Classical and Weakly Prime L-Submodules

  • Razieh MahjoobEmail author
  • Shaheen Qiami
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 179)


Most of problems in biology, economics, ecology, engineering, environmental science, medical science, social science etc. have various uncertainties. Fuzzy set theory, rough set theory, vague set theory, interval mathematics probability, soft set theory are different ways of expressing uncertainty. Let L be a complete lattice. We introduce and characterize classical prime and weakly prime L-submodules of a unitary module over a commutative ring with identity. Also, we topologize Cl.L-Spec(M), the collection of all classical prime L- submodules of M, and investigate the properties of this topological space.


L-submodule Weakly prime L-submodule Classical prime L-submodule Zariski like-topology 


  1. Al Tahan, M., Hoskova-Mayerova, S., Davvaz, B.: An overview of topological hypergroupoids. J. Intell. Fuzzy Syst. 34(3), 1907–1916 (2018)CrossRefGoogle Scholar
  2. Ameri, R., Mahjoob, R.: Spectrum of prime \(L\)-submodules. Fuzzy Sets Syst. 159, 1107–1115 (2008)MathSciNetCrossRefGoogle Scholar
  3. Ameri, R., Mahjoob, R.: Some topological properties of spectrum of fuzzy submodules. Iran. J. Fuzzy Syst. 14(1), 77–87 (2017)MathSciNetzbMATHGoogle Scholar
  4. Ameri, R., Kordi, A., Hoskova-Mayerova, S.: Multiplicative hyperring of fractions and coprime hyperideals. An. St. Univ. Ovidius Constanta 25(1), 5–23 (2017)MathSciNetzbMATHGoogle Scholar
  5. Ameri, R., Mahjoob, R., Motameni, M.: The Zariski topology on the spectrum of prime L-submodules. Soft Comput. 12(9), 901–908 (2008)CrossRefGoogle Scholar
  6. Atani, S.E., Farzalipoor, F.: On weakly prime submodules. Tamkang J. Math. 38(3), 247–252 (2007)MathSciNetzbMATHGoogle Scholar
  7. Azizi, A.: On prime and weakly prime submodules. Vietnam J. Math. 36(3), 315–325 (2008)MathSciNetzbMATHGoogle Scholar
  8. Behboodi, M., Koohy, H.: Weakly prime modules. Vietnam J. Math. 32(2), 185–195 (2004)MathSciNetzbMATHGoogle Scholar
  9. Behboodi, M., Noori, M.J.: Zarisky-like topology on the classical prime spectrumof a modules. Bull. Iran. Math. Soc. 35(1), 255–271 (2009)Google Scholar
  10. Hochster, M.: Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 137, 43–60 (1969)MathSciNetCrossRefGoogle Scholar
  11. Hoskova-Mayerova, S.: An overview of topological and fuzzy topological hypergroupoids. Ratio Math. 33, 21–38 (2017)Google Scholar
  12. Hoskova-Mayerova, S., Maturo, A.: Fuzzy sets and algebraic hyperoperations to model interpersonal relations. In: Maturo, A., Hoskova-Mayerova, S., Soitu, D.T., Kacprzyk, J. (eds.) Recent Trends in Social Systems: Quantitative Theories and Quantitative Models. Studies in Systems, Decision and Control, vol. 66, pp. 211–221. Springer, Cham (2017). Scholar
  13. Hoskova-Mayerova, S., Maturo, A.: Algebraic hyperstructures and social relations. Ital. J. Pure Appl. Math. 39, 701–709 (2018)zbMATHGoogle Scholar
  14. Lee, D.S., Park, ChH: On fuzzy prime submodules of fuzzy multiplication modules. East Asian Math. J. 27(1), 75–82 (2011)zbMATHGoogle Scholar
  15. Lu, C.: The Zariski topology on the spectrum of a modules. Houst. J. Math. 25(3), 417–432 (1999)MathSciNetzbMATHGoogle Scholar
  16. McCasland, R.: Some commutative ring results generalized to unitary modules, Ph.D. thesis, University of Texas at Arlington (1983)Google Scholar
  17. McCasland, R., Moore, M., Smith, P.: On the spectrum of modules over a commutative ring. Commun. Algebr. 25(1), 79–103 (1997)MathSciNetCrossRefGoogle Scholar
  18. Mahjoob, R.: On weakly prime \(L\)-ideal. Ital. J. Pure Appl. Math. 36, 465–472 (2016)MathSciNetzbMATHGoogle Scholar
  19. Mahjoob, R., Qiami, Sh.: Radical formula for \(L\)-submodules (2018). (submitted to Iranian journal of science and technology, Transaction A)Google Scholar
  20. Maturo, F., Hoskova-Mayerova, S.: Fuzzy regression models and alternative operations for economic and social sciences. In: Maturo, A., Hoskova-Mayerova, S., Soitu, D.T., Kacprzyk, J. (eds.) Recent Trends in Social Systems: Quantitative Theories and Quantitative Models. Studies in Systems, Decision and Control, vol. 66, pp. 235–247. Springer, Cham, 2017. Scholar
  21. Mordeson, J.N., Malik, D.S.: Fuzzy Commutative Algebra. World Scientific Publishing, Singapore (1998)CrossRefGoogle Scholar
  22. Negoita, C.V., Ralescu, D.A.: Application of Fuzzy Systems Analysis. Birkhauser, Basel (1975)CrossRefGoogle Scholar
  23. Pan, F.Z.: Fuzzy finitely generated modules. Fuzzy Sets Syst. 21, 105–113 (1987)MathSciNetCrossRefGoogle Scholar
  24. Rosenfeld, R.: Fuzzy groups. J. Math. Anal Appl. 35, 512–517 (1971)CrossRefGoogle Scholar
  25. Sidky, F.I.: On radical of fuzzy submodules and primary fuzzy submodules. Fuzzy Sets Syst. 119, 419–425 (2001)MathSciNetCrossRefGoogle Scholar
  26. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics, Statistics and Computer Sciences, Department of MathematicsSemnan UniversitySemnanIran

Personalised recommendations