Advertisement

Phytoremediation of Soils Contaminated by Hydrocarbon

  • José G. Chan-Quijano
  • Manuel J. Cach-PérezEmail author
  • Ulises Rodríguez-Robles
Chapter
  • 31 Downloads
Part of the Concepts and Strategies in Plant Sciences book series (CSPS)

Abstract

It is estimated that more than one-third of the world soils are seriously contaminated due to anthropological activities. Much of this contamination is due to oil industry activities which cause significant changes in the ecosystems due to the processes of exploration, refining, transportation and commercialization of products derived from oil. Plants have become biotechnologies for the recovery of hydrocarbon-contaminated soils given that they can absorb and degrade significant amounts of the pollutants. Most plants live in symbiosis with ectomycorrhizal fungi and/or arbuscular mycorrhizas that can facilitate the remediation of contaminated soils. In addition, rhizosphere microorganisms such as bacteria, fungi and nematodes have the ability to consume hydrocarbons as sources of energy and carbon, thereby playing a very important role in the remediation of contaminated soils. The remediation of areas contaminated with oil hydrocarbons is making it necessary to conduct studies on each contaminant regarding the damages and/or benefits they may be causing in the rhizosphere and in plant physiology.

Keywords

Hydrocarbons Hydrocarbonoclastic bacteria Mycorrhizae Phytoremediation Rhizosphere Soil microorganisms 

Literature Cited

  1. Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant-microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20:5879–5885CrossRefGoogle Scholar
  3. Adekunle IM (2011) Bioremediation of soils contaminated with Nigerian petroleum products using composted municipal wastes. Bioremediat J 15(4):230–241CrossRefGoogle Scholar
  4. Aguilera-Contreras M, Martínez-Elizondo R (1996) Relaciones agua, suelo, planta, atmósfera. Universidad Autónoma Chapingo, MéxicoGoogle Scholar
  5. Alagic SC, Maluckov BS, Radojicic VB (2015) How can plants manage polycyclic aromatic hydrocarbons? may these effects represent a useful tool for an effective soil remediation? a review. Clean Techn Environ Policy 17:597–614CrossRefGoogle Scholar
  6. Alberto-Pardos J (2010) Los ecosistemas forestales y el secuestro de carbono ante el calentamiento global. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ministerio de Ciencia e Innovación, EspañaGoogle Scholar
  7. Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27CrossRefGoogle Scholar
  8. Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Benjamin/Cummings Publishing Company Inc, Don Mills, ONGoogle Scholar
  9. Batista F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernández T, von Bergen M, García C (2016) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteomics 135:162–169CrossRefGoogle Scholar
  10. Beltrán-Paz OI, Vela-Correa G (2006) Suelos contaminados con hidrocarburos y su efecto en la formación de agregados del suelo en La Venta, Tabasco. Universidad Autónoma Metropolita-Xochimilco, MéxicoGoogle Scholar
  11. Blume HP, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke BM (2016) Scheffer/Schachtschabel soil science. Springer, Berlín, HeidelbergCrossRefGoogle Scholar
  12. Bonfante P, Desirò A (2015) Arbuscular mycorrhizas: the lives of beneficial fungi and their plant hosts. In: Lugtenberg B (ed) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer International Publishing, Switzerland, pp 235–245Google Scholar
  13. Bossert I, Bartha R (1985) Plant growth in soils with a history of oily sludge disposal. Soil Sci 140(1):75–77CrossRefGoogle Scholar
  14. Bradshaw AD (1987) Restoration: the acid test for ecology. In: Jordan WR, Gilpin ME, Aber JD (eds) Restoration ecology: a synthetic approach to ecological research. Cambridge University Press, New York, pp 23–29Google Scholar
  15. Cang L, Fan GP, Zhou DM, Wang QY (2013) Enhanced-electrokinetic remediation of copper–pyrene co-contaminated soil with different oxidants and pH control. Chemosphere 90:2326–2331PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ceccon E, Miranda RC (2012) Sustainable woodfuel production in Latin America: the role of government and society. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  17. Ceccon E, Barrera-Cataño JI, Aronson J, Martínez-Garza C (2015) The socioecological complexity of ecological restoration in Mexico. Restor Ecol 23(4):331–336CrossRefGoogle Scholar
  18. Chan-Quijano JG (2015) Evaluación de la degradación de hidrocarburos totales del petróleo por bioestimulación con abonos orgánicos asociados a especies arbóreas. Tesis Maestría El Colegio de la Frontera Sur, MéxicoGoogle Scholar
  19. Chan-Quijano JG, Ochoa-Gaona S, Pérez-Hernández I, Gutiérrez-Aguirre MA, Saragos-Méndez J (2012) Germinación y sobrevivencia de especies arbóreas que crecen en suelos contaminados por hidrocarburos. Teoría y Praxis 12:102–119CrossRefGoogle Scholar
  20. Chan-Quijano JG, Jarquín-Sánchez A, Ochoa-Gaona S, Martínez-Zurimendi P, López-Jiménez LN, Lázaro-Vázquez A (2015) Directrices para la remediación de suelos contaminados con hidrocarburos. Teoría y Praxis 17:123–144CrossRefGoogle Scholar
  21. Cooke SJ, Suski CD (2008) Ecological restoration and physiology: an overdue integration. Bioscience 58(10):957–968CrossRefGoogle Scholar
  22. Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol 29:207–212CrossRefGoogle Scholar
  23. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(715–71):9Google Scholar
  24. Das K, Murkherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345PubMedCrossRefPubMedCentralGoogle Scholar
  25. Echeverri-Jaramillo GE, Manjarrez-Paba G, Cabrera-Ospino M (2010) Aislamiento de bacterias potencialmente degradadoras de petróleo en hábitats de ecosistemas costeros en la Bahía de Cartagena, Colombia. Nova 8(13):76–86CrossRefGoogle Scholar
  26. Elias-Murguia RL, Martínez V (1991) Suelos contaminados con hidrocarburos. In: Ruíz FJF (ed) Causas y consecuencias de la contaminación del suelo. Universidad Autónoma Chapingo, México, pp 46–93Google Scholar
  27. EPA (2014) Priority pollutant list. United States Environmental Protection Agency, USGoogle Scholar
  28. FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)—managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, LondonGoogle Scholar
  29. Feijoo-Ruiz CDE (2012) Procesamiento de la mezcla crudo y medium distillate for blending stock (MDBS) para aumentar la producción de destilados medios. Tesis Ingeniería, Universidad Nacional de Ingeniería, Facultad de Ingeniería del Petróleo, Gas Natural y Petroquímica, PerúGoogle Scholar
  30. Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wong MH (2017) Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci Total Environ 58:352–368CrossRefGoogle Scholar
  31. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  32. Ferrera-Cerrato R (1995) Efecto de rizosfera. In: Ferrera-Cerrato R, Pérez-Moreno J (eds) Agromicrobiología: elemento útil en la agricultura sustentable. Colegio de Postgraduados en Ciencias Agrícolas, Montecillo, Estado de México, pp 36–53Google Scholar
  33. Ferrera-Cerrato R, Alarcón A (2013) Microorganismos rizosféricos durante la fitorremediación de hidrocarburos del petróleo en suelos. In: Alarcón A, Ferrera-Cerrato R (eds) Biorremediación de suelos y aguas contaminadas con compuestos orgánicos e inorgánicos. Editorial Trillas, México, pp 15–30Google Scholar
  34. González-Mendoza D (2013) Mecanismos de tolerancia a elementos potencialmente tóxicos en plantas. In: Alarcón A, Ferrera-Cerrato R (eds) Biorremediación de suelos y aguas contaminadas con compuestos orgánicos e inorgánicos. Editorial Trillas, México, pp 159–177Google Scholar
  35. Gregory PJ (2006a) Plant roots: growth, activity and interaction with soils. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  36. Gregory PJ (2006b) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12CrossRefGoogle Scholar
  37. Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WTB, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities and challenges. Funct Plant Biol 36:922–929CrossRefGoogle Scholar
  38. Hassaine A, Bordjiba O (2015) Metabolic capacities of three strains of Pseudomonas aeruginosa to biode-grade crude oil. Adv Environ Biol 9(18):139–146Google Scholar
  39. Hayaishi O (2005) An odyssey with oxygen. Biochem Biophys Res Commun 338(1):2–6PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hu C, Ou Y, Zhang D, Zhang H, Yan C, Zhao Y, Zheng Z (2012) Phytoremediation of the polluted Waigang River and general survey on variation of phytoplankton population. Environ Sci Pollut Res Int 19(9):4168–4175PubMedCrossRefGoogle Scholar
  41. IMP (2010) Dirección de seguridad y medio ambiente. Instituto Mexicano del Petróleo, MéxicoGoogle Scholar
  42. Iwabuchu T, Yamauchi YI, Katsuta A, Harayama S (1998) Isolation characterization of marine Nicardiodes capable of growing and degrading phenanthrene at 42.8 °C. J Mar. Biotechnol 6:86–90Google Scholar
  43. Kim SJ, Chun J, Bae KS, Kim YC (2000) Polyphasic assignment of an aromatic degrading Pseudomonas sp., strain DJ77, in the genus Spingomonas as Spingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50:1641–1647PubMedCrossRefGoogle Scholar
  44. Komives T, Gullner GD (2006) Dendroremediation: the use of trees in cleaning up polluted soils. In: Mackova M, Dowling DN, Macek T (eds) Phytoremediation and rhizoremediation. Springer Publisher, Dordrecht, pp 23–32CrossRefGoogle Scholar
  45. Kube M, Chernikova TN, Al-Ramahi Y, Beloqui A, López-Cortez N, Guazzaroni ME, Heipieper HJ, Klages S, Kotsyurbenko OR, Langer I, Nechitaylo TY, Lünsdorf H, Fernández M, Juárez S, Ciordia S, Singer A, Kagan O, Egorova O, Petit PA, Stogios P, Kim Y, Tchigvintsev A, Flick R, Denaro R, Genovese M, Albar JP, Reva ON, Martínez-Gomariz M, Tran H, Ferrer M, Savchenko A, Yakunin AF, Yakimov MM, Golyshina OV, Reinhardt R, Golyshin PN (2013) Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nature commun 4:2156CrossRefGoogle Scholar
  46. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17(1):6–15PubMedCrossRefGoogle Scholar
  47. Kuppens T, Dael MVD, Vanreppelen K, Thewys T, Yperman J, Carleer R, Schreurs S, Passel SV (2015) Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. J Clean Prod 88:336–344CrossRefGoogle Scholar
  48. Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70(2):510–547PubMedPubMedCentralCrossRefGoogle Scholar
  49. Licht LA, Isebrands JG (2005) Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 28:203–218CrossRefGoogle Scholar
  50. Litchfield C (2005) Thirty years and counting: bioremediation in its prime? Bioscience 55(3):273–279CrossRefGoogle Scholar
  51. Lors C, Damidot D, Ponge JF, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17PubMedCrossRefPubMedCentralGoogle Scholar
  52. Lugtenberg B (2015) Life of microbes in the rhizosphere. In: Lugtenberg B (ed) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer International Publishing, Switzerland, pp 7–15Google Scholar
  53. Luo J, Qi S, Gu WXS, Wang J, Xie X (2016) Evaluation of the phytoremediation effect and environmental risk in remediation processes under different cultivation systems. J Clean Prod 119:25–31CrossRefGoogle Scholar
  54. Mackey AP, Hodgkinson M (1996) Assessment of the impact of naphthalene contamination on mangrove fauna using behavioral bioassays. Bull Environ Contam Toxicol 56:279–286PubMedCrossRefPubMedCentralGoogle Scholar
  55. Martínez VE, López SF (2001) Efecto de hidrocarburos en las propiedades físicas y químicas de suelo arcilloso. Terra Latinoamericana 19(1):9–17Google Scholar
  56. Masakorala K, Yao J, Cai M, Chandankere R, Yuan H, Chen H (2013) Isolation and characterization of a novel phenanthrene (PHE) degrading strain Psuedomonas sp., USTB-RU from petroleum contaminated soil. J Hazard Mater 263:493–500PubMedCrossRefPubMedCentralGoogle Scholar
  57. Matsumiya Y, Wakita D, Kimura A, Sanpa S, Kubo M (2007) Isolation and characterization of a lipid-degrading bacterium and its application to lipidcontaining wastewater treatment. J Biosci Bioeng. 103:325–330PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mayz J, Manzi L (2017) Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere. Rev. Colomb Biotecnol 19(1): 29–37Google Scholar
  59. Mclntosh P, Schulthess CP, Kuzovkina YA, Guillard K (2017) Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. Int J Phytorem 19(8):755–764CrossRefGoogle Scholar
  60. Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41(5):602–619CrossRefGoogle Scholar
  61. Mezzari MP, van Aken B, Yoon JM, Just CL, Schnoor JL (2005) Mathematical modeling of RDX and HMX metabolism in poplar (Populus deltoides × Populus nigra, DN34) tissue culture. Int J Phytorem 6:323–345CrossRefGoogle Scholar
  62. Mezzari MP, Walters K, Jelínkova M, Shih MC, Just CL, Schnoor JL (2005) Gene expression and microscopic analysis of arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol 138:858–869PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mezzari MP, Benoit Van Aken, Jong M. Yoon, Craig L. Just, Jerald L. Schnoor (2010) Mathematical modeling of RDX and HMX metabolism in poplar (×, DN34) tissue culture. International Journal of Phytoremediation 6(4):323-345Google Scholar
  64. Mezzari MP, Hoffmann-Zimermann DM, Corseuil HX, Verzani-Nogueira A (2011) Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils. R Bras Ci Solo 35:2227–2236CrossRefGoogle Scholar
  65. Morel JL, Chaineau CH, Schiavon M, Lichtfouse E (1999) The role of plants in the remediation of contaminated soils. In: Baveye Ph, Block J-C, Goncharuk VV (eds) Bioavailability of organic xenobiotics in the environment: practical consequences for the environment. Springer-Science+Business Media, Dordrecht, Prague, Czech Republic, pp 429–449CrossRefGoogle Scholar
  66. Namihira-Guerrera D (2004) Conceptos básicos en ecología y su relación con la toxicología ambiental. In: Albert LA (ed) Toxicología ambiental. Universidad Autónoma de Ciudad Juárez, México, pp 45–60Google Scholar
  67. Ochoa-Gaona S, Pérez-Hernández I, Frías-Hernández JA, Jarquín-Sánchez A, Méndez-Valencia A (2011) Estudio prospectivo de especies arbóreas promisorias para la fitorremediación de suelos contaminados con hidrocarburos. Secretaría de Recursos Naturales y Protección Ambiental y El Colegio de la Frontera Sur, Tabasco, MéxicoGoogle Scholar
  68. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Rev Microbiol 11:252–263CrossRefGoogle Scholar
  69. Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microb Ecol 44(3):373–381CrossRefGoogle Scholar
  70. Parés R, Juárez A (2002) Bioquímica de los microorganismos. Editorial Reverté, EspañaGoogle Scholar
  71. PEMEX (2011) Las reservas de hidrocarburos de México. Petróleos Mexicanos Exploración y Producción, MéxicoGoogle Scholar
  72. Pepper IL, Rensing C, Gerba CP (2004) Environmental microbial properties and processes. In: Artiola JF, Pepper IL, Brusseau M (eds) Environmental monitoring and characterization. Elsevier Academic Press, USA, pp 263–280CrossRefGoogle Scholar
  73. Pérez-Hernández I, Ochoa-Gaona S, Adams-Schroeder RH, Rivera-Cruz MC, Geissen V (2013) Tolerance of four tropical tree species to heavy petroleum contamination. Water Air Soil Pollut 224:1637CrossRefGoogle Scholar
  74. Pérez-Hernández I, Ochoa-Gaona S, Adams-Schroeder RH, Rivera-Cruz MC, Pérez-Hernández V, Jarquín-Sánchez A, Geissen V, Martínez-Zurimendi P (2016) Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination. Environ Sci Pollut Res 24(2):1769–1783CrossRefGoogle Scholar
  75. Pham NTA, Anonye BO (2014) Vying over spilt oil. Nature Rev Micro 12:156CrossRefGoogle Scholar
  76. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nature Rev Micro 11:789–799CrossRefGoogle Scholar
  77. Prasad MNV (2016) Preface. In: Prasad MNV (ed) Bioremediation and bioeconomy. Springer, Amsterdam, Netherlands, pp 27–28Google Scholar
  78. Prasad MNV, Nakbanpote W, Phadermrod C, Rose D, Suthari S (2016) Mulberry and vetiver for phytostabilization of mine overburden: cogeneration of economic products. In: Prasad MNV (ed) Bioremediation and bioeconomy. Springer, Amsterdam, Netherlands, pp 295–320.Google Scholar
  79. Qixing Z, Zhang C, Zhineng Z, Weitao L (2011) Ecological remediation of hydrocarbon contaminated soils with weed plant. J Resour Ecol 2(2):97–105Google Scholar
  80. Radwan S, Sorkhoh, N, EI-Nemr I (1995) Oil biodegradation around roots. Nature 376:302Google Scholar
  81. Rivera-Cruz MC (2011) Bacterias y hongos en suelos contaminados con petróleo crudo en Tabasco. In: Gamboa-Angulo M, Rojas-Herrera R (eds) Recursos genéticos microbianos en la Zona Golfo-Sureste de México. Subsistema Nacional de Recursos Genéticos Microbianos de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, México, pp 77–87Google Scholar
  82. Rivera-Cruz MC, Trujillo-Narcía A, Miranda-de-la-Cruz MA, Maldonado-Chávez E (2005) Evaluación ecotoxicológica de suelos contaminados con petróleos nuevo e intemperizado mediante ensayos con leguminosas. Interciencia 30(6):326–331Google Scholar
  83. Rolling W, Head I, Larter S (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154(5):321–328CrossRefGoogle Scholar
  84. Sangabriel W, Ferrera-Cerrato R, Trejo-Aguilar D, Mendoza-López MR, Cruz-Sánchez JS, López-Ortiz C, Delgadillo-Martínez J, Alarcón A (2006) Tolerancia y capacidad de fitorremediación de combustóleo en el suelo por seis especies vegetales. Rev Int Contam Ambient 22(2):63–73Google Scholar
  85. SER (2004) Principios de SER international sobre restauración ecológica. Society for ecological restoration international, Washington DC, USGoogle Scholar
  86. Sligar SG, Makris TM, Denisov IG (2005) Thirty years of microbial P450 monooxygenase research: peroxo-heme intermediates–the central bus station in heme oxygenase catalysis. Biochem Biophys Res Commun 338(1):346–354PubMedCrossRefGoogle Scholar
  87. Sposito G (2008) The chemistry of soils. Oxford University Press Inc, USAGoogle Scholar
  88. Strawn DG, Bohn HL, O’Connor GA (2015) Soil chemistry. Wiley Blackwell, Oxford, United KingdomGoogle Scholar
  89. Strong DR, Phillips DA (2001) Notes from the underground. Communication and control in the rhizosphere. Plant Physiol 127:727–730PubMedPubMedCentralCrossRefGoogle Scholar
  90. Taiz L, Zeiger E (2010) Plant physiology. Sinauer Associates Inc. Publishers, Massachusetts, USAGoogle Scholar
  91. Tansel B, Arreaza A, Tansel DZ, Lee M (2015) Decrease in osmotically driven water flux and transport through mangrove roots after oil spills in the presence and absence of dispersants. Mar Pollut Bull 98:34–39PubMedCrossRefGoogle Scholar
  92. Thijs S, Vangronsveld J (2015) Rhizoremediation. In: Lugtenberg B (ed) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer International Publishing, Switzerland, pp 277–286Google Scholar
  93. Thijs S, Sillen W, Weyens N, Vangronsveld J (2017) Phytoremediation: state-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int J Phytoremd 19(1):23–38CrossRefGoogle Scholar
  94. Toledo A (1982) Petróleo y ecodesarrollo en el sureste de México. Centro de Ecodesarrollo, MéxicoGoogle Scholar
  95. Torres-Guerrero CA, Etchevers JD, Fuentes-Ponce MH, Govaerts B, De León-González F, Herrera JM (2013) Influencia de las raíces sobre la agregación del suelo. Terra Latinoamericana 31(1):71–84Google Scholar
  96. Tripathi V, Fraceto LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus. Ecol Eng 82:330–335CrossRefGoogle Scholar
  97. Tripathi V, Edrisi SA, Abhilash PC (2016) Towards the coupling of phytoremediation with bioenergy production. Renew Sustain Energy Rev 57:1386–1389CrossRefGoogle Scholar
  98. Uren NC (2007) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinto R, Varanini Z, Nannipieri P (eds) The rhizosphere, biochemistry and organic substances at the soil-plant interface. Taylor & Francis Group LLC, USA, pp 1–21Google Scholar
  99. Van Beilen JB, Panke S, Lucchini S, Franchini AG, Martina Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630PubMedCrossRefPubMedCentralGoogle Scholar
  100. Velasco-Trejo JA, Volke-Sepúlveda TL (2003) El composteo: una alternativa tecnológica para la remediación de suelos en México. Gaceta Ecológica 66:41–53Google Scholar
  101. Wagner AM, Larson DL, DalSoglio JA, Harris JA, Labus P, Rosi-Mashall EJ, Skrabis KE (2016) A framework for establishing restoration goals for contaminated ecosystems. Integr Environ Assess Manag 12:264–272PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wang Z, Xu Y, Zhao J, Li F, Gao D, Xing B (2011) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J Hazard Mater 190:677–685PubMedCrossRefPubMedCentralGoogle Scholar
  103. Waterman MR (2005) Professor Howard Mason and oxygen activation. Biochem Biophys Res Commun 338(1):7–11PubMedCrossRefPubMedCentralGoogle Scholar
  104. Weber R, Aliyeva G, Vijgen J (2013) The need for an integrated approach to the global challenge of POPs management. Environ Sci Pollut Res 20:1901–1906CrossRefGoogle Scholar
  105. Weil RR, Brady NC (2008) The nature and properties of soils. Pearson Education, New Jersey, USGoogle Scholar
  106. White KD, Burken JG (1998) Natural treatment and on-site processes. Water Environ Res 70(4):540–550CrossRefGoogle Scholar
  107. Wu M, Ye X, Chen K, Li W, Yuan J, Jiang X (2017) Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environ Pollut 223:657–664PubMedCrossRefPubMedCentralGoogle Scholar
  108. Xia Y, Min H, Rao G, Lv ZM, Ye YF, Duan XJ (2005) Isolation and characterization of phenanthrene-degrading Spingomonas pauciobilis strain ZX4. Biodegradation 16:393–402PubMedCrossRefPubMedCentralGoogle Scholar
  109. Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang YC (2014) Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater 276:489–498PubMedCrossRefPubMedCentralGoogle Scholar
  110. Yan J, Wang L, Fu PP, Yu H (2004) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res 557(1):99–108PubMedPubMedCentralCrossRefGoogle Scholar
  111. Young C, Chang C, Chen L, Chao C (1998) Characterization of the nitrogen fixation and ferric phosphate solubilizing bacteria isolate from a Taiwan soil. J. Chin Agric Chem Soc 35:201–210Google Scholar
  112. Yuste L, Corbella ME, Turiégano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32(1):69–75PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zavala-Cruz J, Gavi-Reyes F, Adams-Schroeder RH, Ferrera-Cerrato R, Palma-López DJ (2002) Hidrocarburos del petróleo y tecnologías de biorremediación para suelos de Tabasco. In: Palma-López DJ, Triano-Sánchez A (eds) Plan de uso sustentable de los suelos de Tabasco, Vol. II. Colegio de Postgraduados, Instituto para el Desarrollo de Sistemas de Producción del Trópico Húmedo de Tabasco, Tabasco, México, pp 125–156Google Scholar
  114. Zhang Z, Hou Z, Yang C, Ma C, Tao F, Xu P (2011) Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour Technol 102:4111–4116PubMedCrossRefPubMedCentralGoogle Scholar
  115. Zhao HP, Wang L, Ren JR, Li Z, Li M, Gao HW (2008) Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5. J Hazard Mater 152:1293–1300PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • José G. Chan-Quijano
    • 1
    • 2
  • Manuel J. Cach-Pérez
    • 3
    Email author
  • Ulises Rodríguez-Robles
    • 3
    • 4
  1. 1.El Colegio de la Frontera Sur.VillahermosaMéxico
  2. 2.Departamento de Ciencia y TecnologíaUniversidad Autónoma de Guadalajara, Campus TabascoVillahermosaMéxico
  3. 3.Cátedras CONACYTDepartamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur.VillahermosaMéxico
  4. 4.Departamento de Ecología y Recursos NaturalesCentro Universitario de la Costa Sur. Universidad de GuadalajaraAutlán de NavarroMéxico

Personalised recommendations