickel deficiency alters liver lipid metabolism in rats. J Nutr 126:2466–2473CrossRefGoogle Scholar
  117. Stangl GI, Kirchgessner M (1997) Effect of nickel deficiency on fatty acid composition of total lipids and individual phospholipids in brain and erythrocytes of rats. Nutr Res 17:137–147CrossRefGoogle Scholar
  118. Stangl GI, Eidelsburger U, Kirchgessner M (1998) Nickel deficiency alters nickel flux in rat everted intestinal sacs. Biol Trace Elem Res 61:253–262CrossRefGoogle Scholar
  119. Stangl GI, Roth-Maier DA, Kirchgessner M (2000) Vitamin B-12 deficiency and hyperhomocysteinemia are partly ameliorated by cobalt and nickel supplementation in pigs. J Nutr 130:3038–3044CrossRefGoogle Scholar
  120. Statista (2015a) Statistics and facts about nickel. In: Statistics Portal. http://www.statista.com/topics/1572/nickel/. Accessed 28 Feb 2015
  121. Statista (2015b) Major countries in worldwide nickel mine production from 2010 to 2013. In: Statistics Portal. http://www.statista.com/statistics/264642/nickel-mine-production-by-country/. Accessed 28 Feb 2015
  122. Stridsklev IC, Schaller K-H, Langård S (2004) Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method. Int Arch Occup Environ Health 77:587–591CrossRefGoogle Scholar
  123. Sulinskiene J, Baranauskiene D, Naginiene R, Ivanov L (2014) Protective effect of zinc ions against lead and nickel induced inhibition of δ-aminolevulinic acid dehydratase activity in mice liver. Trace Elem Electrolytes 32:91–96CrossRefGoogle Scholar
  124. Sunderman FW, Nomoto SJ, Morang R, Nechay MW, Burke CN, Nielsen SW (1972) Nickel deprivation in chicks. J Nutr 102:259–267CrossRefGoogle Scholar
  125. Sydor AM, Zamble DB (2013) Nickel metallomics: general themes guiding nickel homeostasis. Met Ions Life Sci 12:375–416CrossRefGoogle Scholar
  126. Thomas VG, Roberts MJ, Harrison PTC (2009) Assessment of the environmental toxicity and carcinogenicity of tungsten-based shot. Ecotoxicol Environ Saf 72:1031–1037CrossRefGoogle Scholar
  127. Toman R, Massanyi P, Adamkovicova M, Lukac N, Cabaj M, Martiniaková M (2012) Quantitative histological analysis of the mouse testis after the long-term administration of nickel in feed. J Environ Sci Health Part A 47:1272–1279CrossRefGoogle Scholar
  128. Tomei F, Rosati MV, Ciarrocca M, Marchetti MR, Baccolo TP, Anzelmo V, Tomao E (2004) Urban pollution and nickel concentration in serum. Int J Environ Health Res 14:65–74CrossRefGoogle Scholar
  129. USGS (1980) 1980 Minerals yearbook nickel. US Geological SurveyGoogle Scholar
  130. USGS (1985) 1985 Minerals yearbook nickel. US Geological SurveyGoogle Scholar
  131. USGS (1990) 1990 Minerals yearbook nickel. US Geological SurveyGoogle Scholar
  132. USGS (1995) 1995 Minerals yearbook nickel. US Geological SurveyGoogle Scholar
  133. USGS (2000) 2000 Minerals yearbook nickel. US Geological SurveyGoogle Scholar
  134. USGS (2007) 2005 Minerals yearbook nickel. US Geological SurveyGoogle Scholar
  135. USGS (2012a) Mineral Commodity Summaries: NickelGoogle Scholar
  136. USGS (2012b) 2010 Minerals yearbook nickel. US Geological SurveyGoogle Scholar
  137. USGS (2013) 2011 Minerals yearbook nickel. US Geological SurveyGoogle Scholar
  138. USGS (2016) U.S. Geological Survey websiteGoogle Scholar
  139. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  140. van der Ent A, Erskine P, Sumail S (2015) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259CrossRefGoogle Scholar
  141. van Eeden PH, Schoonbee HJ (1996) Metal concentrations in liver, kidney, bone and blood of three species of birds from a metal-polluted wetland. Water SA 22:351–358Google Scholar
  142. van Straalen NM, Ernst WHO (1991) Metal biomagnification may endanger species in critical pathways. Oikos 62:255–256CrossRefGoogle Scholar
  143. Walker LA, Lawlor AJ, Chadwick EA, Potter E, Pereira MG, Shore RF (2011) Inorganic elements in the livers of the Eurasian otter, Lutra lutra, from England and Wales in 2009 – a Predatory Bird Monitoring Scheme reportGoogle Scholar
  144. Wang Y, Hao Z, Zhang L, Liang C (2016) Nanomaterials: friend or foe to male fertility? World J Urol:1–3Google Scholar
  145. Warren RJ, Wallace BM, Bush PB (1990) Trace elements in migrating blue-winged teal: seasonal-, sex- and age-class variations. Environ Toxicol Chem 9:521–528CrossRefGoogle Scholar
  146. WHO (2000) Nickel. In: Air quality guidelines, 2nd edn. WHO Regional Office for Europe, CopenhagenGoogle Scholar
  147. WVDL (2015) Normal range values for WVDL toxicology. https://www.yumpu.com/en/document/view/52919318/normal-range-values-for-wvdl-toxicology. Accessed 28 April 2015
  148. Yokoi K, Uthus EO, Nielsen FH (2003) Nickel deficiency diminishes sperm quantity and movement in rats. Biol Trace Elem Res 93:141–154CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of BiologyPedagogical University of CracowKrakówPoland

Personalised recommendations