Geometric Properties of Mittag-Leffler Functions

  • Dorina RăducanuEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 179)


In recent decades the attention towards Mittag-Leffler type functions has deepened due to their direct involvement in problems of physics, biology, chemistry, engineering and other applied sciences. More precisely, applications of Mittag-Leffler functions appear in stochastic systems (Polito and Scalas (2016)), statistical distribution with results obtained by Pillai (1990), dynamical models investigated by An et al. (2012) etc. Special emphasis should be placed on the applications of Mittag-Leffler type functions in fractional calculus (Kilbas et al. (2004), Srivastava and Tomovski (2009)) and also fractional differential and integral equations such as: diffusion equation with results obtained by Langlands (2006) and Yu and Zhang (2006), telegraph equation (Camargo et al. (2012)), kinetic equation (Metzler and Klafter (2000)), Abel type integral equations investigated by Kilbas and Saigo (1995) just to mention a few.


Convex Starlike Close-to-convex Mittag-leffler function 


  1. Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions. Ann. Math. 17, 12–22 (1915)MathSciNetCrossRefGoogle Scholar
  2. An, J., Van Hese, E., Baes, M.: Phase-space consistency of stellar dynamical models determined by separable augmented densities. Mon. Nat. R. Astron. Soc. 422(1), 652–664 (2012)CrossRefGoogle Scholar
  3. Attiya, A.A.: Some applications of Mittag-Leffler function in the unit disk. Filomat 30, 2075–2081 (2016)MathSciNetCrossRefGoogle Scholar
  4. Bansal, D., Prajapat, J.K.: Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 61(3), 338–350 (2016)MathSciNetCrossRefGoogle Scholar
  5. Baricz, Á.: Geometric properties of generalized Bessel functions. Publ. Math. 73, 155–178 (2008). DebrecenGoogle Scholar
  6. Camargo, R.F., Oliveira, A.C., Vaz Jr., J.: On the generalized Mittag-Leffler function and its application in a fractional telegraph equation. Math. Phys. Anal. Geom. 15, 1–16 (2012)MathSciNetCrossRefGoogle Scholar
  7. Goodman, A.E.: Univalent Functions, vol. 1–2. Mariner Publishing Company, Inc., Florida (1983)Google Scholar
  8. Gorenflo, R., Mainardi, F., Rogosin, S.V.: On the generalized Mittag-Leffler functions. Integral Transform. Spec. Funct. 7, 215–224 (1998)MathSciNetCrossRefGoogle Scholar
  9. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions. Related Topics and Applications. Springer, Heildeberg (2014)zbMATHGoogle Scholar
  10. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 51 (2011). Art.ID 298628Google Scholar
  11. Kanas, S., Wisniowska, A.: Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105, 327–336 (1999)MathSciNetCrossRefGoogle Scholar
  12. Kanas, S., Wisniowska, A.: Conic regions and k-starlike functions. Rev. Roumaine Math. Pures Appl. 45(4), 647–657 (2000)MathSciNetzbMATHGoogle Scholar
  13. Kilbas, A.A., Saigo, M.: Solution of Abel type integral equations of the second kind and of differential equations of fractional order. Integral Transform. Spec. Funct. 95(5), 29–34 (1995)Google Scholar
  14. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 15, 31–49 (2004)MathSciNetCrossRefGoogle Scholar
  15. Kilbas, A.A., Koroleva, A.A., Rogosin, S.V.: Multi-parametric Mittag-Leffler functions and their extension. Frac. Calc. Appl. Anal. 16(2), 378–404 (2013)MathSciNetzbMATHGoogle Scholar
  16. Kiryakova, V.: The multi-index Mittag-Leffler functions as an important class of special functions in fractional calculus. Comput. Math. Appl. 59(5), 1885–1895 (2010)MathSciNetCrossRefGoogle Scholar
  17. Langlands, T.A.M.: Solution of modified fractional diffusion equation. Physica A 367, 136–144 (2006)MathSciNetCrossRefGoogle Scholar
  18. Lavault C.: Fractional calculus and generalized Mittag-Leffler functions, arXiv:1703.01912v2, 2017
  19. Metzler, Klafter J.: The random walk’s guides to anomalous diffusion: a fractional kinetic equation. Phys. Rep. 339, 1–77 (2000)CrossRefGoogle Scholar
  20. Mittag-Leffler, G.M.: Sur la nouvelle fonction \(E_\alpha (x)\). C. R. Acad. Sci. Paris 137, 554–558 (1903)zbMATHGoogle Scholar
  21. Mondal, S.R., Swaminathan, A.: Geometric properties of Bessel functions. Bull. Malays. Math. Sci. Soc. 35(1), 179–194 (2012)MathSciNetzbMATHGoogle Scholar
  22. Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H.M.: Close-to-convexity, starlikeness and convexity of certain analytic functions. Appl. Math. Lett. 15, 63–69 (2002)MathSciNetCrossRefGoogle Scholar
  23. Ozaki, S.: On the theory of multivalent functions. Sci. Rep. 2, 167–188 (1935). Tokyo Bunrika DaigakuGoogle Scholar
  24. Pillai, R.N.: On Mittag-Leffler functions and related distributions. Ann. Inst. Stat. Math. 42(1), 157–161 (1990)MathSciNetCrossRefGoogle Scholar
  25. Polito, F., Scalas, E.: A generalization of the space fractional Poisson process and its connection to some Lévy process. Electron. Commun. Prob. 21(20) (2016)Google Scholar
  26. Ponnusamy, S.: Close-to-convexity properties of Gaussian hypergeometric functions. J. Comput. Appl. Math. 88, 328–337 (1997)MathSciNetGoogle Scholar
  27. Ponnusamy, S., Vuorinen, M.: Univalence and convexity properties of confluent hypergeometric functions. Complex. Var. Elliptic Equ. 36, 73–97 (1998)MathSciNetzbMATHGoogle Scholar
  28. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1997)MathSciNetzbMATHGoogle Scholar
  29. Prajapat, J.K.: Certain geometric properties of the Wright function. Integral Transform. Spec. Funct. 26(3), 203–312 (2014)MathSciNetCrossRefGoogle Scholar
  30. Răducanu, D.: Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions. Mediterr. J. Math. 14(167), 18 (2017)MathSciNetzbMATHGoogle Scholar
  31. Raza, M., Din, M.U., Malik, S.N.: Certain geometric properties of normalized Wright functions. J. Funct. Space, 8 (2016). Art.ID 1896154Google Scholar
  32. Salim, T.: Some properties relating to the generalized Mittag-Leffler function. Adv. Appl. Math. Anal. 4, 21–30 (2009)Google Scholar
  33. Salim, T., Faraj, A.: A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Frac. Calc. Appl. 3(5), 1–13 (2012)Google Scholar
  34. Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51, 109–116 (1975)MathSciNetCrossRefGoogle Scholar
  35. Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009)MathSciNetzbMATHGoogle Scholar
  36. Srivastava, H.M., Frasin, B.A., Pescar, V.: Univalence of integral operators involving Mittag-Leffler functions. Appl. Math. Inf. Sci. 11(3), 635–461 (2017)MathSciNetCrossRefGoogle Scholar
  37. Wiman, A.: Über den Fundamental satz in der Theorie der Funcktionen \(E_\alpha (x)\). Acta Math. 29, 191–201 (1905)MathSciNetCrossRefGoogle Scholar
  38. Yagmur, N., Orhan, H.: Starlikeness and convexity of generalized Struve functions. Abst. Appl. Anal. 6 (2013). Art.ID 954513Google Scholar
  39. Yu, R., Zhang, H.: New function of Mittag-Leffler type and its applications in the fractional diffusion-wave equation. Chaos Solitons Fractals 30, 946–955 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceTransilvania University of BraşovBraşovRomania

Personalised recommendations