Advertisement

A General Framework for Individual and Social Choices

  • Bice Cavallo
  • Livia D’Apuzzo
  • Antonio Di Nola
  • Massimo Squillante
  • Gaetano Vitale
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 179)

Abstract

Suitable algebraic structures for individual and social choices are proposed. Some relevant properties are illustrated.

Keywords

Algebraic structures Multi-criteria methods Preferences modeling Social choices 

References

  1. Abramovich, Y., Aliprantis, C., Zame, W.: A representation theorem for riesz spaces and its applications to economics. Econ. Theory 5(3), 527–535 (1995)MathSciNetCrossRefGoogle Scholar
  2. Aliprantis, C.D., Brown, D.J.: Equilibria in markets with a riesz space of commodities. J. Math. Econ. 11(2), 189–207 (1983)MathSciNetCrossRefGoogle Scholar
  3. Aliprantis C.D., Burkinshaw, O.: Locally Solid Riesz Spaces With Applications to Economics, vol. 105. American Mathematical Society (2003)Google Scholar
  4. Aliprantis, C.D., Tourky, R.: Cones and Duality, vol. 84. American Mathematical Society (2007)Google Scholar
  5. Arrow, K.: Social Choice and Individual Values. Yale University Press, New Haven (1978)zbMATHGoogle Scholar
  6. Arrow, K.J., Raynaud, H.: Social Choice and Multicriterion Decision-Making. MIT Press, Cambridge (1986)zbMATHGoogle Scholar
  7. Arrow, K.J., Sen, A., Suzumura, K.E: Handbook of Social Choice and Welfare vol. 2, 1st edn. North Holland (2011)Google Scholar
  8. Barzilai, J.: Consistency measures for pairwise comparison matrices. J. Multi-Criteria Decis. Anal. 7(3), 123–132 (1998)CrossRefGoogle Scholar
  9. Barzilai, J., Lootsma, F.A.: Power relations and group aggregation in the multiplicative AHP and SMART. J. Multi-Criteria Decis. Anal. 6(3), 155–165 (1997)CrossRefGoogle Scholar
  10. Basile, L., D’Apuzzo, L.: Weak consistency and quasi-linear means imply the actual ranking. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(3), 227–239 (2002)MathSciNetCrossRefGoogle Scholar
  11. Belton, V.: A comparison of the analytic hierarchy process and a simple multi-attribute value function. Eur. J. Oper. Res. 26(1), 7–21 (1986)MathSciNetCrossRefGoogle Scholar
  12. Belton, V., Stewart, T.: Multiple Criteria Decision Analysis: An Integrated Approach. Springer Science & Business Media, Berlin (2002)CrossRefGoogle Scholar
  13. Beynon, W.M.: Duality theorems for finitely generated vector lattices. In: Proceedings of the London Mathematical Society, vol. s3-31, pp. 114–128 (1975)MathSciNetCrossRefGoogle Scholar
  14. Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society (1984)Google Scholar
  15. Brunelli, M.: Studying a set of properties of inconsistency indices for pairwise comparisons. Ann. Oper. Res. 248(1), 143–161 (2017)MathSciNetCrossRefGoogle Scholar
  16. Brunelli, M., Fedrizzi, M.: Axiomatic properties of inconsistency indices for pairwise comparisons. J. Oper. Res. Soc. 66(1), 1–15 (2015)CrossRefGoogle Scholar
  17. Cavallo, B.: A further discussion of a semiring-based study of judgment matrices: properties and models. Inf. Sci. 181, 2166–2176 (2011); Inf. Sci. 287, 61–67 (2014)Google Scholar
  18. Cavallo, B.: Computing random consistency indices and assessing priority vectors reliability. Inf. Sci. 420, 532–542 (2017)CrossRefGoogle Scholar
  19. Cavallo, B.: \(\mathscr{G}\)-distance and \(\mathscr{G}\)-decomposition for improving \(\mathscr{G}\)-consistency of a pairwise comparison matrix. Fuzzy Optim. Decis. Mak. (2018).  https://doi.org/10.1007/s10700-018-9286-3
  20. Cavallo, B., Brunelli, M.: A general unified framework for interval pairwise comparison matrices. Int. J. Approx. Reason. 93, 178–198 (2018)MathSciNetCrossRefGoogle Scholar
  21. Cavallo, B., D’Apuzzo, L.: A general unified framework for pairwise comparison matrices in multicriterial methods. Int. J. Intell. Syst. 24(4), 377–398 (2009)CrossRefGoogle Scholar
  22. Cavallo, B., D’Apuzzo, L.: Deriving weights from a pairwise comparison matrix over an alo-group. Soft Comput. 16(2), 353–366 (2012a)CrossRefGoogle Scholar
  23. Cavallo, B., D’Apuzzo, L.: Investigating properties of the \(\odot \)-consistency index. In: Advances in Computational Intelligence, pp. 315–327 Springer, Berlin (2012b)Google Scholar
  24. Cavallo, B., D’Apuzzo, L.: Reciprocal transitive matrices over abelian linearly ordered groups: characterizations and application to multi-criteria decision problems. Fuzzy Sets Syst. 266, 33–46 (2015)MathSciNetCrossRefGoogle Scholar
  25. Cavallo, B., D’Apuzzo, L.: Ensuring reliability of the weighting vector: weak consistent pairwise comparison matrices. Fuzzy Sets Syst. 296, 21–34 (2016)MathSciNetCrossRefGoogle Scholar
  26. Cavallo, B., D’Apuzzo, L., Squillante, M.: About a consistency index for pairwise comparison matrices over a divisible alo-group. Int. J. Intell. Syst. 27(2), 153–175 (2012)CrossRefGoogle Scholar
  27. Cavallo, B., Canfora, G., D’Apuzzo, L., Squillante, M.: Reasoning under uncertainty and multi-criteria decision making in data privacy. Qual. Quant. 48(4), 1957–1972 (2014)CrossRefGoogle Scholar
  28. Cavallo, B., D’Apuzzo, L., Squillante, M.: A multi-criteria decision making method for sustainable development of naples port city-area. Qual. Quant. 49(4), 1647–1659 (2015)CrossRefGoogle Scholar
  29. Cavallo, B., D’Apuzzo, L., Vitale, G.: Reformulating arrow’s conditions in terms of cardinal pairwise comparison matrices defined over a general framework. Group Decis. Negot. 27, 107–127 (2018)CrossRefGoogle Scholar
  30. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Choquet integration on riesz spaces and dual comonotonicity. Trans. Am. Math. Soc. 367(12), 8521–8542 (2015)MathSciNetCrossRefGoogle Scholar
  31. Chiclana, F., Herrera-Viedma, E., Alonso, S., Herrera, F.: Cardinal consistency of reciprocal preference relations: a characterization of multiplicative transitivity. IEEE Trans. Fuzzy Syst. 17(1), 14–23 (2009)CrossRefGoogle Scholar
  32. D’Apuzzo, L., Marcarelli, G., Squillante, M.: Analysis of Qualitative and Quantitative Rankings in Multicriteria Decision Making, pp. 157–170. Springer, Milano (2009)CrossRefGoogle Scholar
  33. Debreu, G.: Representation of a preference ordering by a numerical function. Decis. Process. 3, 159–165 (1954)zbMATHGoogle Scholar
  34. Delli Rocili. L., Maturo, A.: Social problems and decision making for teaching approaches and relationship management in an elementary school. In: Hošková-Mayerová, Š., Maturo, F., Kacprzyk, J. (eds.) Mathematical-Statistical Models andQualitative Theories for Economic and Social Sciences, Studies in Systems, Decision and Control, vol 104, pp. 81–93. Springer International Publishing, (2017)Google Scholar
  35. Di Nola, A., Lenzi, G., Vitale, G.: Riesz–mcnaughton functions and riesz mv-algebras of nonlinear functions. Fuzzy Sets Syst. (2016)Google Scholar
  36. Di Nola, A., Squillante, M., Vitale, G.: Social preferences through riesz spaces: a first approach. In: Soft Computing Applications for Group Decision-making and Consensus Modeling, pp 113–127. Springer, Berlin (2018)Google Scholar
  37. Frederick, S., Loewenstein, G.: O’donoghue, T.: Time discounting and time preference: a critical review. J. Econ. Lit. 40(2), 351–401 (2002)CrossRefGoogle Scholar
  38. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)CrossRefGoogle Scholar
  39. Greco, S., Ehrgott, M., Figueira, J.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2016)CrossRefGoogle Scholar
  40. Harsanyi, J.C.: Cardinal utility in welfare economics and in the theory of risk-taking. J. Polit. Econ. 61(5), 434–435 (1953)CrossRefGoogle Scholar
  41. Hou, F.: A multiplicative alo-group based hierarchical decision model and application. Commun. Stat. Simul. Comput. 45(8), (2016)MathSciNetCrossRefGoogle Scholar
  42. Houthakker, H.S.: Revealed preference and the utility function. Economica 17(66), 159–174 (1950)MathSciNetCrossRefGoogle Scholar
  43. Hošková-Mayerová, Š., Maturo, A.: Fuzzy sets and algebraic hyperoperations to model interpersonal relations. In: Maturo, A., Hošková-Mayerová, Š., Soitu, D.T., Kacprzyk, J. (eds) Recent Trends in Social Systems: Quantitative Theories andQuantitative Models, Studies in Systems, Decision and Control, vol. 66, pp. 211–221 (2017)Google Scholar
  44. Hošková-Mayerová, Š., Maturo, A.: Decision-making process using hyperstructures and fuzzy structures in social sciences. In: Collan, M., Kacprzyk, J. (eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling, Studies in Fuzziness and Soft Computing, vol. 357, pp. 103–111. Springer International Publishing, (2018)Google Scholar
  45. Ishizaka, A., Nemery, P.: Multi-criteria Decision Analysis: Methods and Software. Wiley, New York (2013)CrossRefGoogle Scholar
  46. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York (1976)zbMATHGoogle Scholar
  47. Labuschagne, C., Van Alten, C.: On the variety of riesz spaces. Indag. Math. 18(1), 61–68 (2007)MathSciNetCrossRefGoogle Scholar
  48. Levy, H., Markowitz, H.M.: Approximating expected utility by a function of mean and variance. Am. Econ. Rev. 69(3), 308–317 (1979)Google Scholar
  49. Lu, J., Han, J., Hu, Y., Zhang, G.: Multilevel decision-making: a survey. Inf. Sci. 346–347, 463–487 (2016)MathSciNetCrossRefGoogle Scholar
  50. Maturo, A., Sciarra, A.: Reasoning and decision making in practicing counseling. In: Hošková-Mayerová Š, Maturo, F., Kacprzyk, J. (eds.) Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences, Studies in Systems, Decision and Control, vol. 104, Springer International Publishing, pp. 265–281 (2017)Google Scholar
  51. Ramík, J.: Isomorphisms between fuzzy pairwise comparison matrices. Fuzzy Optim. Decis. Making 14(2), 199–209 (2015)MathSciNetCrossRefGoogle Scholar
  52. Russo, R.F.S.M., Camanho, R.: Criteria in ahp: a systematic review of literature. Procedia Comput. Sci. 55, 1123–1132 (2015)CrossRefGoogle Scholar
  53. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)MathSciNetCrossRefGoogle Scholar
  54. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  55. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9–26 (1990)MathSciNetCrossRefGoogle Scholar
  56. Sixto, R.: Decision theory and decision analysis: trends and challenges. Springer, Netherlands (1994)zbMATHGoogle Scholar
  57. Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12(2), 117–131 (1984)MathSciNetCrossRefGoogle Scholar
  58. Tanino, T.: Fuzzy preference relations in group decision making. In: Non-Conventional Preference Relations in Decision-Making, pp. 54–71. Springer, Heidelberg (1988)Google Scholar
  59. Torrance, G.W., Feeny, D.H., Furlong, W.J., Barr, R.D., Zhang, Y., Wang, Q.: Multiattribute utility function for a comprehensive health status classification system: Health utilities index mark 2. Med. Care 34(7), 702–722 (1996)CrossRefGoogle Scholar
  60. Trockel, W.: Group actions on spaces of preferences and economic applications. Util. Funct. Ordered Spaces 5, 159–175 (1998)Google Scholar
  61. Ventre, A., Maturo, A., Hoskova-Mayerova, S., Kacprzyk, J.: Multicriteria and multiagent decision making with applications to economic and social sciences. In: Studies in Fuzziness and Soft Computing, vol. 315. Springer-Verlag, Berlin, Heidelberg (2013)Google Scholar
  62. Xia, M., Chen, J.: Consistency and consensus improving methods for pairwise comparison matrices based on abelian linearly ordered group. Fuzzy Sets Syst. 266, 1–32 (2015)MathSciNetCrossRefGoogle Scholar
  63. Xu, Z.: Uncertain Multi-attribute Decision Making: Methods and Applications. Springer, Berlin (2015)CrossRefGoogle Scholar
  64. Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S.: Multi-attribute decision making: a simulation comparison of select methods. Eur. J. Oper. Res. 107(3), 507–529 (1998)CrossRefGoogle Scholar
  65. Zhang, H.: Group decision making based on multiplicative consistent reciprocal preference relations. Fuzzy Sets Syst. 282, 31–46 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bice Cavallo
    • 1
  • Livia D’Apuzzo
    • 1
  • Antonio Di Nola
    • 2
  • Massimo Squillante
    • 3
  • Gaetano Vitale
    • 2
  1. 1.University of NaplesFedericoItaly
  2. 2.University of SalernoFiscianoItaly
  3. 3.University of SannioBeneventoItaly

Personalised recommendations