Advertisement

Universal Darwinism and the Origins of Order

  • John O. Campbell
  • Michael E. Price
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

In this chapter we describe the ‘universal Darwinism’ framework which proposes the following. The observable universe results from two types of processes: (1) disorder’s tendency to increase in isolated systems (the second law of thermodynamics) and (2) Darwinian selection, which produces orderly entities that can withstand the second law. Darwinian processes generate complex order not just in the biological domain but in all five domains of nature. These domains exist in a nested hierarchy as follows (in order of decreasing fundamentalness): cosmological, quantum, biological, neural, and cultural. Each qualifies as a distinct domain, because each is characterized by a distinct ‘knowledge repository’, that is, a cumulative store of information about existence requirements in that domain (e.g. in the biological domain, a genome). Knowledge repositories are probabilistic models which make guesses about how to exist, guesses which are then tested for accuracy by the ‘embodied adapted system’ (e.g. phenotype) encoded by the knowledge repository. The repository then undergoes a Bayesian update based on test results and thus becomes less ignorant and less entropic. These natural inferential systems evolve according to ‘variance–inheritance–selection’ Darwinian dynamics, with wiser knowledge repositories leaving more copies behind. Each new domain’s knowledge repository computationally transforms the substrate of the earlier domain (e.g. cultural repositories orchestrate the neural substrate) to generate innovative ways of overcoming the second law in the new domain. We conclude that Darwinian theory, as an explanation for the origins of complex order in the universe, may be far more fundamental than is conventionally supposed.

Keywords

Universal Darwinism Universal selection Entropy Bayesian inference Inferential systems Quantum Darwinism Cosmological natural selection 

Notes

Acknowledgements

We would like to thank Karl Friston for a number of comments and suggestions which have been incorporated into this chapter.

References

  1. Allaby, R. G. et al. (2017). Geographic mosaics and changing rates of cereal domestication. The Royal Society.CrossRefGoogle Scholar
  2. Arvey R. & Colarelli S. M. (Eds). (2015). Biological foundations of organizational behavior. University of Chicago Press.Google Scholar
  3. Bastos A. M. et al. (2012). Canonical microcircuits for predictive coding. Neuron, Vol. 76(4).Google Scholar
  4. Bishop, E. (1967). Foundations of Constructive Analysis. New York: Academic Press. ISBN 4-87187-714-0.zbMATHGoogle Scholar
  5. Brenner, S. (1999). Theoretical biology in the third millennium. Philosophical Transactions of the Royal Society.CrossRefGoogle Scholar
  6. Brydon, E. (2012). In massive genome analysis ENCODE data suggests ‘gene’ redefinition. Cold Spring Harbor Laboratory. Downloaded 2nd Dec. 2013 from http://www.cshl.edu/Article-Gingeras/massive-genome-analysis-by-encode-redefines-the-gene-and-sheds-new-light-on-complex-disease
  7. Buss, D. M., Haselton, M. G., Shackelford, T. K., Bleske, A. L., & Wakefield, J. C. (1998). Adaptations, exaptations, and spandrels. American Psychologist, 53(5), 533.CrossRefGoogle Scholar
  8. Cain N. et al. (2016). The Computational Properties of a Simplified Cortical Column Model. PLOS computational biology, Vol. 12(9).Google Scholar
  9. Campbell, D. T. (1974). Evolutionary epistemology. In P.A. Schilpp (Ed.), The Philosophy of Karl R. Popper. The Library of Living Philosophers. Lasalle, IL: Open Court Publishing Company, Volume 14-1, 413–463.Google Scholar
  10. Campbell, J. O. (2010). Quantum Darwinism as a Darwinian process. arXiv preprint.Google Scholar
  11. Campbell, J. O. (2015). Darwin does physics. s.l.: CreateSpace.Google Scholar
  12. Campbell, J. O. (2016). Universal Darwinism as a process of Bayesian inference. Front. Syst. Neurosci. doi:  https://doi.org/10.3389/fnsys.2016.00049
  13. Comte, A. (1848). A General View of Positivism. Translation by Bridges, J. H. (1865), Trübner and Co.; reissued by Cambridge University Press (2009; ISBN 978-1-108-00064-2).Google Scholar
  14. Crane, L. (1994/2010). Possible implications of the quantum theory of gravity: an introduction to the meduso-anthropic principle. arXiv:hep-th/9402104v1. Reprinted in Crane, L. (2010). Possible implications of the quantum theory of gravity: an introduction to the meduso-anthropic principle. Foundations of Science, vol. 15, pp. 369–373.Google Scholar
  15. Dalvit, D. A. R., Dziarmaga, J. & Zurek, W. H. (2005). Predictability sieve, pointer states, and the classicality of quantum trajectories. Phys. Rev. A, Vol. 72, 062101.ADSCrossRefGoogle Scholar
  16. Darwin, C. R. (1859). On the Origin of Species. London: John Murray.Google Scholar
  17. Davies, P. C. W. & Walker, S. I. (2012). The Algorithmic Origins of Life. Journal of the Royal Society, Vol. 10.Google Scholar
  18. Dawkins, R. (1982). The Extended Phenotype: The Long Reach of the Gene. Oxford University Press.Google Scholar
  19. De Jong, K. A. (2006). Evolutionary computation: a unified approach. Cambridge MA: MIT Press.zbMATHGoogle Scholar
  20. Dennett, D. (1995). Darwin’s Dangerous Idea. New York: Schuster.Google Scholar
  21. Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London, Vol. A 400 pg. 97–117.Google Scholar
  22. Deutsch, D. (1997). The Fabric of Reality. London: Penguin.Google Scholar
  23. Deustch, D. (2011). The Beginning of Infinity. London: Penguin.Google Scholar
  24. Dirac, P.A.M. (1958). Quantum Mechanics. Oxford: Clarendon Press.zbMATHGoogle Scholar
  25. Fernando, C, Szathmary, E & Husbands, P. (2012). Selectionist and evolutionary approaches to brain function: a critical appraisal. Computational Neuroscience.Google Scholar
  26. Fischetti, M. (2011). Computers versus Brains. Scientific American. November 1, 2011.Google Scholar
  27. Frank, R. H. (2012a). The Darwin economy: Liberty, competition, and the common good. Princeton University Press.Google Scholar
  28. Frank, S. A. (2012b). Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory. Journal of Evolutionary Biology, Vols. 25: 2377–2396.CrossRefGoogle Scholar
  29. Friston, K. J. (2013). Life as we know it. Journal of the Royal Society Interface, Vol. 10: 20130475.CrossRefGoogle Scholar
  30. Friston K. J. et al. (2017). Active Inference: A process theory. Neural Computation, Vol. 29(1).Google Scholar
  31. Gardner, A. & Conlon, J. P. (2013). Cosmological natural selection and the purpose of the universe. Complexity 18: 48–56.ADSMathSciNetCrossRefGoogle Scholar
  32. Gardner, J. N. (2000). The selfish biocosm. Complexity 5: 34–45.MathSciNetCrossRefGoogle Scholar
  33. Gavrilov, Z. (2012). Quantum computation. MIT. Downloaded 5th Dec. 2017 from http://web.mit.edu/zoya/www/quantComp.pdf
  34. Gibson M. A. & Lawson, D. W. (Eds). (2014). Applied evolutionary anthropology: Darwinian approaches to contemporary world issues. Springer.Google Scholar
  35. Gillespie, D. T. A. (1970). Quantum Mechanical Primer. Scranton: International Textbook Company.Google Scholar
  36. Gould, S. J. & Vrba, E. S. (1982). Exaptation – a missing term in the science of form. Paleobiology 8 (1): 4–15.CrossRefGoogle Scholar
  37. Hamilton, W. (1964). The genetical evolution of social behaviour I. Journal of Theoretical Biology, vol. 7, no. 1, pp. 1–16.MathSciNetCrossRefGoogle Scholar
  38. Hardy, L. (2013). Are quantum states real? International Journal of Modern Physics B.Google Scholar
  39. Harrison, E. R. (1995). The natural selection of universes containing intelligent life. Quarterly Journal of the Royal Astronomical Society 36: 193–203.ADSGoogle Scholar
  40. Heylighen F. (1999): "The Growth of Structural and Functional Complexity during Evolution", in: F. Heylighen, J. Bollen & A. Riegler (eds.) The Evolution of Complexity (Kluwer Academic, Dordrecht), p. 17–44.zbMATHGoogle Scholar
  41. Hoehn, P. A. (2017a). Quantum theory from questions. Phys. Rev., Vol. A 95, 012102.ADSMathSciNetCrossRefGoogle Scholar
  42. Hoehn, P. A. (2017b). Quantum theory from rules on information acquisition. Entropy, Vol. 19(3), 98.ADSCrossRefGoogle Scholar
  43. Ignatova, Z., Marinez-Perez, I. & Zimmermann, K. (2008). DNA Computing Models. Springer. ISBN 978-0-387-73635-8.Google Scholar
  44. Jaynes, E. T. (1957). Information Theory and Statistical Mechanics I., Phys. Rev., 106, 620.ADSMathSciNetCrossRefGoogle Scholar
  45. Jaynes, E. T. (1965). Gibbs vs Boltzmann Entropies. Am. J. Phys., 391.Google Scholar
  46. Jaynes, E. T. (2003). Probability Theory: The Logic of Science. University of Cambridge Press.Google Scholar
  47. Landauer, R. (1996). The physical nature of information. Physics Letters A, Vol. 217.  https://doi.org/10.1016/0375-9601(96)00453-7
  48. Lee, T. S. (2015). The visual system’s internal model of the world. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, Vols. 103(8), 1359–1378.CrossRefGoogle Scholar
  49. Li, X. & Lui, D. (2004). DNA-Templated Organic Synthesis: Nature’s Strategy for Controlling Chemical Reactivity Applied to Synthetic Molecules. Angew. Chem. Int. Ed., Vol. 43, 4848.CrossRefGoogle Scholar
  50. Lloyd, S. (2007). Programming the Universe. Vintage; Reprint edition.Google Scholar
  51. Lloyd, S. (2013). The Universe as Quantum Computer. Arxiv preprint.Google Scholar
  52. Maldacena, J. M. (1998). The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys, Vol. 2, pp. 231–252.ADSMathSciNetCrossRefGoogle Scholar
  53. Markopulou, F. (2012). The computing spacetime. [ed.] S. B. Cooper, et al. How the world computes. Berlin, Hei: Springer.Google Scholar
  54. McGregor, S. (2012). Evolution of Associative Learning in Chemical Networks. Comput Biol 8(11). doi: https://doi.org/10.1371/journal.pcbi.1002739
  55. Nelson, R. R. & Winter, S. G. (1982). An evolutionary theory of economic change. Harvard University Press. ISBN 0-674-27228-5.Google Scholar
  56. O’Brien, M. J. & Lyman R. L. (2003). Resolving Phylogeny: Evolutionary Archaeology’s Fundamental Issue. [book auth.] T. L. VanPool and C. S. VanPool. Essential Tensions in Archaeological Method and Theory. Salt Lake City: University of Utah Press, pp. 115-135.Google Scholar
  57. Orr, H. A. (2000). Adaptation and the cost of complexity. Evolution, 54(1), 13–20.CrossRefGoogle Scholar
  58. Orus, R. (2014). A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics 349, 117–158.ADSMathSciNetCrossRefGoogle Scholar
  59. Pietraszewski, D. Curry, O.S., Petersen, M.B., Cosmides, L. & Tooby, J. (2015). Constituents of political cognition: Race, party politics, and the alliance detection system. Cognition, 140. 24–39.CrossRefGoogle Scholar
  60. Pinker, S. & Bloom, P. (1992). Natural language and natural selection. In The Adapted Mind: Evolutionary Psychology and the Generation of Culture, J. Barkow, L. Cosmides, and J. Tooby, Eds. pp. 451–493. Oxford University Press.Google Scholar
  61. Popper, K. (1972). Objective Knowledge. Clarendon Press.Google Scholar
  62. Price, M. E. (2017). Entropy and selection: Life as an adaptation for universe replication. Complexity, vol. 2017, Article ID 4745379, 4 pages, 2017. doi: https://doi.org/10.1155/2017/4745379
  63. Pusey M F, Barrett J & Randolph T. (2012). On the reality of quantum states. Nature Physics 8, pp. 475–478.ADSCrossRefGoogle Scholar
  64. Ramstead M. J. D., Badcock P. B., & Friston K. J. (2017). Answering Schrödinger’s question: A free-energy formulation. Phys Life Rev.Google Scholar
  65. Richerson, P. J. & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. University of Chicago Press.Google Scholar
  66. Rovelli, C. (1996). Relational Quantum Mechanics. International Journal of Theoretical Physics, Vols. 35, pp. 1637–78.ADSMathSciNetCrossRefGoogle Scholar
  67. Saad G. (Ed). (2011). Evolutionary Psychology in the Business Sciences. Berlin: Springer. Google Scholar
  68. Shannon, C. E. (1948). A mathematical theory of communications. Bell System Technical Journal 27(3): 379–423.MathSciNetCrossRefGoogle Scholar
  69. Smart, J. M. (2009). Evo devo universe? A framework for speculations on cosmic culture. In Cosmos and Culture: Cultural Evolution in a Cosmic Context, S. J. Dick and M. L. Lupisella, Eds., pp. 201–295, Government Printing Office, NASA SP-2009-4802, Washington, DC.Google Scholar
  70. Smolin, L. (1992). Did the universe evolve? Classical and Quantum Gravity, vol. 9, no. 1, pp. 173–191.ADSMathSciNetCrossRefGoogle Scholar
  71. Smolin, L. (1997). The Life of the Cosmos. New York: Oxford University Press.zbMATHGoogle Scholar
  72. Smolin, L. (2007). The status of cosmological natural selection. Arxiv preprint.Google Scholar
  73. Spencer-Brown, G. (1979). The Laws of Form. New York: E. P. Dutton.Google Scholar
  74. Stephens, C. R., ‘t Hooft, G. and Whiting, B. F. (1993). Black hole evaporation without information loss. Classical and quantum gravity Volume 11, Number 3.Google Scholar
  75. Swingle, B. & Van Raamsdonk, M. (2014). Universality of Gravity from Entanglement. ArXiv preprint.Google Scholar
  76. ‘t Hooft, G. (2016). The cellular automaton interpretation of quantum mechanics. Springer.Google Scholar
  77. Thayer, B. A. (2004). Darwin and international relations: On the evolutionary origins of war and ethnic conflict. University Press of Kentucky.Google Scholar
  78. Tinbergen, N. (1965). Animal behaviour. Time Inc.Google Scholar
  79. Tomer R. et al. (2010). Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell, Vol. 142 (5): 800–809.CrossRefGoogle Scholar
  80. Tooby J. & Cosmides L. (1992). The psychological foundations of culture. In The Adapted Mind: Evolutionary Psychology and the Generation of Culture, J. Barkow, L. Cosmides, and J. Tooby, Eds. Oxford University Press.Google Scholar
  81. Verlinde, E. (2010). On the Origin of Gravity and the Laws of Newton., arXiv:1001.0785.Google Scholar
  82. Vidal, C. (2014). The Beginning and the End: The Meaning of Life in a Cosmological Perspective. Springer.Google Scholar
  83. Wigner, E. P. (1960). "The unreasonable effectiveness of mathematics in the natural sciences. Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959". Communications on Pure and Applied Mathematics 13: 1–14.ADSCrossRefGoogle Scholar
  84. Williams, G. C. (1966). Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought. Princeton University Press.Google Scholar
  85. Zurek, W. H. (1998). Decoherence, Einselection and the Existential Interpretation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, pp. 1793–1821.Google Scholar
  86. Zurek, W. H. (2007). Relative States and the Environment: Einselection, Envariance, Quantum Darwinism, and the Existential Interpretation. arXiv:0707.2832v1.Google Scholar
  87. Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, vol. 5, pp. 181–188.ADSCrossRefGoogle Scholar
  88. Zurek, W. H. (2014). Quantum Darwinism, classical reality and the randomness of quantum jumps. Physics Today, Vols. 67, 10, 44.Google Scholar
  89. Zurek, W. H. & Zwolak, M. (2013). Complementarity of quantum discord and classically accessible information. Scientific Reports 3, Article number: 1729. doi: https://doi.org/10.1038/srep01729
  90. Zylberberg, A., et al. (2011). The human Turing machine: a neural framework for mental programs. Trends Cogn Sci 15: 293–300.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • John O. Campbell
    • 1
  • Michael E. Price
    • 2
  1. 1.VictoriaCanada
  2. 2.Department of Life Sciences, Centre for Culture and EvolutionBrunel University LondonUxbridgeUK

Personalised recommendations