Modeling of Proton Exchange Membrane Fuel Cell System Considering Various Auxiliary Subsystems

  • Zirong Yang
  • Zhanrui Liu
  • Lichao Fan
  • Qing DuEmail author
  • Kui JiaoEmail author
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


In the study, a comprehensive proton exchange membrane fuel cell (PEMFC) system model is developed, including a two-dimensional transient multiphase stack model, a transient membrane humidifier model, air compressor model, and cooling model. The coupled water and heat transport processes, sophisticated water phase changes, gas/liquid transport in porous layers, and flow channels are taken into consideration in the integrated system model. Effects of gas purge duration in PEMFC stack and membrane humidifier on startup performance are investigated under subzero and normal temperatures. It is found that purge duration of membrane humidifier has little effect on output voltage when started from −10 °C and −5 °C since saturated vapor pressure is relatively small. Besides, the cold start duration is mainly determined by initial membrane water content in PEMFC stack. The upstream current density is usually higher because reactant gases are more abundant. To avoid sharp voltage drop during startup from 30 °C with large current density, long purge duration is not suggested for both PEMFC stack and membrane humidifier. The humidifier temperature is stabilized at about 42 °C as a result of exhausted gases heating and heat loss to environment when stack temperature is kept at 60 °C. The membrane water content in humidifier increases more rapidly when current density rises since more water vapor is generated and flows into humidifier; meanwhile, it results in higher humidifier temperature.



The research is supported by the National Key Research and Development Program of China (2018YFB0105505) and National Natural Science Foundation of China for Excellent Young Scholars (51622606).


  1. 1.
    Rabbani, A., Rokni, M.: Dynamic characteristics of an automotive fuel cell system for transitory load changes. Sustain. Energy Technol. Assess. 1, 34–43 (2013)Google Scholar
  2. 2.
    Guo, Y.F., Chen, H.C., Wang, F.C.: The development of a hybrid PEMFC power system. Int. J. Hydrog. Energy 40(13), 4630–4640 (2015)CrossRefGoogle Scholar
  3. 3.
    Hosseinzadeh, E., Rokni, M., et al.: Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system. Appl. Energy 104, 434–444 (2013)CrossRefGoogle Scholar
  4. 4.
    Santamaria, A.D., Bachman, J., Park, J.W.: Cold-start of parallel and interdigitated flow-field polymer electrolyte membrane fuel cell. Electrochim. Acta 107, 327–338 (2013)CrossRefGoogle Scholar
  5. 5.
    Yang, Z., Du, Q., Huo, S., et al.: Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells. Int. J. Hydrog. Energy 42(40), 25372–25387 (2017)CrossRefGoogle Scholar
  6. 6.
    Xie, X., Zhang, G., Zhou, J., et al.: Experimental and theoretical analysis of ionomer/carbon ratio effect on PEM fuel cell cold start operation. Int. J. Hydrog. Energy 42(17), 12521–12530 (2017)CrossRefGoogle Scholar
  7. 7.
    Fan, L., Zhang, G., Jiao, K.: Characteristics of PEMFC operating at high current density with low external humidification. Energy Convers. Manag. 150, 763–774 (2017)CrossRefGoogle Scholar
  8. 8.
    Jiao, K., Li, X.: Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37(3), 221–291 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tabe, Y., Yamada, K., Ichikawa, R., et al.: Ice formation processes in PEM fuel cell catalyst layers during cold startup analyzed by cryo-SEM. J. Electrochem. Soc. 163(10), F1139–F1145 (2016)CrossRefGoogle Scholar
  10. 10.
    Niya, S.M.R., Hoorfar, M.: Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique—a review. J. Power Sources 240, 281–293 (2013)CrossRefGoogle Scholar
  11. 11.
    Ishikawa, Y., Shiozawa, M., Kondo, M., et al.: Theoretical analysis of supercooled states of water generated below the freezing point in a PEFC. Int. J. Heat Mass Transf. 74, 215–227 (2014)CrossRefGoogle Scholar
  12. 12.
    Plazanet, M., Sacchetti, F., Petrillo, C., et al.: Water in a polymeric electrolyte membrane: sorption/desorption and freezing phenomena. J. Membr. Sci. 453, 419–424 (2014)CrossRefGoogle Scholar
  13. 13.
    Molaeimanesh, G.R., Akbari, M.H.: Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by Lattice Boltzmann method. Int. J. Hydrog. Energy 39(16), 8401–8409 (2014)CrossRefGoogle Scholar
  14. 14.
    Niu, Z., Jiao, K., Zhang, F., et al.: Direct numerical simulation of two-phase turbulent flow in fuel cell flow channel. Int. J. Hydrog. Energy 41(4), 3147–3152 (2016)CrossRefGoogle Scholar
  15. 15.
    Srinophakun, T., Martkumchan, S.: Ionic conductivity in a Chitosan membrane for a PEM fuel cell using molecular dynamics simulation. Carbohydr. Polym. 88(1), 194–200 (2012)CrossRefGoogle Scholar
  16. 16.
    Cheng, S.J., et al.: Investigating the effects of operational factors on PEMFC performance based on CFD simulations using a three-level full-factorial design. Renew. Energy 39(1), 250–260 (2012)CrossRefGoogle Scholar
  17. 17.
    Luo, Y., Guo, Q., Du, Q., et al.: Analysis of cold start processes in proton exchange membrane fuel cell stacks. J. Power Sources 224, 99–114 (2013)CrossRefGoogle Scholar
  18. 18.
    Yu, S., et al.: A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. Int. J. Heat Mass Transf. 54(7–8), 1344–1351 (2011)CrossRefGoogle Scholar
  19. 19.
    Bhatia, D., Sabharwal, M., Duelk, C.: Analytical model of a membrane humidifier for polymer electrolyte membrane fuel cell systems. Int. J. Heat Mass Transf. 58(1–2), 702–717 (2013)CrossRefGoogle Scholar
  20. 20.
    Park, S., Jung, D.: Effect of operating parameters on dynamic response of water-to-gas membrane humidifier for proton exchange membrane fuel cell vehicle. Int. J. Hydrog. Energy 38(17), 7114–7125 (2013)CrossRefGoogle Scholar
  21. 21.
    Tajiri, K., Tabuchi, Y., et al.: Effects of operating and design parameters on PEFC cold start. J. Power Sources 165(1), 279–286 (2007)CrossRefGoogle Scholar
  22. 22.
    Tang, H.Y., Santamaria, A.D., Bachman, J., et al.: Vacuum-assisted drying of polymer electrolyte membrane fuel cell. Appl. Energy 107, 264–270 (2013)CrossRefGoogle Scholar
  23. 23.
    Du, Q., Jia, B., Luo, Y., et al.: Maximum power cold start mode of proton exchange membrane fuel cell. Int. J. Hydrog. Energy 39(16), 8390–8400 (2014)CrossRefGoogle Scholar
  24. 24.
    Ozen, D.N., et al.: Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renew. Sustain. Energy Rev. 59, 1298–1306 (2016)CrossRefGoogle Scholar
  25. 25.
    Hwang, J.J.: Effect of hydrogen delivery schemes on fuel cell efficiency. J. Power Sources 239, 54–63 (2013)CrossRefGoogle Scholar
  26. 26.
    Kadylak, D., Mérida, W.: Experimental verification of a membrane humidifier model based on the effectiveness method. J. Power Sources 195(10), 3166–3175 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of EnginesTianjin UniversityTianjinChina

Personalised recommendations