Special Numbers, Special Quaternions and Special Symbol Elements

  • Diana SavinEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 179)


Most mathematical notions have connections with real life. Although the theory of rings and algebras is abstract, however, this theory has many applications, some indirect, in real life. Many sets of real-life objects, taken together with one or more laws of composition, form algebraic structures with interesting properties. Quaternion algebras and of symbol algebras have applications in various branches of mathematics, but also in computer science, physics, signal theory. In this paper we define and we study properties of \(\left( l,1,p+2q,q\cdot l\right) -\) numbers, \(\left( l,1,p+2q,q\cdot l\right) -\) quaternions, \(\left( l,1,p+2q,q\cdot l\right) -\) symbol elements. Finally, we obtain an algebraic structure with these elements.


Quaternion algebras; symbol algebras Fibonacci numbers Lucas numbers Fibonacci–Lucas quaternions Pell- Fibonacci–Lucas quaternions Open image in new window quaternions Open image in new window symbol elements 

2000 AMS Subject Classification

15A24 15A06 16G30 11R52 11B39 11R54 



The author dedicates this book chapter to her mother, Prof. Elena Savin.


  1. Akyigit, M., Kosal, H.H., Tosun, M.: Fibonacci generalized quaternions. Adv. Appl. Clifford Algebras 24(3), 631–641 (2014)MathSciNetCrossRefGoogle Scholar
  2. Alexandru, V., Gosoniu, N.M.: Elements of Number Theory (in Romanian). Bucharest University, Romania (1999)zbMATHGoogle Scholar
  3. Alsina, M., Bayer, P.: Quaternion Orders, Quadratic Forms and Shimura Curves. CRM Monograph Series, vol. 22. American Mathematical Society, Providence (2004)Google Scholar
  4. Catarino, P.: A note on \(h\left(x\right)\) Fibonacci quaternion polynomials. Chaos, Solitons Fractals 77, 1–5 (2015)MathSciNetCrossRefGoogle Scholar
  5. Catarino, P., Morgado, M.L.: On generalized Jacobsthal and Jacobsthal-Lucas polynomials. An. St. Univ. Ovidius Constanta Mat. Ser. 24(3), 61–78 (2016)MathSciNetCrossRefGoogle Scholar
  6. Catarino, P.: The modified Pell and the modified K-Pell quaternions and octonions. Adv. Appl. Clifford Algebra 26(2), 577–590 (2016)MathSciNetCrossRefGoogle Scholar
  7. Cucurezeanu, I.: Equations in Integer Numbers (in Romanian). Aramis, Romania (2006)Google Scholar
  8. Flatley, R.: Trace forms of symbol algebras. Algebra Colloq. 19, 1117–1124 (2012)MathSciNetCrossRefGoogle Scholar
  9. Flaut, C., Savin, D., Iorgulescu, G.: Some properties of Fibonacci and Lucas symbol elements. J. Math. Sci. Adv. Appl. 20, 37–43 (2013)Google Scholar
  10. Flaut, C., Savin, D.: Some properties of symbol algebras of degree 3. Math. Rep. 16(66)(3), 443–463 (2014a)Google Scholar
  11. Flaut, C., Savin, D.: About quaternion algebras and symbol algebras. Bull. Univ. Transilv. Brasov Seria III 7(56)(2), 59–64 (2014b)Google Scholar
  12. Flaut, C., Savin, D.: Quaternion algebras and generalized Fibonacci-Lucas quaternions. Adv. Appl. Clifford Algebra 25(4), 853–862 (2015a)MathSciNetCrossRefGoogle Scholar
  13. Flaut, C., Savin, D.: Some examples of division symbol algebras of degree 3 and 5. Carpathian J. Math. 31(2), 197–204 (2015b)MathSciNetzbMATHGoogle Scholar
  14. Flaut C., Savin D.: Some remarks regarding \(a, b, x_{0}, x_{1}\) numbers and \(a, b, x_{0}, x_{1}\) quaternions, submitted (2017)Google Scholar
  15. Flaut, C., Savin, D.: Some special number sequences obtained from a difference equation of degree three. Chaos, Solitons Fractals 106, 67–71 (2018)MathSciNetCrossRefGoogle Scholar
  16. Flaut, C., Shpakivskyi, V.: On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions. Adv. Appl. Clifford Algebra 23(3), 673–688 (2013a)MathSciNetCrossRefGoogle Scholar
  17. Flaut, C., Shpakivskyi, V.: Real matrix representations for the complex quaternions. Adv. Appl. Clifford Algebra 23(3), 657–671 (2013b)MathSciNetCrossRefGoogle Scholar
  18. Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  19. Halici, S.: On Fibonacci quaternions. Adv. Appl. Clifford Algebras 22(2), 321–327 (2012)MathSciNetCrossRefGoogle Scholar
  20. Horadam, A.F.: Complex Fibonacci numbers and Fibonacci quaternions. Am. Math. Mon. 70, 289–291 (1963)MathSciNetCrossRefGoogle Scholar
  21. Jafari, M., Yayli, Y.: Rotation in four dimensions via generalized Hamilton operators. Kuwait J. Sci. 40(1), 67–79 (2013)MathSciNetGoogle Scholar
  22. Karatas, A., Halici, S.: Horadam octonions. An. St. Univ. Ovidius Constanta Mat. Ser. 25(3), 97–106 (2017)MathSciNetCrossRefGoogle Scholar
  23. Lam, T.Y.: Introduction to Quadratic Forms over Fields. AMS, Providence (2004)CrossRefGoogle Scholar
  24. Ledet, A.: Brauer Type Embedding Problems. American Mathematical Society, Providence (2005)CrossRefGoogle Scholar
  25. Linowitz, B.: Selectivity in quaternion algebras. J. Number Theory 132, 1425–1437 (2012)MathSciNetCrossRefGoogle Scholar
  26. Milnor, J.: Introduction to Algebraic K-Theory. Annals of Mathematics Studies. Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
  27. Pierce, R.S.: Associative Algebras. Springer, Berlin (1982)CrossRefGoogle Scholar
  28. Ramirez, J.L.: Some combinatorial properties of the \(k\)-Fibonacci and the \(k\) -Lucas quaternions. An. St. Univ. Ovidius Constanta Mat. Ser. 23(2), 201–212 (2015)Google Scholar
  29. Saeid, A.B., Flaut, C., Hoskova-Mayerova, S., Afshar, M., Rafsanjani, M.K.: Some connections between BCKalgebras and nary block codes. Soft Comput. Fusion Found. Methodol. Appl. 22(1), 41–46 (2018)zbMATHGoogle Scholar
  30. Savin, D., Flaut, C., Ciobanu, C.: Some properties of the symbol algebras. Carpathian J. Math. 25(2), 239–245 (2009)MathSciNetzbMATHGoogle Scholar
  31. Savin, D.: Fibonacci primes of special forms. Notes Number Theory Discret. Math. 20(2), 10–19 (2014a)zbMATHGoogle Scholar
  32. Savin, D.: About some split central simple algebras. An. St. Univ. Ovidius Constanta Mat. Ser. 22(1), 263–272 (2014b)MathSciNetCrossRefGoogle Scholar
  33. Savin, D.: About division quaternion algebras and division symbol algebras. Carpathian J. Math. 32(2), 233–240 (2016a)MathSciNetzbMATHGoogle Scholar
  34. Savin, D.: Quaternion algebras and symbol algebras over algebraic number field \(K,\) with the degree \(\left[K:\mathbb{Q}\right]\) even. Gulf J. Math. 4(4), 16–21 (2016b)MathSciNetzbMATHGoogle Scholar
  35. Savin, D.: About special elements in quaternion algebras over finite fields. Adv. Appl. Clifford Algebras 27(2), 1801–1813 (2017a)MathSciNetCrossRefGoogle Scholar
  36. Savin D.: About split quaternion algebras over quadratic fields and symbol algebras of degree n. Bull. Math. Soc. Sci. Math. Roum. Tome 60(108)(3), 307–312 (2017b)Google Scholar
  37. Swamy, M.N.S.: On generalized Fibonacci quaternions. Fibonacci Quaterly 11(5), 547–549 (1973)Google Scholar
  38. Tarnauceanu, M.: A characterization of the quaternion group. An. St. Univ. Ovidius Constanta 21(1), 209–214 (2013)MathSciNetGoogle Scholar
  39. Vigneras, M.F.: Arithmetique des Algebres de Quaternions. Lecture Notes in Mathematics, vol. 800. Springer, Berlin (1980)CrossRefGoogle Scholar
  40. Voight J.: The arithmetic of quaternion algebras (2010).
  41. Yilmaz, N., Yazlik, Y., Taskara, N.: On the bi-periodic Lucas octonions. Adv. Appl. Clifford Algebras 27(2), 1927–1937 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceOvidius UniversityConstantaRomania

Personalised recommendations