Diffusion in Microstretch Thermoelasticity with Microtemperatures and Microconcentrations

  • Adina Chirilă
  • Marin MarinEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 179)


This chapter is dealing with the linear theory of microstretch thermoelasticity for materials whose particles have microelements that are equipped with microtemperatures and microconcentrations. The focus is on isotropic and homogeneous bodies, for which we derive the field equations and the constitutive equations. Then we introduce some dimensionless quantities and establish the continuous dependence of solutions upon initial data and body loads by means of the Gronwall inequality. This extension of mechanics of generalized continua that includes both thermal and diffusion effects aims at providing a rigorous mathematical model with various possible applications in materials science, engineering and even biology.


Microstretch thermoelasticity Microtemperatures Microconcentrations Mechanics of generalized continua 


  1. Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of Generalized Continua. Advanced Structured Materials. Springer, Berlin (2011)zbMATHGoogle Scholar
  2. Aouadi, M.: Some theorems in the isotropic theory of microstretch thermoelasticity with microtemperatures. J. Therm. Stress. 31(7), 649–662 (2008)MathSciNetCrossRefGoogle Scholar
  3. Aouadi, M., Ciarletta, M., Tibullo, V.: A thermoelastic diffusion theory with microtemperatures and microconcentrations. J. Therm. Stress. 40(4), 486–501 (2017)CrossRefGoogle Scholar
  4. Bitsadze, L.: The dirichlet BVP of the theory of thermoelasticity with microtemperatures for microstretch sphere. J. Therm. Stress. 39(9), 1074–1083 (2016)CrossRefGoogle Scholar
  5. Chirilă, A.: Generalized micropolar thermoelasticity with fractional order strain. Bull. Transilv. Univ. Braşov Ser. III: Math. Inf. Phys. 10(59)(1), 83–90 (2017)Google Scholar
  6. Chirilă, A., Agarwal, R.P., Marin, M.: Proving uniqueness for the solution of the problem of homogeneous and anisotropic micropolar thermoelasticity. Bound. Value Probl. 3, 1–14 (2017)MathSciNetzbMATHGoogle Scholar
  7. Chirilă, A., Marin, M.: The theory of generalized thermoelasticity with fractional order strain for dipolar materials with double porosity. J. Mater. Sci. 53(5), 3470–3482 (2018)CrossRefGoogle Scholar
  8. Ciarletta, M., Ieşan, D.: Non-classical Elastic Solids. Pitman Research Notes In Mathematics Series. Longman Scientific and Technical, London (1993)Google Scholar
  9. Cosserat, E., Cosserat, F.: Sur la théorie des corps deformables. Dunod, Paris (1909)Google Scholar
  10. Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, New-York (1999)CrossRefGoogle Scholar
  11. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)CrossRefGoogle Scholar
  12. Green, A.E.: Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3, 533–537 (1965)MathSciNetCrossRefGoogle Scholar
  13. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics: functional theory I. Proc. R. Soc. Lond. A 284, 303–324 (1965)MathSciNetCrossRefGoogle Scholar
  14. Grot, R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)CrossRefGoogle Scholar
  15. Ieşan, D.: Thermoelasticity of bodies with microstructure and microtemperatures. Int. J. Solids Struct. 44(25–26), 8648–8662 (2007)CrossRefGoogle Scholar
  16. Kearsley, E.A., Fong, J.T.: Linearly independent sets of isotropic cartesian tensors of ranks up to eight. J. Res. Natl. Stand. Sec. B 79B(1–2), 49–58 (1975)MathSciNetCrossRefGoogle Scholar
  17. Marin, M.: An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51(5), 1127–1133 (2016)MathSciNetCrossRefGoogle Scholar
  18. Marin, M., Ellahi, R., Chirilă, A.: On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J. Math. 33(2), 199–212 (2017)MathSciNetzbMATHGoogle Scholar
  19. Marin, M., Baleanu, D.: On vibrations in thermoelasticity without energy dissipation for micropolar bodies. Bound. Value Probl. 111, 1–19 (2016)MathSciNetzbMATHGoogle Scholar
  20. Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua: One Hundred Years After the Cosserats. Advances in Mechanics and Mathematics. Springer, New-York (2010)Google Scholar
  21. Mindlin, R.D.: Microstructure in Linear Elasticity. Columbia University, New York (1963)CrossRefGoogle Scholar
  22. Scalia, A., Svanadze, M.: Uniqueness theorems in the equilibrium theory of thermoelasticity with microtemperatures for microstretch solids. J. Mech. Mater. Struct. 6(9–10), 1295–1311 (2011)CrossRefGoogle Scholar
  23. Wozniak, C.: Thermoelasticity of the bodies with microstructure. Arch. Mech. Stos. 19, 355 (1967)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceTransilvania University of BraşovBraşovRomania

Personalised recommendations