Ordering in the Algebraic Hyperstructure Theory: Some Examples with a Potential for Applications in Social Sciences

  • Michal NovákEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 179)


In this chapter we include several examples of concepts of the algebraic hyperstructure theory, which are all based on the concept of ordering. We also show how these concepts could be linked. The reason why we make this selection, is the fact that, in social sciences, objects are often linked in two different ways, which can be represented by an operation (or a hyperoperation) and a relation. The algebraic hyperstructure theory is useful in considerations of social sciences because, in this theory, the result of an interaction of two objects is, generally speaking, a set of objects instead of one particular object.


  1. Al Tahan, M., Davvaz, B.: On a special single-power cyclic hypergroup and its automorphisms. Discret. Math. Algorithm Appl. 8(4), 1650059 (2016)MathSciNetCrossRefGoogle Scholar
  2. Antampoufis, N.: Hypergroups and \(H_b\)-groups in complex numbers. J. Basic Sci. 4(1), 17–25 (2008)Google Scholar
  3. Antampoufis, N., Vougiouklis, T., Dramalidis, A.: Geometrical and circle hyperoperations in urban applications. Ratio Sociologica 4(2), 53–66 (2011)Google Scholar
  4. Bandelt, J.H., Hedlíková, J.: Median algebras. Discret. Math. 45, 1–30 (1983)MathSciNetCrossRefGoogle Scholar
  5. Davvaz, B.: Semihypergroup Theory. Academic, Cambridge (2016)zbMATHGoogle Scholar
  6. Dramalidis, A.: Dual \(H_v\)-rings. Riv. Mat. Pura Appl. 17, 55–62 (1996)MathSciNetzbMATHGoogle Scholar
  7. Dramalidis, A.: Visualization of algebraic properties of special \(H_v\)-structures. Ratio Mathematica 24, 41–52 (2013)zbMATHGoogle Scholar
  8. Chvalina, J.: Commutative hypergroups in the sense of Marty and ordered sets. In: General Algebra and Ordered Sets, Proceedings of the International Conference Olomouc, pp. 19–30 (1994)Google Scholar
  9. Chvalina, J.: Functional Graphs. Quasi-ordered Sets and Commutative Hypergroups. Masaryk University, Brno (1995). (in Czech)Google Scholar
  10. Chvalina, J., Chvalinová, L.: State hypergroups of automata. Acta Math. et Inform. Univ. Ostraviensis 4(1), 105–120 (1996)MathSciNetzbMATHGoogle Scholar
  11. Chvalina, J., Novák, M.: Hyperstructures of preference relations. In: The 10th International Congress Algebraic Hyperstructures and Applications (AHA 2008): Proceedings, Brno, University of Defence, pp. 131–140 (2009)Google Scholar
  12. Corsini, P.: Prolegomena of Hypergroup Theory. Aviani Editore, Tricesimo (1993)zbMATHGoogle Scholar
  13. Corsini, P.: Join spaces, power sets, fuzzy sets. In: Proceedings of the Fifth International Congress on A.H.A., 1993, Iaşi, Romania, pp. 45–52. Hadronic Press, Florida (1994)Google Scholar
  14. Corsini, P.: A new connection between hypergroups and fuzzy sets. Southeast Asian Bull. Math. 27, 221–229 (2003)MathSciNetzbMATHGoogle Scholar
  15. Ghazavi, S.H., Anvariyeh, S.M., Mirvakili, S.: \(EL^2\)-hyperstructures derived from (partially) quasi-ordered hyperstructures. Iran. J. Math. Sci. Inform. 10(2), 99–114 (2015)MathSciNetzbMATHGoogle Scholar
  16. Heidari, D., Davvaz, B.: On ordered hyperstructures. U.P.B. Sci. Bull. Ser. A 73(2), 85–96 (2011)Google Scholar
  17. Hošková-Mayerová, Š, Maturo, A.: Fuzzy Sets and Algebraic Hyperoperations to Model Interpersonal Relations, pp. 211–221. Springer, Switzerland (2016); Recent Trends in Social Systems: Quantitative Theories and Quantitative Models. Studies in Systems, Decision and Control, vol. 66Google Scholar
  18. Hošková-Mayerová, Š., Maturo, F.: Fuzzy Regression Models and Alternative Operations for Economic and Social Sciences, pp. 235–247. Switzerland: Springer, : Recent Trends in Social Systems: Quantitative Theories and Quantitative Models, p. 66. Studies in Systems, Decision and Control. vol (2016)Google Scholar
  19. Hošková-Mayerová, Š., Maturo, A.: Decision-Making Process Using Hyperstructures and Fuzzy Structures in Social Sciences, pp. 103–111. Springer International Publishing AG, Switzerland (2017); Soft Computing Applications for Group Decision-making and Consensus Modeling. Studies in Fuzziness and Soft Computing, vol. 357Google Scholar
  20. Hošková-Mayerová, Š.: An overview of topological and fuzzy topological hypergroupoids. Ratio Mathematica 33, 21–38 (2017)Google Scholar
  21. Hošková-Mayerová, Š., Maturo, A.: Algebraic hyperstructures and social relations. Ital. J. Pure Appl. Math. 39, 701–709 (2018)zbMATHGoogle Scholar
  22. Huang, Y.: \(BCI\)-Algebra. Science Press, Beijing (2006)Google Scholar
  23. Iséki, K.: An algebra related with a propositional calculus. Proc. Jpn. Acad. 42, 26–29 (1966)MathSciNetCrossRefGoogle Scholar
  24. Iséki, K.: An introduction to the theory of \(BCK\)-algebras. Math. Japon. 23, 1–26 (1978)MathSciNetzbMATHGoogle Scholar
  25. Iwasava, K.: On linearly ordered groups. J. Math. Soc. 1(1), 1–9 (1948)MathSciNetCrossRefGoogle Scholar
  26. Jantosciak, J.: Classical geometries as hypergroups. In: Corsini, P. (ed.) Convegno su: Ipergruppi, altre strutture multivoche e loro applicazioni, pp. 93–104. Italy, Udine (1985)Google Scholar
  27. Kambaki-Vougioukli, P., Vougiouklis, Th: Bar instead of scale. Ratio Sociologica 3, 49–56 (2008)Google Scholar
  28. Křehlík, Š., Novák, M.: From lattices to \(H_v\)-matrices. An. Şt. Univ. Ovidius Constanţa 24(3), 209–222 (2016)MathSciNetzbMATHGoogle Scholar
  29. Lygeros, N., Vougiouklis, Th: The Lv-hyperstructures. Ratio. Math. 25, 59–66 (2013)Google Scholar
  30. Marty, F.: Sur une généralisation de la notion de groupe, pp. 45–49. Stockholm, IV Congrès des Mathématiciens Scandinaves (1934)Google Scholar
  31. Massouros, ChG: Hypercompositional structures from the computer theory. Ratio Math. 13, 37–42 (1999)MathSciNetzbMATHGoogle Scholar
  32. Massouros, ChG, Massouros, G.G.: The transposition axiom in hypercompositional structures. Ratio Math. 21, 75–90 (2011)Google Scholar
  33. Massouros, ChG: On path hypercompositions in graphs and automata. MATEC Web Conf. 41, 05003 (2016)CrossRefGoogle Scholar
  34. Maturo, A., Maturo, F.: On some applications of the Vougiouklis hyperstructures to probability theory. Ratio Math. 33, 5–20 (2017)Google Scholar
  35. Maturo, A., Ventre, A.G.S.: Multiperson decision making, consensus and associated hyperstructures. In: The 10th International Congress Algebraic Hyperstructures and Applications (AHA 2008): Proceedings, Brno, University of Defence, pp. 241–250 (2009)Google Scholar
  36. Nikolaidou, P., Vougiouklis, Th: The Lie-Santilli admissible hyperalgebras of type An. Ratio Math. 26(1), 113–128 (2014)Google Scholar
  37. Novák, M.: EL-hyperstructures: an overview. Ratio Math. 23(1), 65–80 (2012)Google Scholar
  38. Novák, M.: Some basic properties of \(EL\)-hyperstructures. Eur. J. Combin. 34, 446–459 (2013)MathSciNetCrossRefGoogle Scholar
  39. Novák, M.: \(n\)-ary hyperstructures constructed from binary quasi-ordered semigroups. An. Şt. Univ. Ovidius Constanţa 22(3), 147–168 (2014)MathSciNetzbMATHGoogle Scholar
  40. Novák, M.: On \(EL\)–semihypergroups. Eur. J. Combin. 44(Part B), 274–286 (2015)Google Scholar
  41. Novák, M.: EL-semihypergroups in which the quasi-ordering is not antisymmetric. In: Mathematics, Information Technologies and Applied Sciences 2017: Post-conference Proceedings of Extended Versions of Selected Papers, Brno, University of Defence, pp. 183–192 (2017)Google Scholar
  42. Novák, M., Cristea, I.: Composition in \(EL\)–hyperstructures. Hacet. J. Math. Stat. (accepted)Google Scholar
  43. Novák, M., Křehlík, Š.: \(EL\)–hyperstructures revisited. Soft Comput. (2017) (in press – online ready)Google Scholar
  44. Phanthawimol, W., Kemprasit, Y.: Homomorphisms and epimorhisms of some hypergroups. Ital. J. Pure Appl. Math 27, 305–312 (2010)zbMATHGoogle Scholar
  45. Pickett, H.E.: Homomorphisms and subalgebras of multialgebras. Pac. J. Math. 21(2), 327–342 (1967)MathSciNetCrossRefGoogle Scholar
  46. Prenowitz, W., Jantosciak, J.: Geometries and join spaces. J. Reine Angew. Math. 257, 100–128 (1972)MathSciNetzbMATHGoogle Scholar
  47. Prenowitz, W., Jantosciak, J.: Join Geometries. UTM. Springer, New York (1979)CrossRefGoogle Scholar
  48. Račková, P.: Hypergroups of symmetric matrices. In: 10 th International Congress of Algebraic Hyperstructures and Applications, Proceedings of AHA 2008, University of Defence, Brno, pp. 267–272 (2009)Google Scholar
  49. Ştefănescu, M.M.: Constructions of hypergroups. In: Vougiouklis, Th (ed.) New Frontiers in Hyperstructures, pp. 68–83. Hadronic Press, Florida (1996)Google Scholar
  50. Ştefănescu, M., Cristea, I.: On the fuzzy grade of hypergroups. Fuzzy Sets Syst. 159(9), 1097–1106 (2008)MathSciNetCrossRefGoogle Scholar
  51. Varlet, J.V.: Remarks on distributive lattices. Bull. de l’Acad. Polonnaise des Sciences, Serie des Sciences Math., Astr. et Phys., 23, 1143–1147 (1975)Google Scholar
  52. Vougiouklis, Th: Bar and theta hyperoperations. Ratio Math. 21, 27–42 (2011)Google Scholar
  53. Vougiouklis, Th, Kambaki-Vougioukli, P.: On the use of the bar. China-USA Bus. Rev. 10(6), 197–206 (2005)Google Scholar
  54. Vougiouklis, Th, Vougiouklis, S.: Helix-hopes on finite hyperfields. Ratio Math. 31(1), 65–78 (2016)Google Scholar
  55. Vougiouklis, Th, Spartalis, S., Kessoglides, M.: Weak hyperstructures on small sets. Ratio Math. 12(1), 90–96 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic

Personalised recommendations