Questionnaires, Bar and Hyperstructures

  • Pipina NikolaidouEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 179)


An application of hyperstructure theory on social sciences is presented. The bar is a tool proposed in questionnaires instead of Likert Scale. This new tool gives the researchers the opportunity to correct any kind of tendency maybe appeared in the results, helping them to obtain more accurate results, or come to a conclusion in cases the results from the Likert Scale give them no information. Moreover, the filling questionnaire procedure is being accomplished using the bar, instead of Likert scale, on computers where the results are saved automatically so they are ready for research.


Bar Questionnaires 

AMS S. Classification

20N20 16Y99 


  1. Corsini, P., Leoreanu, V.: Applications of Hyperstructure Theory. Kluwer Academic Publisher, Dordrecht (2003)CrossRefGoogle Scholar
  2. Davvaz, B.: A brief survey of the theory of \(H_v\) structures. In: 8th AHA Congress, pp. 39–70. Spanidis Press (2003)Google Scholar
  3. Davvaz, B., Leoreanu, V.: Hyperring Theory and Applications. International Academic Press, Cambridge (2007)Google Scholar
  4. Davvaz, B.: Polygroup Theory and Related Systems. World Scientific, Singapore (2013)Google Scholar
  5. Hoskova, S.: \(H_v\) structure is fifteen. In: Proceedings of 4th International Mathematical Workshop FAST VUT Brno, pp. 55–57. Czech Republic (2005).
  6. Kambaki-Vougioukli, P., Karakos, A., Lygeros, N., Vougiouklis, T.: Fuzzy instead of discrete. Ann. Fuzzy Math. Inf. (AFMI) 2(1), 81–89 (2011)Google Scholar
  7. Kambaki-Vougiouklis, P., Nikolaidou, P., Vougiouklis, T.: Questionnaires in Linguistics Using the Bar and the \(H_v\)-Structures. Studies in Systems, Decision and Control, vol. 66, pp. 257–266. Springer, Berlin (2017)Google Scholar
  8. Kambaki-Vougioukli, P., Vougiouklis, T.: Bar instead of scale. Ratio Sociol. 3, 49–56 (2008)Google Scholar
  9. Kaplani, T., Vougiouklis, T.: Finite \(H_v\)-fields with strong-inverses. Ratio Math. 33, 115–126 (2017)Google Scholar
  10. Markos, A.: A fuzzy coding approach to data processing using the bar. Ratio Math. 33, 127–138 (2017)Google Scholar
  11. Nikolaidou, P.: Multiple ways of processing in questionnaires. Ratio Math. 33, 139–150 (2017)Google Scholar
  12. Nikolaidou, P., Vougiouklis, T.: \(H_v\)-structures and the bar in questionnaires. Ital. J. Pure Appl. Math. 29, 341–350 (2012)MathSciNetzbMATHGoogle Scholar
  13. Nikolaidou, P., Vougiouklis, T.: Hyperstructures in questionnaires. In: Proceedings of 12th AHA, Algebraic Hyperstructures and its Applications. Xanthi, Greece (2014)Google Scholar
  14. Vougiouklis, T.: The fundamental relation in hyperrings. The general hyperfield. In: 4th AHA Congress, pp. 203–211. World Scientific, Singapore (1991)Google Scholar
  15. Vougiouklis, T.: Hyperstructures and their Representations. Monographs in Mathematics. Hadronic Press, Florida (1994)zbMATHGoogle Scholar
  16. Vougiouklis, T.: Bar and theta hyperoperations. Ratio Math. 21, 27–42 (2011)Google Scholar
  17. Vougiouklis, T., Kambaki-Vougioukli, P.: Use Bar China-USA Bus. Rev. 10(6), 484–489 (2011)Google Scholar
  18. Vougiouklis, T., Kambakis-Vougiouklis, P.: Bar Quest. Chin. Bus. Rev. 12(10) (2013)Google Scholar
  19. Vougiouklis, T., Vougiouklis, P.: Questionnaires with the bar in social sciences. Sci. Philos. 3(2), 47–58 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of EducationDemocritus University of ThraceAlexandroupolisGreece

Personalised recommendations