Life, Intelligence, and the Selection of Universes

  • Rüdiger Vaas
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Complexity and life as we know it depend crucially on the laws and constants of nature as well as the boundary conditions, which seem at least partly “fine-tuned.” That deserves an explanation: Why are they the way they are?

This essay discusses and systematizes the main options for answering these foundational questions. Fine-tuning might just be an illusion, or a result of irreducible chance, or nonexistent because nature could not have been otherwise (which might be shown within a fundamental theory if some constants or laws could be reduced to boundary conditions or boundary conditions to laws), or it might be a product of selection: either observational selection (weak anthropic principle) within a vast multiverse of many different realizations of physical parameters, or a kind of cosmological natural selection making the measured parameter values quite likely within a multiverse of many different values, or even a teleological or intentional selection or a coevolutionary development, depending on a more or less goal-directed participatory contribution of life and intelligence.

In contrast to observational selection, which is not predictive, an observer-independent selection mechanism must generate unequal reproduction rates of universes, a peaked probability distribution, or another kind of differential frequency, resulting in a stronger explanatory power. The hypothesis of Cosmological Artificial Selection (CAS) even suggests that our universe may be a vast computer simulation or could have been created and transcended by one. If so, this would be a far-reaching answer – within a naturalistic framework! – of fundamental questions such as: Why did the big bang and fine-tunings occur, what is the role of intelligence in the universe, and how can it escape cosmic doomsday?

This essay critically discusses some of the premises and implications of CAS and related problems, both with the proposal itself and its possible physical realization: Does CAS deserve to be considered as a convincing explanation of cosmic fine-tuning? Is life incidental, or does CAS revalue it? And are life and intelligence ultimately doomed, or might CAS rescue them?


Anthropic principle Big bang Black holes Constants of nature Cosmological artificial selection Cosmological natural selection Fine-tuning problem Initial conditions Intelligence Laws of nature Multiverse Observer selection Participatory universe Philosophy of science Physical eschatology Simulation Teleology Universal evolution Universal development 



This paper is partly based on Vaas (2009b, 2012a). I am grateful to Anthony Aguirre, Juan García-Bellido, John Leslie, Andrei Linde, Lee Smolin, Paul Steinhardt, and Alex Vilenkin for discussion over the years as well as Angela Lahee, André Spiegel, and Jenny Wagner for their kind support. Thanks also to John Smart and Clément Vidal for motivation, the invitation to contribute, and their very valuable suggestions. Scientific speculation and philosophy of science and nature are often dangerous fields but useful and thrilling nevertheless for getting ideas, criticism, and motivation to struggle against the boundaries of experience, empirical research, established theories, and imagination. As Carl Sandburg once wrote: “Nothing happens unless first a dream.”


  1. Aguirre, A. (2001): The Cold Big-Bang Cosmology as a Counter-example to Several Anthropic Arguments. Phys. Rev. D 64, 083508; arXiv:astro-ph/0106143Google Scholar
  2. Aguirre, A. (2007): Eternal Inflation, past and future; arXiv:0712.0571Google Scholar
  3. Ansoldi, S., Guendelman, E. I. (2006): Child Universes in the Laboratory; arXiv:gr-qc/0611034Google Scholar
  4. Ansoldi, S., Guendelman, E. I. (2008): Universes out of almost empty space. Prog. Theor. Phys. 120, 985–993; arXiv:0706.1233Google Scholar
  5. Baláz, B. A. (2005): The cosmological replication cycle, the extraterrestrial paradigm and the final anthropic principle. Diotima 33, 44–53.Google Scholar
  6. Barnes, L. A. (2012): The fine-tuning of the universe for intelligent life. Publications of the Astron. Soc. of Australia 29, 529–564; arXiv:1112.4647Google Scholar
  7. Barrabès, C., Frolov, V. P. (1996): How many new worlds are inside a black hole? Phys. Rev. D 53, 3215–3223; arXiv:hep-th/9511136Google Scholar
  8. Barrow, J. D. (1998): Impossibility: The Limits of Science and the Science of Limits. Oxford University Press: Oxford.Google Scholar
  9. Barrow, J., Tipler, F. (1986): The Anthropic Cosmological Principle. Oxford University Press: Oxford.Google Scholar
  10. Barrow, J. D., et al. (eds.) (2008): Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning. Cambridge University Press: Cambridge.Google Scholar
  11. Borde, A., Ford, L. H., Roman, T. A. (2002): Constraints on Spatial distributions of Negative Energy. Phys. Rev. D 65, 084002; arXiv:gr-qc/0109061Google Scholar
  12. Borde, A., Trodden, M., Vachaspati, T. (1999): Creation and Structure of Baby Universes in Monopole Collisions. Phys. Rev. D 59, 043513; arXiv:gr-qc/9808069Google Scholar
  13. Bostrom, N. (2002): Anthropic Bias. Routledge: New York, London.Google Scholar
  14. Bostrom, N. (2003): Are We Living in a Computer Simulation? Phil. Quart. 53, 243–255.CrossRefGoogle Scholar
  15. Byl, J. (1996): On the natural selection of universes. Quart. J. Royal Astron. Soc. 37, 369–371.ADSGoogle Scholar
  16. Byrne, P. (1989): Natural religion and the nature of religion. Routledge: London.Google Scholar
  17. Callender, C. (2004): Measures, explanation and the past: should ‘Special’ initial conditions be explained? British J. Phil. Sci. 55, 195–217.Google Scholar
  18. Calmet, X., Carr, B., Winstanley, E. (2014): Quantum Black Holes. Springer: Heidelberg.CrossRefzbMATHGoogle Scholar
  19. Carr, B. (2007): The Anthropic Principle Revisited. In: Carr, B. (ed.) (2007): The Universe or Multiverse? Cambridge University Press: Cambridge, pp. 77–89.Google Scholar
  20. Carr, B. J., et al. (2010): New cosmological constraints on primordial black holes. Phys. Rev. D 81, 104019; arXiv:0912.5297Google Scholar
  21. Chaisson, J. (2001): Cosmic Evolution: The Rise of Complexity in Nature. Harvard University Press: Cambridge.Google Scholar
  22. Chaisson, E. J. (2011): Energy rate density as a complexity metric and evolutionary driver. Complexity 16 (3), 27–40; CrossRefGoogle Scholar
  23. Chaitin, G. (1987): Algorithmic Information Theory. Cambridge University Press: Cambridge.CrossRefzbMATHGoogle Scholar
  24. Chaitin, G. (1992): Information-theoretic Incompleteness. World Scientific: Singapore.CrossRefzbMATHGoogle Scholar
  25. Chaitin, G. (2001): Exploring Randomness. Springer: London.CrossRefzbMATHGoogle Scholar
  26. Ćirković, M. M., Bostrom, N. (2000): Cosmological constant and the final anthropic hypothesis. Astrophys. Space Sci. 274, 675–687.CrossRefADSzbMATHGoogle Scholar
  27. Ćirković, M. M. (2003): Resource letter: PEs-1: physical eschatology. Am. J. Phys. 71, 122–133; arXiv:astro-ph/0211413Google Scholar
  28. Ćirković, M. M. (2004): Forecast for the Next Eon: Applied Cosmology and the Long-Term Fate of Intelligent Beings. Found. Phys. 34, 239–261; arXiv:astro-ph/0211414Google Scholar
  29. Ćirković, M. M., Dimitrijević, J. (2018): Putting the Cart Before the Horse: Co-evolution of the Universe and Observers as an Explanatory Hypothesis. Found. Sci. 23 (3), 427–442.Google Scholar
  30. Clifton, T., Linde, A., Sivanandam, N. (2007): Islands in the landscape. JHEP 0702, 024; arXiv:hep-th/0701083Google Scholar
  31. Crane, L. (1994/2010): Possible Implications of the Quantum Theory of Gravity: An Introduction to the Meduso-Anthropic Principle. Found. Sci. 15, 369–373; arXiv:hep-th/9402104Google Scholar
  32. Davidson, D. (2001): Essays on Actions and Events. Oxford University Press: Oxford.CrossRefGoogle Scholar
  33. Davies, P. C. W. (2006): The Goldilocks Enigma: Why Is the Universe Just Right for Life? Allen Lane: London.Google Scholar
  34. Davies, P. (2007): Universes galore: where will it all end? In: Carr, B. (ed.) (2007): The Universe or Multiverse? Cambridge University Press: Cambridge, pp. 487–505.Google Scholar
  35. de Chardin, P. T.(1955): The phenomenon of man. Harper & Row: New York 2008.Google Scholar
  36. Dennett, C. (1995): Darwin’s Dangerous Idea. Simon & Schuster: New York.Google Scholar
  37. Dick, S. J. (2000): Cosmotheology: Theological implications of the new universe. In: Dick, S. J. (ed.) (2000): Many Worlds. The New Universe, Extraterrestrial Life and the Theological Implications. Templeton Foundation Press: Philadelphia, London, pp. 191–210.Google Scholar
  38. Dick, S. J. (2003): Cultural Evolution, the Postbiological Universe, and SETI. Int. J. Astrobiol. 2, 65–74;
  39. Dick, S. J. (2008): The Postbiological Universe. Acta Astronautica 62, 499–504.CrossRefADSGoogle Scholar
  40. Dick, S. J. (2009): The Postbiological Universe and our Future in Space. Futures 41, 578–580.CrossRefGoogle Scholar
  41. Duff, M. J., Okun, L. B., Veneziano, G. (2002): Trialogue on the number of fundamental constants. JHEP 0203, 023; arXiv:physics/0110060Google Scholar
  42. Ellis, G. F. R., Brundrit, G. B. (1979): Life in the infinite universe. Quart. J. Royal Astron. Soc. 20, 37–41.ADSGoogle Scholar
  43. Ellis, G. (1997): A Darwinian universe? Nature 387, 671–672.CrossRefADSGoogle Scholar
  44. Ellis, G. F. R. (2015): Recognising top-down causation. In: Aguirre, A., et al. (eds.) (2015): Questioning the foundations of physics. Springer: Heidelberg, pp. 17–44.Google Scholar
  45. Farhi, E., Guth, A. H. (1987): An obstacle to creating a universe in the laboratory. Phys. Lett. B 183, 149–155.CrossRefADSGoogle Scholar
  46. Farhi, E., Guth, A. H., Guven, J. (1990): Is it possible to create a universe in the laboratory by quantum tunnelling? Nucl. Phys B 339, 417–490.Google Scholar
  47. Fedrowa, J. M., Griest, K. (2014): Anti-anthropic solutions to the cosmic coincidence problem. JCAP 01, 004; arXiv:1309.0849Google Scholar
  48. Fischler, W., Morgan, D., Polchinski, J. (1990): Quantum nucleation of false-vacuum bubbles. Phys. Rev. D 41, 2638–2641.CrossRefADSGoogle Scholar
  49. Ford, L. H., Roman, T. A. (1997): Restrictions on Negative Energy Density in Flat Spacetime. Phys. Rev. D 55, 2082–2089; arXiv:gr-qc/9607003Google Scholar
  50. Ford, L. H., Helfer, A. D., Roman, T. A. (2002): Spatially Averaged Quantum Inequalities Do Not Exist in Four-Dimensional Spacetime. Phys. Rev. D 66, 124012; arXiv:gr-qc/0208045Google Scholar
  51. Frolov, V. P., Markov, M. A., Mukhanov, M. A. (1989): Through a black hole into a new universe? Phys. Lett. B 216, 272–276.CrossRefADSMathSciNetGoogle Scholar
  52. Fuller, R. B. (1969): Utopia Or Oblivion: The Prospects for Humanity. Overlook Press: New York.Google Scholar
  53. García-Bellido, J. (1995): Quantum Diffusion of Planck Mass and the Evolution of the Universe. In: Occhionero, F. (ed.) (1995): Birth of the Universe and Fundamental Physics. Lecture Notes in Physics 455. Springer: Berlin, pp. 115–120; arXiv:astro-ph/9407087Google Scholar
  54. García-Bellido, J. (2017): Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves. J. Phys.: Conf. Ser. 840, 012032; arXiv:1702.08275Google Scholar
  55. Gardner, A., Conlon, J. P. (2013): Cosmological natural selection and the purpose of the universe. Complexity 18, 48–56.CrossRefADSMathSciNetGoogle Scholar
  56. Gardner, J. N. (2000): The selfish biocosm: Complexity as cosmology. Complexity 5 (3), 34–45.CrossRefMathSciNetGoogle Scholar
  57. Gardner, J. N. (2003): Biocosm: The New Scientific Theory of Evolution. Inner Ocean: Makawao.Google Scholar
  58. Gardner, J. N. (2005): Coevolution of the cosmic past and future: the selfish biocosm as a closed timelike curve. Complexity 10 (5), 14–21.CrossRefADSGoogle Scholar
  59. Gardner, J. N. (2007): The Intelligent Universe: AI, ET, and the Emerging Mind of the Cosmos. Career Press: Franklin Lakes.Google Scholar
  60. Garriga, J., Vilenkin, A. (1998): Recycling universe. Phys. Rev. D 57, 2230–2244; arXiv:astro-ph/9707292.Google Scholar
  61. Garriga, J., et al. (2000): Eternal inflation, black holes, and the future of civilizations. Int. J. Theor. Phys. 39, 1887–1900; arXiv:astro-ph/9909143Google Scholar
  62. Garriga, J., Vilenkin, A. (2001): Many worlds in one. Phys. Rev. D 64, 043511; arXiv:gr-qc/0102010Google Scholar
  63. Gasperini, M., Veneziano, G. (2003): The Pre-Big Bang Scenario in String Cosmology. Phys. Rept. 373, 1–212; arXiv:hep-th/0207130Google Scholar
  64. Gay, P. (ed.) (1968): Deism. Van Nostrand: Princeton.Google Scholar
  65. Gibbons, G., Hawking, S. W. (1977): Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D 15, 2738–2751.CrossRefADSMathSciNetGoogle Scholar
  66. Gribbin, J. (2009): In Search of the Multiverse. Allen Lane: London.Google Scholar
  67. Harnik, R., Kribs, G., Perez, G. (2006): A Universe without weak interactions. Phys. Rev. D 74, 035006; arXiv:hep-ph/0604027Google Scholar
  68. Hartle, J., Hawking, S. W. (1983): The wave function of the universe. Phys. Rev. D 28, 2960–2975.CrossRefADSMathSciNetzbMATHGoogle Scholar
  69. Harrison, E. R. (1995): The natural selection of universes containing intelligent life. Quart. J. Royal Astron. Soc. 36, 193–203.ADSGoogle Scholar
  70. Harrison, E. R. (1998): Creation and Fitness of the Universe. Astronomy & Geophysics 39 (2), 27.CrossRefGoogle Scholar
  71. Hempel, C. G. (1965): Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. Free Press: New York.Google Scholar
  72. Hogan, C. J. (2000): Why the Universe is Just So. Rev. Mod. Phys. 72, 1149–1161; arXiv:astro-ph/9909295Google Scholar
  73. Hoyle, F. (1983): The Intelligent Universe: A New View of Creation and Evolution. Michael Joseph: London.Google Scholar
  74. Hsu, S., Zee, A. (2006): Message in the Sky. Mod. Phys. Lett. A 21, 1495–1500; arXiv:physics/0510102Google Scholar
  75. Hume, D. (1779): Dialogues Concerning Natural Religion. Dialogues Concerning Natural Religion and Other Writings. Cambridge University Press: Cambridge 2007.Google Scholar
  76. Inoue, M., Yokoo, H. (2011): Type III Dyson Sphere of Highly Advanced Civilizations around a Super Massive Black Hole. J. Brit. Interplanetary Soc. 64, 58–62; arXiv:1112.5519Google Scholar
  77. Jaffe, R. L., Jenkins, A., Kimchi, I. (2009): Quark Masses: An Environmental Impact Statement. Phys. Rev. D 79, 065014; arXiv:0809.1647Google Scholar
  78. Johnson, B. (2009): Deism. Truth Seeker: Escondido.Google Scholar
  79. Kane, G. L., Perry, M. J., Zytkow, A. N. (2002): The Beginning of the End of the Anthropic Principle. New Astron. 7, 45–53; arXiv:astro-ph/0001197Google Scholar
  80. Kanitscheider, B. (2009): Darwins Theorie als Prototyp und Vorläufer einer Theorie der Selbstorganisation. Universitas 64 (751), 56–66.Google Scholar
  81. Knobe, J., Olum, K. D., Vilenkin, A. (2006): Philosophical Implications of Inflationary Cosmology. Brit. J. Phil. Sci. 57, 47–67; arXiv:physics/0302071Google Scholar
  82. Krasnikov, S. (2018): Back-in-Time and Faster-than-Light Travel in General Relativity. Springer: Cham etc.CrossRefzbMATHGoogle Scholar
  83. Krauss, L. M., Starkman, G. D. (2000): Life, The Universe, and Nothing. Astrophys. J. 531, 22–30; arXiv:astro-ph/9902189Google Scholar
  84. Krauss, L. M., Starkman, G. D. (2004): Universal Limits on Computation; arXiv:astro-ph/0404510Google Scholar
  85. Lee, K. M., Weinberg, E. J. (1987): Decay of the True Vacuum in Curved Space-Time. Phys. Rev. D 36, 1088–1094.CrossRefADSGoogle Scholar
  86. Leslie, J. (1989): Universes. Routledge: London 1996.Google Scholar
  87. Leslie, J. (2001): Infinite Minds. Clarendon Press: Oxford.Google Scholar
  88. Leslie, J. (2008). Infinitely Long Afterlives and the Doomsday Argument. Philosophy 83, 519–524.CrossRefGoogle Scholar
  89. Lifton, R. J., Olson, E. (2004): Symbolic immortality. In: Robben, A. C. G. M. (ed.) (2004): Death, Mourning, and Burial: A Cross-Cultural Reader. Wiley-Blackwell: Malden, Oxford, Carlton, pp. 32–39.Google Scholar
  90. Linde, A. D. (1987): Particle physics and inflationary cosmology. Phys. Today 40 (9), 61–68.CrossRefMathSciNetGoogle Scholar
  91. Linde, A. (1992): Hard Art of the Universe Creation. Nucl. Phys. B 372, 421–442; arXiv:hep-th/9110037Google Scholar
  92. Linde, A. (2005): Particle Physics and Inflationary Cosmology. Contemp. Concepts Phys. 5, 1–362; arXiv:hep-th/0503203Google Scholar
  93. Linde, A. (2006): Inflation and String Cosmology. Prog. Theor. Phys. Suppl. 163, 295–322; arXiv:hep-th/0503195Google Scholar
  94. Linde, A. (2008): Inflationary Cosmology. Lect. Notes Phys.738, 1–54; arXiv:0705.0164Google Scholar
  95. Linde, A. (2017): On the problem of initial conditions for inflation; arXiv:1710.04278Google Scholar
  96. Linde, A., Vanchurin, V. (2010): How many universes are in the multiverse? Phys. Rev. D 81, 083525; arXiv:0910.1589Google Scholar
  97. Lipton, P. (2004): Inference to the Best Explanation. Routledge: London, 2nd ed.Google Scholar
  98. Lloyd, S. (2000): Ultimate physical limits to computation. Nature 406, 1047–1054; arXiv:quant-ph/9908043Google Scholar
  99. Mahner, M. (2018): Naturalismus. Alibri: Aschaffenburg.Google Scholar
  100. Manson, N. A. (2000): There is no adequate definition of ‘fine-tuned for life’. Inquiry 43, 341–352.CrossRefGoogle Scholar
  101. Mayes, G. R. 2005: Theories of Explanation. The Internet Encyclopedia of Philosophy;
  102. Maynard Smith, J., Szathmáry, E. (1996): On the likelihood of habitable worlds. Nature 384, 107.CrossRefGoogle Scholar
  103. McGinn, C. (1989): Can We Solve the Mind-Body Problem? Mind 98, 349–366.CrossRefGoogle Scholar
  104. McGrew, T., McGrew, L., Vestrup, E. (2001): Probabilities and the fine-tuning argument: a sceptical view. Mind 110, 1027–1038.CrossRefGoogle Scholar
  105. Merali, Z. (2006): Create your own universe. New Scientist 2559, 32–35.CrossRefGoogle Scholar
  106. Mersini-Houghton, L. (2008): Birth of the Universe from the Multiverse; arXiv:0809.3623Google Scholar
  107. Monod, J. (1970): Chance and Necessity. Knopf: New York 1971.Google Scholar
  108. Mosterín, J. (2005): Anthropic explanations in cosmology. In: Hajek, P., Valdés-Villanueva, L., Westerstahl, D. (eds.) (2005): Logic, Methodology and Philosophy of Science. King’s College Publications: London, pp. 441–471;
  109. Okasha, S. (2012): Emergence, hierarchy and top-down causation in evolutionary biology. Interface Focus 2, 49–54.CrossRefGoogle Scholar
  110. Papineau, D. (2016): Naturalism. The Stanford Encyclopedia of Philosophy;
  111. Pitt, J.C. (ed.) (1988): Theories of Explanation. Oxford University Press: New York.Google Scholar
  112. Poland, J. (1994): Physicalism: The Philosophical Foundations. Clarendon: Oxford.CrossRefGoogle Scholar
  113. Price, M. (2017): Entropy and Selection: Life as an Adaptation for Universe Replication. Complexity 2017, 1–4.Google Scholar
  114. Rescher, N. (2000): The Price of an Ultimate Theory. Philosophia Naturalis 37, 1–20.Google Scholar
  115. Ridley, M. (2004): Evolution. Blackwell: Malden, 3rd ed.Google Scholar
  116. Rothman, T., Ellis, G. F. R. (1993): Smolin’s natural selection hypothesis. Quart. J. Royal Astron. Soc. 34, 201–212.ADSGoogle Scholar
  117. Sagan, L. (1967): On the origin of mitosing cells. Journal of Theoretical Biology 14, 255–274.CrossRefGoogle Scholar
  118. Sakai, N., et al. (2006): The universe out of a monopole in the laboratory? Phys. Rev. D 74, 024026; arXiv:gr-qc/0602084Google Scholar
  119. Salmon, W. C. (1998): Causality and explanation. Oxford University Press: New York.CrossRefGoogle Scholar
  120. Sandberg, A., Armstrong, S., Ćirković, M. M. (2016): That is not dead which can eternal lie: the aestivation hypothesis for resolving Fermi’s paradox. J. British Interplanetary Society 69, 406–415; arXiv:1705.03394Google Scholar
  121. Silk, J. (1997): Holistic cosmology. Science 277, 644.CrossRefGoogle Scholar
  122. Smart, J. (2000): Introduction to the Developmental Singularity Hypothesis;
  123. Smart, J. (2008): Evo Devo Universe? A Framework for Speculations on Cosmic Culture. In: Dick, S. J., Lupisella, M. (eds.): Cosmos and Culture: Cultural Evolution in a Cosmic Context. NASA: Washington, pp. 201–295; Google Scholar
  124. Smart, J. (2012): The transcension hypothesis: sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI. Acta Astronautica 78, 55–68; CrossRefADSGoogle Scholar
  125. Smart, J. (2017): The Foresight Guide;
  126. Smith, Q. (1990): A natural explanation of the existence and laws of our universe. Australasian Journal of Philosophy 68 (1), 22–43; CrossRefGoogle Scholar
  127. Smolin, L. (1992): Did the universe evolve? Class. Quant. Grav. 9, 173–191.CrossRefADSMathSciNetGoogle Scholar
  128. Smolin, L. (1997): The Life of the Cosmos. Oxford University Press: Oxford.zbMATHGoogle Scholar
  129. Smolin, L. (2004): Cosmological natural selection as the explanation for the complexity of the universe. Physica A 240, 705–713.CrossRefADSGoogle Scholar
  130. Smolin, L. (2006): The status of cosmological natural selection; arXiv:hep-th/0612185Google Scholar
  131. Stenger, V. J. (2011): The Fallacy of Fine-Tuning: Why the Universe Is Not Designed for Us. Prometheus; Amherst.Google Scholar
  132. Stoljar, D. (2017): Physicalism. The Stanford Encyclopedia of Philosophy;
  133. Susskind, L. (2005): The Cosmic Landscape. Little, Brown: New York.Google Scholar
  134. Tegmark, M. (2004): Parallel Universes. In: Barrow, J., Davies, P. C. W., Harper Jr C. L., (eds.) (2004): Science and Ultimate Reality. Cambridge University Press: Cambridge, pp. 459–491; arXiv:astro-ph/0302131Google Scholar
  135. Tegmark, M., et al. (2006): Dimensionless constants, cosmology, and other dark matters. Phys. Rev. D 73, 23505; arXiv:astro-ph/0511774Google Scholar
  136. Tipler, F. J. (1994): The Physics of Immortality. Anchor Books: New York.Google Scholar
  137. Tough, A. (1986): What role will extraterrestrials play in humanity’s future? J. Brit. Interplanetary Soc. 39, 491–498; ADSGoogle Scholar
  138. Vaas, R. (1993): Die Welt als Würfelspiel. In: Evangelische Akademie Baden (ed.) (1993): “Gott würfelt (nicht)!” Karlsruhe, pp. 108–162.Google Scholar
  139. Vaas, R. (1995a): Reduktionismus und Emergenz. In: Die mechanische und die organische Natur. Beiträge zum Naturverständnis. Konzepteheft 45 des SFB 230. Stuttgart, Tübingen, pp. 102–161.Google Scholar
  140. Vaas, R. (1995b): Masse, Macht und der Verlust der Einheit. In: Krüger, M. (ed.) (1995): Einladung zur Verwandlung. Hanser: München, pp. 219–260.Google Scholar
  141. Vaas, R. (1998): Is there a Darwinian Evolution of the Cosmos? – Some Comments on Lee Smolin’s Theory of the Origin of Universes by Means of Natural Selection. Proceedings of the MicroCosmos – MacroCosmos Conference, Aachen; arXiv:gr-qc/0205119Google Scholar
  142. Vaas, R. (1999): Der Riß durch die Schöpfung. der blaue reiter. Journal für Philosophie 10, 39–43.Google Scholar
  143. Vaas, R. (2001a): Why Quantum Correlates Of Consciousness Are Fine, But Not Enough. Informação e Cognição 3 (1), 64–107; Google Scholar
  144. Vaas, R. (2001b): Ewiges Leben im Universum? bild der wissenschaft 9, 62–67.Google Scholar
  145. Vaas, R. (2003): Problems of Cosmological Darwinian Selection and the Origin of Habitable Universes. In: Shaver, P. A., DiLella, L., Giménez, A. (eds.): Astronomy, Cosmology and Fundamental Physics. Springer: Berlin, pp. 485–486.CrossRefGoogle Scholar
  146. Vaas, R. (2004a): Ein Universum nach Maß? Kritische Überlegungen zum Anthropischen Prinzip in der Kosmologie, Naturphilosophie und Theologie. In: Hübner, J., Stamatescu, I.-O., Weber, D. (eds.) : Theologie und Kosmologie. Mohr Siebeck: Tübingen, pp. 375–498.Google Scholar
  147. Vaas, R. (2004b): Time before Time. Classifications of universes in contemporary cosmology, and how to avoid the antinomy of the beginning and eternity of the world; arXiv:physics/0408111Google Scholar
  148. Vaas, R. (2006a): Das Münchhausen-Trilemma in der Erkenntnistheorie, Kosmologie und Metaphysik. In: Hilgendorf, E. (ed.) (2006): Wissenschaft, Religion und Recht. Logos, Berlin, pp. 441–474.Google Scholar
  149. Vaas, R. (2006b): Dark Energy and Life’s Ultimate Future. In: Burdyuzha, V. (ed.) (2006): The Future of Life and the Future of our Civilization. Springer: Dordrecht, pp. 231–247; arXiv:physics/0703183Google Scholar
  150. Vaas, R. (2008a): Aufrechtstehen im Nichts. Universitas 63 (749 & 750), 1118–1137 & 1244–1259.Google Scholar
  151. Vaas, R. (2008b): Phantastische Physik: Sind Wurmlöcher und Paralleluniversen ein Gegenstand der Wissenschaft? In: Mamczak, S., Jeschke, W. (eds.): Das Science Fiction Jahr 2008. Heyne: München, pp. 661–743.Google Scholar
  152. Vaas, R. (2009a): Die Evolution der Evolution. Universitas 64 (751), 4–29.Google Scholar
  153. Vaas, R. (2009b): Life, the Universe, and almost Everything: Signs of Cosmic Design?; arXiv:0910.5579Google Scholar
  154. Vaas, R. (2009c): Gods, Gains, and Genes. On the Natural Origin of Religiosity by Means of Bio-cultural Selection. In: Voland, E., Schiefenhövel, W. (eds.) (2009): The Biological Evolution of Religious Mind and Behavior. Springer: Heidelberg, pp. 25–49.Google Scholar
  155. Vaas, R. (2010): Multiverse Scenarios in Cosmology: Classification, Cause, Challenge, Controversy, and Criticism. J. Cosmology 4, 664–673; arXiv:1001.0726Google Scholar
  156. Vaas, R. (2012a): Cosmological Artificial Selection: Creation out of Something? Found. Sci. 17, 25–28; arXiv:0912.5508Google Scholar
  157. Vaas, R. (2012b): “Ewig rollt das Rad des Seins”: Der ‘Ewige-Wiederkunfts-Gedanke’ und seine Aktualität in der modernen physikalischen Kosmologie. In: Heit, H., Abel, G., Brusotti, M. (eds.) (2012): Nietzsches Wissenschaftsphilosophie. de Gruyter: Berlin, New York, pp. 371–390.Google Scholar
  158. Vaas, R. (2013): Die neue Schöpfungsgeschichte Gottes – Herausforderungen einer Evolutionsbiologie der Religiosität. In: Fink, H. (ed.) (2013): Die Fruchtbarkeit der Evolution. Alibri: Aschaffenburg, pp. 133–172.Google Scholar
  159. Vaas, R. (2014a): Wahrheiten auf hoher See. Maritime Metaphern vom Leben, Forschen und Untergehen. Universitas 69 (820), 42–71.Google Scholar
  160. Vaas, R. (2014b): Vom Gottesteilchen zur Weltformel. Kosmos: Stuttgart, 2nd ed.Google Scholar
  161. Vaas, R. (2015): Im Anfang war der Urknall – oder nichts, Gott, alles? Schöpfungsglaube gegen moderne Kosmologie. Universitas 70 (823), 44–76.Google Scholar
  162. Vaas, R. (2017a): Bewusstsein X.0. Von digitalen Denkwürdigkeiten zur ungeheuerlichen Unsterblichkeit. Universitas 72 (854), 64–81.Google Scholar
  163. Vaas, R. (2017b): Umzug der Menschheit? Vom Homo sapiens zum Homo spaciens und weiter … Universitas 72 (856), 42–69.Google Scholar
  164. Vaas, R. (2017c): Jenseits von Einsteins Universum. Kosmos: Stuttgart, 4th ed.Google Scholar
  165. Vaas, R. (2018a): Superzivilisationen im All. bild der wissenschaft 7, 8–26.Google Scholar
  166. Vaas, R. (2018b): Hawkings neues Universum. Wie es zum Urknall kam. Kosmos: Stuttgart, 6th ed.Google Scholar
  167. Vaas, R. (2018c): Tunnel durch Raum und Zeit. Kosmos: Stuttgart, 8th ed.Google Scholar
  168. Vakoch, D. A. (ed.) (2014): Extraterrestrial Altruism: Evolution and Ethics in the Cosmos. Springer: Heidelberg.Google Scholar
  169. van Riel, R., Van Gulick, R. (2018): Scientific Reduction. The Stanford Encyclopedia of Philosophy;
  170. Vidal, C. (2008): The Future of Scientific Simulations: from Artificial Life to Artificial Cosmogenesis. In: Tandy, C. (ed.) (2008): Death And Anti-Death. Ria University Press: Palo Alto, pp. 285–318; arXiv:0803.1087Google Scholar
  171. Vidal, C. (2010): Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics. Found. Sci. 15 (4), 375–393; arXiv:0912.5508Google Scholar
  172. Vidal, C. (2011): Black Holes: Attractors for Intelligence?; arXiv:1104.4362Google Scholar
  173. Vidal, C. (2012): Fine-tuning, Quantum Mechanics and Cosmological Artificial Selection. Found. Sci. 17 (1), 29–38; arXiv:0912.5508Google Scholar
  174. Vidal, C. (2014): The Beginning and the End: The Meaning of Life in a Cosmological Perspective Springer: Heidelberg etc.; arXiv:1301.1648Google Scholar
  175. Vilenkin, A. (1995): Predictions from Quantum Cosmology. Phys. Rev. Lett. 74, 846–849; arXiv:gr-qc/9406010Google Scholar
  176. Vilenkin, A. (2006a): On cosmic natural selection; arXiv:hep-th/0610051Google Scholar
  177. Vilenkin, A. (2006b): Many Worlds in One. Hill and Wang: New York.zbMATHGoogle Scholar
  178. Visser, M. (1996): Lorentzian Wormholes. American Institute of Physics Press: Woodbury.Google Scholar
  179. Vollmer, G. (2016): Im Lichte der Evolution. Hirzel: Stuttgart.Google Scholar
  180. Vollmer, G. (2017): Gretchenfragen an Naturalisten. Alibri: Aschaffenburg.Google Scholar
  181. Waring, E. G. (ed.) (1967): Deism and Natural Religion. Frederick Ungar: New York.Google Scholar
  182. Weinstein, S., Fine, A. (1998): Book Review of Lee Smolin’s The Life of the Cosmos. J. Phil. XCV, 264–268.Google Scholar
  183. Wheeler, J. A. (1975): The universe as home for man. In: Gingerich, O. (ed.) (1975): The nature of scientific discovery. Smithsonian Institution Press: Washington, pp. 261–296Google Scholar
  184. Wheeler, J. A. (1977): Genesis and observership. In: Butts, R. E., Hintikka, J. (eds.) (1977): Foundational problems in the special sciences. Reidel: Dordrecht, pp. 3–33.Google Scholar
  185. Wheeler, J. A. (1980): Law without law. In: Medawar, P., Shelley, J. (eds.) (1980): Structure in Science. Elsevier: New York, pp. 132–154.Google Scholar
  186. Wheeler, J. A. (1983): On recognizing law without law. Am. J. Phys. 51, 398–404.CrossRefADSGoogle Scholar
  187. Windsor, H. H. (1907): Cart before the horse, Popular Mechanics 4, 425.Google Scholar
  188. Wittgenstein, L. (1922): Tractatus Logico-Philosophicus. Kegan Paul, Trench, Trubner & Co.: London.zbMATHGoogle Scholar
  189. Woodward, J. (2003/2009): Scientific Explanation. The Stanford Encyclopedia of Philosophy;
  190. Yurov, A. V., Martín Moruno, P., González-Díaz, P. F. (2006): New “Bigs” in cosmology. Nucl. Phys. B 759, 320–341; arXiv:astro-ph/0606529Google Scholar
  191. Zimorski, V., et al. (2014): Endosymbiotic theory for organelle origins. Current Opinions in Microbiology 22, 38–48.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rüdiger Vaas
    • 1
  1. 1.bild der wissenschaftLeinfelden-EchterdingenGermany

Personalised recommendations