Advertisement

LEEM, SPLEEM and SPELEEM

Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter discusses some of the most important imaging methods with low-energy electrons, including: low-energy electron microscopy (), its extension to spin-polarized low-energy electron microscopy (), and its combination with spectroscopic photoemission and low-energy electron microscopy (). Other imaging methods mentioned only briefly in the chapter include ultraviolet photoemission electron microscopy (), mirror electron microscopy (), low-electron energy loss microscopy (), and Auger electron emission microscopy (). The instruments used in these imaging methods allow imaging not only in real space but also in reciprocal space, such as low-energy electron diffraction () and angle-resolved photoelectron spectroscopy (ARPES in SPELEEM). The combination of these methods with complementary high-lateral-resolution methods renders imaging with low-energy electrons a comprehensive surface analysis tool.

Notes

Acknowledgements

The author thanks Anastassia Pavlovska for preparing the figures, references, permissions and for the editorial work of this chapter.

References

  1. C.J. Davisson, L.H. Germer: Diffraction of electrons by a crystal of nickel, Phys. Rev. 30, 705–740 (1927)Google Scholar
  2. E. Bauer: Low energy electron reflection microscopy. In: Proc. 5th Int. Congr. Electron Microsc., Vol. 1, ed. by S.S. Breese (Academic Press, New York 1962) pp. 11–12Google Scholar
  3. W. Telieps, E. Bauer: An analytical reflection and emission UHV surface electron microscope, Ultramicroscopy 17, 57–66 (1985)Google Scholar
  4. E. Brüche, W. Knecht: Bemerkung über die Erreichung hoher Auflösungen mit dem elektronenoptischen Immersionsobjektiv, Z. Phys. 92, 462–466 (1934)Google Scholar
  5. H. Mahl: Über das elektrostatische Elektronenmikroskop hoher Auflösung, Z. Tech. Phys. 20, 316 (1939)Google Scholar
  6. H.E. Farnsworth: Electron emission and diffraction by a copper crystal, Phys. Rev. 34, 679 (1929)Google Scholar
  7. H.E. Farnsworth: A simple contamination-free electron gun, Rev. Sci. Instrum. 21, 102 (1950)Google Scholar
  8. R.E. Schlier, H.E. Farnsworth: Low-energy electron diffraction investigation of chemisorbed gases on the (100) faces of copper and nickel single crystals, J. Appl. Phys. 25, 1333 (1954)Google Scholar
  9. E.J. Scheibner, L.H. Germer, C.D. Hartman: Apparatus for direct observation of low-energy electron diffraction patterns, Rev. Sci. Instrum. 31, 112 (1960)Google Scholar
  10. L.H. Germer, C.D. Hartman: Improved low energy electron diffraction apparatus, Rev. Sci. Instrum. 31, 784 (1960)Google Scholar
  11. A. Recknagel: Theorie des elektrischen Elektronenmikroskops für Selbststrahler, Z. Phys. 117, 689–708 (1941)Google Scholar
  12. E. Bauer: Optical properties of the uniform electric field, J. Appl. Phys. 35, 3079 (1964)Google Scholar
  13. D.R. Cruise: A numerical method for the determination of an electric field about a complicated boundary, J. Appl. Phys. 34, 3477–3479 (1964)Google Scholar
  14. E. Bauer: Surface electron microscopy: The first thirty years, Surf. Sci. 299/300, 102–115 (1994)Google Scholar
  15. T. Schmidt, S. Heun, J. Slesak, J. Diaz, K.C. Prince, G. Lilienkamp, E. Bauer: SPELEEM: Combining LEEM and spectroscopic imaging, Surf. Rev. Lett. 5, 1287–1296 (1998)Google Scholar
  16. E. Bauer, T. Schmidt: Multi-method high resolution surface analysis with slow electrons. In: High Resolution Imaging and Spectroscopy of Materials, ed. by F. Ernst, M. Ruehle (Springer, Berlin, Heidelberg 2003) pp. 363–390Google Scholar
  17. R. Wichtendahl, R. Fink, H. Kuhlenbeck, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Schlogl, H.J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner, E. Umbach: SMART: An aberration-corrected XPEEM/LEEM with energy filter, Surf. Rev. Lett. 5, 1249–1256 (1998)Google Scholar
  18. E. Bauer: Interaction of slow electrons with surfaces, J. Vac. Sci. Technol. 7, 3–12 (1970)Google Scholar
  19. E. Bauer: Interaction of slow electrons with randium-jellium. In: Les interactions des électrons avec la matière condensée. Applications a I'etude du solide (AVCP, Verbier 1972) pp. 42–96Google Scholar
  20. T.-Y. Wu, T. Ohmura: Quantum Theory of Scattering (Prentice, Englewood Cliffs 1962)Google Scholar
  21. H.-J. Herlt: Elastische Rückstreuung sehr langsamer Elektronen an reinen und an gasbedeckten Wolfram-Einkristalloberflächen, Ph.D. Thesis (TU Clausthal, Clausthal-Zellerfeld 1982)Google Scholar
  22. J.B. Pendry: Low Energy Electron Diffraction (Academic Press, London 1974)Google Scholar
  23. M.A. Van Hove, W.H. Weinberg, C.-M. Chen: Low-Energy Electron Diffraction (Springer, Berlin 1986)Google Scholar
  24. F. Seitz: The Modern Theory of Solids (McGraw-Hill, New York 1940) p. 313Google Scholar
  25. P. Feibelman, D.E. Eastman: Photoemission spectroscopy: Correspondence between quantum theory and experimental phenomenology, Phys. Rev. B 10, 4932–4947 (1974)Google Scholar
  26. E. Bauer: Low energy electron microscopy and normal incidence VLEED. In: Physics of Solid Surfaces, Studies in Surface Science and Catalysis, Vol. 40, ed. by J. Koukal (Elsevier, Amsterdam 1988) pp. 26–36Google Scholar
  27. H.-J. Herlt, R. Feder, G. Meister, E. Bauer: Experiment and theory of the elastic electron reflection coefficient from tungsten, Solid State Commun. 38, 973–976 (1981)Google Scholar
  28. B.I. Lundqvist: Some numerical results on quasiparticle properties in the electron gas, Phys. Status Solidi (b) 32, 273–280 (1969)Google Scholar
  29. E. Bauer: Zum gegenwaertigen Stand der Augerelektronenspektroskopie (AES) und Beugung langsamer Elektronen (LEED), Z. Metallkd. 63, 437–447 (1972)Google Scholar
  30. E. Bauer: Low energy electron diffraction (LEED) and auger methods. In: Interactions on Metal Surfaces, ed. by R. Gomer (Springer, Berlin 1975) pp. 225–274Google Scholar
  31. S. Tanuma, C.J. Powell, D.R. Penn: Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range, Surf. Interface Anal. 17, 911–927 (1991)Google Scholar
  32. Z.-J. Ding, R. Shimitzu: A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production, Scanning 18, 92–113 (1996)Google Scholar
  33. E. Bauer: Inelastic scattering of slow electrons in solids, Z. Phys. 224, 19–44 (1969)Google Scholar
  34. C.J. Powell, A. Jablonski: Evaluation of calculated and measured inelastic mean free paths near solid surfaces, J. Phys. Chem. Ref. Data 28, 19–62 (1999)Google Scholar
  35. T. Goulet, J.-M. Jung, M. Michaud, J.-P. Jay-Gerin, L. Sanche: Conduction-band density of states in solid argon revealed by low-energy-electron backscattering from thin films: Role of the electron mean free path, Phys. Rev. B 50, 5101–5109 (1994)Google Scholar
  36. E. Keszei, T. Goulet, J.-P. Jay-Gerin: Probabilistic description of particle transport. II. Analysis of low-energy electron transmission through thin solid Xe and N2 films, Phys. Rev. A 37, 2183 (1988)Google Scholar
  37. H.C. Siegmann: Surface and 2-D magnetism with spin polarized cascade electrons, Surf. Sci. 307, 1076–1086 (1994)Google Scholar
  38. J. Hong, D.L. Mills: Spin dependence of the inelastic electron mean free path in Fe and Ni: Explicit calculations and implications, Phys. Rev. B 62, 5589–5600 (2000)Google Scholar
  39. E. Bauer: SPLEEM. In: Magnetic Microscopy of Nanostructures, ed. by H. Hopster, H.P. Oepen (Springer, Berlin, Heidelberg 2005) pp. 111–136Google Scholar
  40. N. Georgiev, A. Pavlovska, E. Bauer: Surface disordering without surface roughening, Phys. Rev. B 52, 2878–2888 (1995)Google Scholar
  41. J. Rundgren: Electron inelastic mean free path, electron attenuation length, and low-energy electron-diffraction theory, Phys. Rev. B 59, 5106–5114 (1999)Google Scholar
  42. G. Bartz: Über ein Elektronenmikroskop und ein Verfahren zur direkten Sichtbarmachung von isolierten Oberflächen. In: Proc. 4th Int. Conf. Electron Microsc., ed. by G. Mollenstedt (Springer, Berlin 1960) pp. 201–207Google Scholar
  43. R.M. Tromp, M.C. Reuter: Design of a new photo-emission/low-energy electron microscope for surface studies, Ultramicroscopy 36, 99–106 (1991)Google Scholar
  44. L.H. Veneklasen: Design of a spectroscopic low-energy electron microscope, Ultramicroscopy 36, 76–90 (1991)Google Scholar
  45. E. Bauer, T. Franz, C. Koziol, G. Lilienkamp, T. Schmidt: Recent advances in LEEM/PEEM for structural and chemical analysis. In: Proc. NATO Adv. Res. Workshop Chem. Struct. Electron. Anal. Heterog. Surfaces Nanom. Scale, Trieste, ed. by R. Rosei (Kluwer, Dordrecht 1997) pp. 75–91Google Scholar
  46. E. Bauer, C. Koziol, G. Lilienkamp, T. Schmidt: Spectromicroscopy in a low energy electron microscope, J. Electron Spectrosc. Relat. Phenom. 84, 201–209 (1997)Google Scholar
  47. E. Bauer: Low energy electron microscopy, Rep. Prog. Phys. 57, 895–938 (1994)Google Scholar
  48. E. Bauer: Photoelectron spectromicroscopy: Present and future, J. Electron Spectrosc. Relat. Phenom. 114–116, 975–987 (2001)Google Scholar
  49. R.M. Tromp, M. Mankos, M.C. Reuter, A.W. Ellis, M. Copel: A new low energy electron microscope, Surf. Rev. Lett. 5, 1189–1197 (1998)Google Scholar
  50. P. Adamec, E. Bauer, B. Lencova: Compact low-energy electron microscope for surface imaging, Rev. Sci. Instrum. 69, 3583–3787 (1998)Google Scholar
  51. K. Grzelakowski, E. Bauer: A flange-on type low energy electron microscope, Rev. Sci. Instrum. 67, 742–747 (1996)Google Scholar
  52. H. Liebl, B. Senftinger: Low-energy electron microscope of novel design, Ultramicroscopy 36, 91–98 (1991)Google Scholar
  53. Y. Sakai, M. Kato, S. Masuda, Y. Harada, T. Ichinokawa: Development of a low energy electron microscope with an energy analyzer, Surf. Rev. Lett. 5, 1199–1211 (1998)Google Scholar
  54. K. Grzelakowski: The novel surface science instrument: Double reflection electron emission microscope, Rev. Sci. Instrum. 70, 3346–3350 (1999)Google Scholar
  55. H. Rose, D. Preikszas: Outline of a versatile corrected LEEM, Optik 92, 31–44 (1992)Google Scholar
  56. D. Preikszas, P. Hartel, R. Spehr, H. Rose: SMART electron optics. In: Proc. 12th Eur. Congr. Electron Microsc. EUREM 12, Vol. 2, ed. by L. Frank, F. Čiampor (Czech. Soc. Electron Microscopy, Brno 2000) pp. 181–184Google Scholar
  57. R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Degenhardt, R. Wichtendahl, H. Kuhlenbeck, W. Erlebach, K. Ihmann, R. Schlogl, H.J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner: SMART: A planned ultrahigh-resolution spectromicroscope for BESSY II, J. Electron Spectrosc. Relat. Phenom. 84, 231–250 (1997)Google Scholar
  58. T. Schmidt, U. Groh, R. Fink, E. Umbach, O. Schaff, W. Engel, B. Richter, H. Kuhlenbeck, R. Schlögl, H.-J. Freund, A.M. Bradshaw, D. Preikszas, P. Hartel, R. Spehr, H. Rose, G. Lilienkamp, E. Bauer, G. Benner: XPEEM with energy-filtering: Advantages and first results from the SMART project, Surf. Rev. Lett. 9, 223–232 (2002)Google Scholar
  59. L.H. Veneklasen: The continuing development of low-energy electron microscopy for characterizing surfaces, Rev. Sci. Instrum. 63, 5513–5532 (1992)Google Scholar
  60. J. Chmelik, L. Veneklasen, G. Marx: Comparing cathode lens configurations for low energy electron microscopy, Optik 83, 155–160 (1989)Google Scholar
  61. G.D. Archard, T. Mulvey: Magnetic deflexion of electron beams without astigmatism, J. Sci. Instrum. 35, 279–283 (1958)Google Scholar
  62. M. Mankos, V. Kolařik, L.H. Veneklasen: Electron-optical properties of multiple magnetic prism systems, Nucl. Instrum. Methods Phys. Res. A 298, 189–198 (1990)Google Scholar
  63. V. Kolařík, M. Mankos, L.H. Veneklasen: Close-packed prism arrays for electron microscopy, Optik 87, 1–12 (1991)Google Scholar
  64. R. Degenhardt: Korrektur von Aberrationen in der Teilchenoptik mit Hilfe von Symmetrien, Ph.D. Thesis (Technische Hochschule Darmstadt, Germany 1992)Google Scholar
  65. H.-C. Kan, D. Auerbach, R.J. Phaneuf: Approach for investigating the astigmatism of a magnetic prism in low-energy electron microscopy, Rev. Sci. Instrum. 74, 1008–1015 (2003)Google Scholar
  66. H.-C. Kan, T. Dürkop, R.J. Phaneuf: Comparison of stigmatically focusing magnetic prisms of square versus round symmetries, J. Vac. Sci. Technol. B 20, 2519–2525 (2002)Google Scholar
  67. H. Müller, D. Preikszas, H. Rose: A beam separator with small aberrations, J. Electron Microsc. 48, 191–204 (1999)Google Scholar
  68. R. Spehr, P. Hartel, H. Müller, D. Preikszas, H. Rose: Design and manufacturing of magnetic electron optical systems with midsection symmetry. In: Proc. 12th Eur. Congr. Electron Microsc., ed. by P. Čiampor, L. Frank (Czech. Soc. Electron Microscopy, Brno 2000), pp. I85/I86Google Scholar
  69. Y.K. Wu, D.S. Robin, E. Forest, R. Schlueter, S. Anders, J. Feng, H. Padmore, D.H. Wei: Design and analysis of beam separator magnets for third generation aberration compensated PEEMs, Nucl. Instrum. Methods Phys. Res. A 519, 230–241 (2003)Google Scholar
  70. D.A. Swenson: Achromatic translation system for charged particle beams, Rev. Sci. Instrum. 35, 608 (1964)Google Scholar
  71. K. Tsuno: Simulation of a Wien filter as beam separator in a low energy electron microscope, Ultramicroscopy 55, 127–140 (1994)Google Scholar
  72. V.K. Zworykin, G.A. Morton, E.G. Ramberg, J. Hillier, A.W. Vance: Electron Optics and the Electron Microscope (Wiley, New York 1945)Google Scholar
  73. E.G. Ramberg: Aberration correction with electron mirrors, J. Appl. Phys. 20, 183–186 (1949)Google Scholar
  74. W.P. Skoczylas, G.F. Rempfer, O.H. Griffith: A proposed modular imaging system for photoelectron and electron probe microscopy with aberration correction and for mirror microscopy and low-energy electron microscopy, Ultramicroscopy 36, 252–261 (1991)Google Scholar
  75. D. Preikszas, H. Rose: Correction properties of electron mirrors, J. Electron Microsc. 46, 1–9 (1997)Google Scholar
  76. P. Hartel, D. Preikszas, R. Spehr, H. Rose: Performance of the mirror corrector for an ultrahigh-resolution spectromicroscope. In: Proc. 12th Eur. Congr. Electron Microsc., ed. by P. Čiampor, L. Frank (Czech. Soc. Electron Microscopy, Brno 2000) pp. I153–I154Google Scholar
  77. W. Wan, J. Feng, H.A. Padmore, D.S. Robin: Simulation of a mirror corrector for PEEM3, Nucl. Instrum. Methods Phys. Res. A 519, 222–229 (2004)Google Scholar
  78. S. Cherifi, R. Hertel, J. Kirschner, H. Wang, R. Belkhou, A. Locatelli, S. Heun, A. Pavlovska, E. Bauer: Virgin domain structures in mesoscopic Co patterns: Comparison between simulation and experiment, J. Appl. Phys. 98, 043901 (2005)Google Scholar
  79. W. Telieps, E. Bauer: The \((7\times 7)\leftrightarrow(1\times 1)\) phase transition on Si(111), Surf. Sci. 162, 163–168 (1985)Google Scholar
  80. W. Telieps: Surface imaging with LEEM, Appl. Phys. A 44, 55–61 (1987)Google Scholar
  81. W. Świȩch, E. Bauer, M. Mundschau: A low energy electron microscopy study of the system Si(111)-Au, Surf. Sci. 253, 283–296 (1991)Google Scholar
  82. T. Yasue, T. Koshikawa, M. Jalochowski, E. Bauer: LEEM observation of formation of Cu nano-islands on Si(111) surface by hydrogen termination, Surf. Sci. 493, 381–388 (2001)Google Scholar
  83. M.S. Altman, W.F. Chung, C.H. Liu: LEEM phase contrast, Surf. Rev. Lett. 5, 1129–1141 (1998)Google Scholar
  84. W.F. Chung, M.S. Altman: Step contrast in low energy electron microscopy, Ultramicroscopy 74, 237–246 (1998)Google Scholar
  85. T. Müller: Bildentstehung im LEEM, Ph.D. Thesis (TU Clausthal, Clausthal-Zellerfeld 1995)Google Scholar
  86. M. Mundschau, E. Bauer, W. Święch: Initial epitaxial growth of Cu on Mo{011} by low-energy electron microscopy and photoemission electron microscopy, J. Appl. Phys. 65, 581–584 (1989)Google Scholar
  87. R. Zdyb, A. Pavlovska, A. Locatelli, S. Heun, S. Cherifi, R. Belkhou, E. Bauer: Imaging low-dimensional magnetism with slow electrons, Appl. Surf. Sci. 249, 38–44 (2005)Google Scholar
  88. R. Zdyb, E. Bauer: Spin-resolved unoccupied electronic band structure from quantum size oscillations in the reflectivity of slow electrons from ultrathin ferromagnetic crystals, Phys. Rev. Lett. 88, 166403 (2002)Google Scholar
  89. M.S. Altman: Low energy electron microscopy of quantum well resonances in Ag films on W(110), J. Phys. Condens. Matter 17, 1305–1310 (2005)Google Scholar
  90. Y.Z. Wu, A.K. Schmid, M.S. Altman, X.F. Jin, Z.Q. Qiu: Spin-dependent Fabry-Pérot interference from a Cu thin film grown on fcc Co(001), Phys. Rev. Lett. 94, 027201 (2005)Google Scholar
  91. M.S. Altman, W.F. Chung, Z.Q. He, H.C. Poon, S.Y. Tong: Quantum size effect in low energy electron diffraction of thin films, Appl. Surf. Sci. 169/170, 82–87 (2001)Google Scholar
  92. W.F. Chung, Y.J. Feng, H.C. Poon, C.T. Chan, S.Y. Tong, M.S. Altman: Layer spacings in coherently strained epitaxial metal films, Phys. Rev. Lett. 90, 216105 (2003)Google Scholar
  93. K.L. Man, Z.Q. Qiu, M.S. Altman: Kinetic limitations in electronic growth of Ag films on Fe(100), Phys. Rev. Lett. 93, 236104 (2004)Google Scholar
  94. W. Witt: Untersuchungen 2-dimensionaler Phasenübergänge mit einem hochauflösenden LEED-Diffraktometer, Ph.D. Thesis (TU Clausthal, Clausthal-Zellerfeld 1984)Google Scholar
  95. E. Bauer: Phase transitions on single crystal surfaces and in chemisorbed layers. In: Structure and Dynamics of Surfaces II, Topics in Current Physics, Vol. 43, ed. by W. Schommers, P.V. Blanckenhagen (Springer, Berlin 1987) pp. 115–179Google Scholar
  96. W. Telieps, E. Bauer: Kinetics of the \((7\times 7)\leftrightarrow(1\times 1)\) transition on Si(111), Ber. Bunsenges. Phys. Chem. 90, 197–200 (1986)Google Scholar
  97. E. Bauer, M. Mundschau, W. Swiech, W. Telieps: Low energy electron microscopy of semiconductor surfaces, J. Vac. Sci. Technol. A 9, 1007–1013 (1991)Google Scholar
  98. R.J. Phaneuf, N.C. Bartelt, E.D. Williams, W. Swiech, E. Bauer: LEEM investigations of the domain growth of the (\(7\times 7\)) reconstruction on Si(111), Surf. Sci. 268, 227–237 (1992)Google Scholar
  99. J.B. Hannon, H. Hibino, N.C. Bartelt, B.S. Swartzentruber, T. Ogino, G.L. Kellogg: Dynamics of the silicon (111) surface phase transition, Nature 405, 552–554 (2000)Google Scholar
  100. H. Hibino, C.W. Hu, T. Ogino, I.S.T. Tsong: Decay kinetics of two-dimensional islands and holes on Si(111) studied by low-energy electron microscopy, Phys. Rev. B 63, 245402 (2001)Google Scholar
  101. J.B. Hannon, F.-J. Meyer zu Heringdorf, J. Tersoff, R.M. Tromp: Phase coexistence during surface phase transitions, Phys. Rev. Lett. 86, 4871–4874 (2001)Google Scholar
  102. C.W. Hu, H. Hibino, T. Ogino, I.S.T. Tsong: Hysteresis in the \((1\times 1)-(7\times 7)\) first-order phase transition on the Si(111) surface, Surf. Sci. 487, 191–200 (2001)Google Scholar
  103. J.B. Hannon, R.M. Tromp: Phase boundary fluctuations on Si(111), J. Vac. Sci. Technol. A 19, 2596–2600 (2001)Google Scholar
  104. H. Hibino, C.-W. Hu, T. Ogino, I.S.T. Tsong: Diffusion barrier caused by $$1\times 1$$ and $$7\times 7$$ on Si(111) during phase transition, Phys. Rev. B 64, 245401 (2001)Google Scholar
  105. J.B. Hannon, J. Tersoff, R.M. Tromp: Surface stress and thermodynamic nanoscale size selection, Science 295, 299–301 (2002)Google Scholar
  106. J.B. Hannon, J. Tersoff, R.M. Tromp: The stability of triangular ‘Droplet' phases on Si(111), J. Cryst. Growth 237–239, 181–187 (2002)Google Scholar
  107. J.B. Hannon, J. Tersoff, M.C. Reuter, R.M. Tromp: Influence of supersaturation on surface structure, Phys. Rev. Lett. 89, 266103 (2002)Google Scholar
  108. H. Hibino, Y. Homma, C.W. Hu, M. Uwaha, T. Ogino, I.S.T. Tsong: Structural and morphological changes on surfaces with multiple phases studied by low-energy electron microscopy, Appl. Surf. Sci. 237, 51–57 (2004)Google Scholar
  109. R.M. Tromp, J.B. Hannon: Thermodynamics of nucleation and growth, Surf. Rev. Lett. 9, 1565–1593 (2002)Google Scholar
  110. J.B. Hannon, R.M. Tromp: Low-energy electron microscopy of surface phase transitions, Annu. Rev. Mater. Res. 33, 263–288 (2003)Google Scholar
  111. R.J. Phaneuf, W. Święch, N.C. Bartelt, E.D. Williams, E. Bauer: LEEM investigations of orientational phase separation on vicinal Si(111) surfaces, Phys. Rev. Lett. 67, 2986–2989 (1991)Google Scholar
  112. E.D. Williams, R.J. Phaneuf, N.C. Bartelt, W. Święch, E. Bauer: The role of surface stress in the facetting of stepped Si(111) surfaces, MRS Proceedings 238, 219–227 (1991)Google Scholar
  113. R.J. Phaneuf, N.C. Bartelt, E.D. Williams, W. Święch, E. Bauer: Crossover from metastable to unstable facet growth on Si(111), Phys. Rev. Lett. 71, 2284–2287 (1993)Google Scholar
  114. M.S. Altman, W.F. Chung, T. Franz: LEEM determination of critical terrace widths for Si/Si(111) step flow growth, Surf. Rev. Lett. 5, 27–30 (1998)Google Scholar
  115. W.F. Chung, M.S. Altman: Kinetic length, step permeability, and kinetic coefficient asymmetry on the Si(111) (\(7\times 7\)) surface, Phys. Rev. B 66, 075338 (2002)Google Scholar
  116. W.F. Chung, K. Bromann, M.S. Altman: The transition to step flow growth on the clean and surfactant covered Si(111) surface studied by in-situ LEEM, Int. J. Mod. Phys. B 16, 4353–4362 (2002)Google Scholar
  117. H. Hibino, Y. Watanabe: Growth of twinned epitaxial layers on Si(111)\(\sqrt{3}\times\sqrt{3}\)-B studied by low-energy electron microscopy, Jpn. J. Appl. Phys. 44, 358–364 (2005)Google Scholar
  118. M. Mundschau, E. Bauer, W. Telieps, W. Święch: Atomic steps on Si{100} and step dynamics during sublimation studied by low-energy electron microscopy, Surf. Sci. 223, 413–423 (1989)Google Scholar
  119. M. Mundschau, E. Bauer, W. Telieps, W. Święch: Atomic step and defect structure on surfaces of Si{100} and Si{111} observed by low-energy electron microscopy, Philos. Mag. A 61, 257–280 (1990)Google Scholar
  120. E. Bauer, M. Mundschau, W. Swiech, W. Telieps: Low energy electron microscopy of surface processes, Vacuum 41, 5–10 (1990)Google Scholar
  121. W. Święch, E. Bauer: The growth of Si on Si(100): A video-LEEM study, Surf. Sci. 255, 219–228 (1991)Google Scholar
  122. E. Bauer: Low energy electron microscopy of surface processes, Appl. Surf. Sci. 60/61, 350–358 (1992)Google Scholar
  123. R.M. Tromp, M.C. Reuter: Wavy steps on Si(001), Phys. Rev. Lett. 68, 820–823 (1992)Google Scholar
  124. R.M. Tromp, M.C. Reuter: Step morphologies on small-miscut Si(001) surfaces, Phys. Rev. B 47, 7598–7601 (1993)Google Scholar
  125. N.C. Bartelt, R.M. Tromp, E.D. Williams: Step capillary waves and equilibrium island shapes on Si(001), Phys. Rev. Lett. 73, 1656–1659 (1994)Google Scholar
  126. W. Theis, N.C. Bartelt, R.M. Tromp: Chemical potential maps and spatial correlations in 2-D-island ripening on Si(001), Phys. Rev. Lett. 75, 3328–3331 (1995)Google Scholar
  127. W. Theis, R.M. Tromp: Nucleation in Si(001) homoepitaxial growth, Phys. Rev. Lett. 76, 2770–2773 (1996)Google Scholar
  128. S. Tanaka, C.C. Umbach, J.M. Blakely, R.M. Tromp, M. Mankos: Fabrication of arrays of large stepfree regions on Si(001), Appl. Phys. Lett. 69, 1235–1237 (1996)Google Scholar
  129. N.C. Bartelt, R.M. Tromp: Low-energy electron microscopy study of step mobilities on Si(001), Phys. Rev. B 54, 11731–11740 (1996)Google Scholar
  130. N.C. Bartelt, W. Theis, R.M. Tromp: Ostwald ripening of two-dimensional islands on Si(001), Phys. Rev. B 54, 11741–11751 (1996)Google Scholar
  131. S. Tanaka, N.C. Bartelt, C.C. Umbach, R.M. Tromp, J.M. Blakely: Step permeability and the relaxation of biperiodic gratings on Si(001), Phys. Rev. Lett. 78, 3342–3345 (1997)Google Scholar
  132. S. Tanaka, C.C. Umbach, J.M. Blakely, R.M. Tromp, M. Mankos: Atomic step distributions on annealed periodic Si(001) gratings, J. Vac. Sci. Technol. A 15, 1345–1350 (1997)Google Scholar
  133. R.M. Tromp, M. Mankos: Thermal adatoms on Si(001), Phys. Rev. Lett. 81, 1050–1053 (1998)Google Scholar
  134. J.M. Blakely, S. Tanaka, R.M. Tromp: Atomic step dynamics on periodic semiconductor surface structures, J. Electron Microsc. 48, 747–752 (1999)Google Scholar
  135. J.-F. Nielsen, J.P. Pelz, H. Hibino, C.-W. Hu, I.S.T. Tsong: Enhanced terrace stability for preparation of step-free Si(001)-(\(2\times 1\)) surfaces, Phys. Rev. Lett. 87, 136103 (2001)Google Scholar
  136. V. Zielasek, F. Liu, Y. Zhao, J.B. Maxson, M.G. Lagally: Surface stress-induced island shape transition in Si(001) homoepitaxy, Phys. Rev. B 64, 201320 (2001)Google Scholar
  137. K. Wurm, R. Kliese, Y. Hong, B. Röttger, Y. Wei, H. Neddermeyer, I.S.T. Tsong: Evolution of surface morphology of Si(100)-(\(2\times 1\)) during oxygen adsorption at elevated temperatures, Phys. Rev. B 50, 1567–1574 (1994)Google Scholar
  138. J.B. Hannon, M.C. Bartelt, N.C. Bartelt, G.L. Kellogg: Etching of the Si(001) surface with molecular oxygen, Phys. Rev. Lett. 81, 4676–4679 (1998)Google Scholar
  139. J.B. Hannon, G.L. Kellogg, M.C. Bartelt, N.C. Bartelt: Quantitative analysis of the evolution of surface growth morphology in LEEM, Surf. Rev. Lett. 5, 1151 (1998)Google Scholar
  140. R.M. Tromp, A.W. Denier van der Gon, M.C. Reuter: Surface stress as a driving force for interfacial mixing, Phys. Rev. Lett. 68, 2313–2316 (1992)Google Scholar
  141. D.E. Jones, J.P. Pelz, Y. Hong, E. Bauer, I.S.T. Tsong: Striped phase and temperature dependent step shape transition on highly B-doped Si(001)-(\(2\times 1\)) surfaces, Phys. Rev. Lett. 77, 330–333 (1996)Google Scholar
  142. E. Bauer: Surface Microscopy with Low Energy Electrons (Springer, New York 2014)Google Scholar
  143. J.B. Hannon, N.C. Bartelt, B.S. Swartzentruber, J.C. Hamilton, G.L. Kellogg: Step faceting at the (001) surface of boron doped silicon, Phys. Rev. Lett. 79, 4226–4229 (1997)Google Scholar
  144. J.B. Hannon, B.S. Swartzentruber, G.L. Kellogg, N.C. Bartelt: LEEM measurments of step energies at the (001) surface of heavily boron-doped silicon, Surf. Rev. Lett. 5, 1159–1165 (1998)Google Scholar
  145. J.-F. Nielsen, J.P. Pelz, H. Hibino, C.-W. Hu, I.S.T. Tsong, J. Kouvetakis: Controlled striped phase formation on ultraflat Si(001) surfaces during diborane exposure, Appl. Phys. Lett. 79, 3857–3859 (2001)Google Scholar
  146. P. Sutter, M.G. Lagally: Quantitative determination of dislocation-induced strain at the surface of (001) silicon-on-insulator, Phys. Rev. Lett. 82, 1490–1493 (1999)Google Scholar
  147. R.M. Tromp, W. Theis, N.C. Bartelt: Real-time microscopy of two-dimensional critical fluctuations: Disordering of the Si(113)-(\(3\times 1\)) reconstruction, Phys. Rev. Lett. 77, 2522–2525 (1996)Google Scholar
  148. W. Swiech, T. Schwarz-Selinger, D.G. Cahill: Phase coexistence and morphology at the Si(110) surface phase transition, Surf. Sci. 519, L599–L603 (2002)Google Scholar
  149. F. Watanabe, S. Kodambaka, W. Swiech, J.E. Greene, D.G. Cahill: LEEM study of island decay on Si(110), Surf. Sci. 572, 425–432 (2004)Google Scholar
  150. E. van Vroonhoven, H.J.W. Zandvliet, B. Poelsema: \((2\times 1)-(1\times 1)\) phase transition on Ge(001): Dimer breakup and surface roughening, Phys. Rev. Lett. 91, 116102 (2003)Google Scholar
  151. R.M. Tromp, M.C. Reuter: Local dimer exchange in surfactant-mediated epitaxial growth, Phys. Rev. Lett. 68, 954–957 (1992)Google Scholar
  152. P. Sutter, E. Mateeva, M.G. Lagally: Si growth on partially relaxed Ge islands, J. Vac. Sci. Technol. B 16, 1560–1563 (1998)Google Scholar
  153. P. Sutter, M.G. Lagally: Embedding of nanoscale 3-D SiGe islands in a Si matrix, Phys. Rev. Lett. 81, 3471–3474 (1998)Google Scholar
  154. P. Sutter, E. Mateeva, J.S. Sullivan, M.G. Lagally: Low-energy electron microscopy of nanoscale three-dimensional SiGe islands on Si(100), Thin Solid Films 336, 262–270 (1998)Google Scholar
  155. F.M. Ross, R.M. Tromp, M.C. Reuter: Transition states between pyramids and domes during Ge/Si island growth, Science 286, 1931–1934 (1999)Google Scholar
  156. P. Sutter, M.G. Lagally: Nucleationless three-dimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett. 84, 4637–4640 (2000)Google Scholar
  157. R.M. Tromp, F.M. Ross, M.C. Reuter: Instability-driven SiGe island growth, Phys. Rev. Lett. 84, 4641–4644 (2000)Google Scholar
  158. J.B. Maxson, D.E. Savage, F. Liu, R.M. Tromp, M.C. Reuter, M.G. Lagally: Thermal roughening of a thin film: A new type of roughening transition, Phys. Rev. Lett. 85, 2152–2155 (2000)Google Scholar
  159. P. Sutter, M.G. Lagally: Nucleationless island formation in SiGe/Si(100) heteroepitaxy, Mater. Sci. Eng. B 89, 45–48 (2002)Google Scholar
  160. J.B. Hannon, M. Copel, R. Stumpf, M.C. Reuter, R.M. Tromp: Critical role of surface steps in the alloying of Ge on Si(001), Phys. Rev. Lett. 92, 216104 (2004)Google Scholar
  161. R.M. Tromp, F.M. Ross: Advances in in situ ultra-high vacuum electron microscopy: Growth of SiGe on Si, Annu. Rev. Mater. Sci. 30, 431–449 (2000)Google Scholar
  162. A.W. Dernier van der Gon, R.M. Tromp, M.C. Reuter: Low energy electron microscopy studies of Ge and Ag growth on Si(111), Thin Solid Films 236, 140–145 (1993)Google Scholar
  163. T. Yasue, T. Koshikawa, E. Bauer: LEEM and LEED study of the growth of Ge on the Si(113) surface, J. Vac. Sci. Technol. B 20, 2496–2499 (2002)Google Scholar
  164. J. Falta, M.C. Reuter, R.M. Tromp: Growth modes of Ge on GaAs(001), Appl. Phys. Lett. 65, 1680–1682 (1994)Google Scholar
  165. E. Bauer, M. Mundschau, W. Swiech: Low energy electron microscopy of nanometer scale phenomena, J. Vac. Sci. Technol. B 9, 403–406 (1991)Google Scholar
  166. M. Horn-von Hoegen, F.-J. Meyer zu Heringdorf, D. Kaehler, T. Schmidt, E. Bauer: Adsorption induced giant faceting of vicinal Si(100), Thin Solid Films 336, 16–21 (1998)Google Scholar
  167. F.-J. Meyer zu Heringdorf, D. Kähler, T. Schmidt, E. Bauer, M. Copel, H. Minoda, M. Horn-von Hoegen: Giant faceting of vicinal Si(001) induced by Au adsorption, Surf. Rev. Lett. 5, 1167–1178 (1998)Google Scholar
  168. M. Horn-von Hoegen, F.-J. Meyer zu Hennigdorf, R. Hild, P. Zahl, T. Schmidt, E. Bauer: Au-induced giant faceting of vicinal Si(100), Surf. Sci. 433-435, 475–480 (1999)Google Scholar
  169. F.-J. Meyer zu Heringdorf, R. Hild, P. Zahl, T. Schmidt, B. Ressel, S. Heun, E. Bauer, M. Horn-von Hoegen: Local Au coverage as driving force for Au induced faceting of vicinal Si(001): A LEEM and XPEEM study, Surf. Sci. 480, 103–108 (2001)Google Scholar
  170. A.W. Dernier van der Gon, R.M. Tromp: Phase formation sequence and domain structure: A low-energy-electron-microscopy study of the Si(111)-(\(\sqrt{3}\times\sqrt{3}\)) Ag surface, Phys. Rev. Lett. 69, 3519–3522 (1992)Google Scholar
  171. J. Tersoff, A.W. Dernier van der Gon, R.M. Tromp: Shape oscillations in growth of small crystals, Phys. Rev. Lett. 70, 1143–1146 (1993)Google Scholar
  172. R.M. Tromp, A.W. Denier van der Gon, F.K. LeGoues, M.C. Reuter: Observation of buried interfaces with low energy electron microscopy, Phys. Rev. Lett. 71, 3299–3302 (1993)Google Scholar
  173. W.X. Tang, K.L. Man, H. Huang, C.H. Woo, M.S. Altman: Growth shapes of Ag crystallites on the Si(111) surface, J. Vac. Sci. Technol. B 20, 2492–2495 (2002)Google Scholar
  174. J. Tersoff, R.M. Tromp: Shape transition in growth of strained islands: Spontaneous formation of quantum wires, Phys. Rev. Lett. 70, 2782–2785 (1993)Google Scholar
  175. T. Michely, M.C. Reuter, M. Copel, R.M. Tromp: Symmetry, structure, and step induced ordering of the Si(001)-(\(2\times 3\))Ag surface, Phys. Rev. Lett. 73, 2095–2098 (1994)Google Scholar
  176. R.M. Tromp, T. Michely: Atomic-layer titration of surface reactions, Nature 373, 499–501 (1995)Google Scholar
  177. B.Q. Li, W. Swiech, J.A. Venables, J.M. Zuo: A LEEM study of bamboo-like growth of Ag crystals on Si(001) surfaces, Surf. Sci. 569, 142–148 (2004)Google Scholar
  178. K.R. Roos, K.L. Roos, M. Horn-von Hoegen, F.-J. Meyer zu Heringdorf: High temperature self-assembly of Ag nanowires on vicinal Si(001), J. Phys. Condens. Matter 17, S1407–S1414 (2005)Google Scholar
  179. M. Mundschau, E. Bauer, W. Telieps, W. Święch: Initial epitaxial growth of copper silicide on Si(111) studied by low energy electron microscopy and photoemission electron microscopy, J. Appl. Phys. 65, 4747–4752 (1989)Google Scholar
  180. T. Yasue, T. Koshikawa, M. Jalochowski, E. Bauer: Dynamic LEEM observation of Cu nanostructure formation processes on Si(111) with hydrogen, Surf. Rev. Lett. 7, 595–599 (2000)Google Scholar
  181. T. Yasue, T. Koshikawa, M. Jalochowski, E. Bauer: Dynamic observations of the formation of thin Cu layers on clean and hydrogen-terminated Si(111) surfaces, Surf. Sci. 480, 118–127 (2001)Google Scholar
  182. N. Kuroiwa, Y. Fukushima, P. Rajasekar, H. Neddermeyer, M. Jalochowski, E. Bauer, T. Yasue, T. Koshikawa: Copper nanostructure formation and structure analysis on hydrogen-terminated Si(111) surface, Surf. Interface Anal. 35, 24–28 (2003)Google Scholar
  183. T. Michely, M.C. Reuter, R.M. Tromp: Al on Si(111): Phase diagram and atomic mechanisms, Phys. Rev. B 53, 4105–4108 (1996)Google Scholar
  184. T. Schmidt, E. Bauer: Interfactant-mediated quasi-Frank-van der Merwe growth of Pb on Si(111), Phys. Rev. B 62, 15815–15825 (2000)Google Scholar
  185. T. Schmidt, B. Ressel, S. Heun, K.C. Prince, E. Bauer: Growth of thin metal films studied by spectromicroscopy. In: Proc. 6th Int. Conf. X-ray Microsc., ed. by W. Meyer-Ilse, T. Altwood (AIP Melville, New York 2000) pp. 27–32Google Scholar
  186. T. Schmidt, E. Bauer: Influence of interfactants on thin metal film growth, Surf. Sci. 480, 137–144 (2001)Google Scholar
  187. L. Li, C. Koziol, K. Wurm, Y. Hong, E. Bauer, I.S.T. Tsong: Surface morphology of Pb overlayers grown on Si(100)-(\(2\times 1\)), Phys. Rev. B 50, 10834–10842 (1994)Google Scholar
  188. M. Jalochowski, E. Bauer: Self-assembled parallel mesoscopic Pb-wires on Au-modified Si(533) substrates, Prog. Surf. Sci. 67, 79–97 (2001)Google Scholar
  189. M. Jalochowski, E. Bauer: Growth of metallic nanowires on anisotropic Si substrates: Pb on vicinal Si(001), Si(755), Si(533) and Si(110), Surf. Sci. 480, 109–117 (2001)Google Scholar
  190. A. Pavlovska, E. Bauer, M. Giesen: Low energy electron microscopy study of in on Si(111), J. Vac. Sci. Technol. B 20, 2478–2491 (2002)Google Scholar
  191. A. Pavlovska, E. Bauer: Surface reconstructions in two and three dimensions: In on Si(111), Surf. Interface Anal. 37, 110–114 (2005)Google Scholar
  192. H.A. McKay, R.M. Feenstra: Low energy electron microscopy of indium on Si(001) surfaces, Surf. Sci. 547, 127–138 (2003)Google Scholar
  193. E. Bauer: Epitaxial growth studies by low energy electron microscopy, Scanning Microsc. 8(4), 765–772 (1994)Google Scholar
  194. R.J. Phaneuf, Y. Hong, S. Horch, P.A. Bennett: Two dimensional phase separation for Co adsorbed on Si(111), Phys. Rev. Lett. 78, 4605–4608 (1997)Google Scholar
  195. R.J. Phaneuf, Y. Hong, S. Horch, P.A. Bennett: Observations of reversible and irreversible structural transitions of cobalt on Si(111) with LEEM, Micron 30, 13–20 (1999)Google Scholar
  196. R.J. Phaneuf, P.A. Bennett, M. Marsi, S. Gunther, L. Gregoratti, L. Casalis, M. Kiskinova: Equilibration of ring-cluster surface phases and silicide islands for Co adsorbed on Si(111), Surf. Sci. 431, 232–241 (1999)Google Scholar
  197. P.A. Bennett, M.Y. Lee, S.A. Parikh, K. Wurm, R.J. Phaneuf: Surface phase transformations in the Ni/Si(111) system observed in real time using low-energy electron microscopy, J. Vac. Sci. Technol. A 13, 1728–1732 (1995)Google Scholar
  198. P.A. Bennett, B. Ashcroft, Z. He, R.M. Tromp: Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy, J. Vac. Sci. Technol. B 20, 2500–2504 (2002)Google Scholar
  199. R.M. Tromp, M.C. Reuter: Kinetic instability in the growth of CaF2 on Si(111), Phys. Rev. Lett. 73, 110–113 (1994)Google Scholar
  200. R.M. Tromp, F.K. LeGoues, M.C. Reuter: Strain relief during growth: CaF2 on Si(111), Phys. Rev. Lett. 74, 2706–2709 (1995)Google Scholar
  201. E. Bauer, Y. Wei, T. Müller, A. Pavlovska, I.S.T. Tsong: Reactive crystal growth in two dimensions: Silicon nitride on Si(111), Phys. Rev. B 51, 17891–17901 (1995)Google Scholar
  202. A. Pavlovska, E. Bauer, D.J. Smith: In situ studies of the role of excess Ga on the growth morphology of thin GaN layers, Surf. Sci. 496, 160–178 (2002)Google Scholar
  203. J.B. Maxson, N. Perkins, D.E. Savage, A.R. Woll, L. Zhang, T.F. Kuech, M.G. Lagally: Novel dark-field imaging of GaN{0001} surfaces with low-energy electron microscopy, Surf. Sci. 464, 217–222 (2000)Google Scholar
  204. A. Pavlovska, V.M. Torres, J.L. Edwards, E. Bauer, D.J. Smith, R.B. Doak, I.S.T. Tsong, D.B. Thomson, R.F. Davis: Homoepitaxial GaN layers studied by low-energy electron microscopy, atomic force microscopy transmission electron microscopy, Phys. Status Solidi (a) 176, 469–473 (1999)Google Scholar
  205. A. Pavlovska, E. Bauer: Wetting and reactive thin film growth, Surf. Sci. 480, 128–136 (2001)Google Scholar
  206. A. Pavlovska, E. Bauer, V.M. Torres, J.L. Edwards, R.B. Doak, I.S.T. Tsong, V. Ramachadran, F.M. Feenstra: In situ real-time studies of GaN growth on 6H-SiC(0001) by low energy electron microscopy (LEEM), J. Cryst. Growth 189/190, 310–316 (1998)Google Scholar
  207. A. Pavlovska, E. Bauer: Low energy electron microscopy studies of the growth of GaN on 6H-SiC(0001), Surf. Rev. Lett. 8, 337–346 (2001)Google Scholar
  208. C.W. Hu, D.J. Smith, R.B. Doak, I.S.T. Tsong: Morphological control of GaN buffer layers grown by molecular beam epitaxy on 6H-SiC(0001), Surf. Rev. Lett. 7, 565–570 (2000)Google Scholar
  209. M. Mundschau, E. Bauer, W. Święch: Defects on the surface of Mo{011} observed by low-energy electron microscopy, Philos. Mag. A 59, 217–226 (1989)Google Scholar
  210. W. Święch, M. Mundschau, C.P. Flynn: Interfacial defects in thin refractory metal films imaged by low-energy electron microscopy, Appl. Phys. Lett. 74, 2626–2628 (1999)Google Scholar
  211. W. Święch, M. Mundschau, C.P. Flynn: Characterization of single crystal films of molybdenum (011) grown by molecular beam epitaxy on sapphire (\(11\bar{2}0\)) and studied by low-energy electron microscopy, Surf. Sci. 437, 61–74 (1999)Google Scholar
  212. M. Mundschau, W. Święch, C.S. Durfee, C.P. Flynn: Slip propagation in epitaxial Mo (011) studied by low-energy electron microscopy, Surf. Sci. 440, L831–L834 (1999)Google Scholar
  213. M. Ondrejcek, W. Swiech, G. Yang, C.P. Flynn: Low energy electron microscopy studies of steps on single crystal thin films of refractory metals, J. Vac. Sci. Technol. B 20, 2473–2477 (2002)Google Scholar
  214. M. Ondrejcek, W. Swiech, C.S. Durfee, C.P. Flynn: Step fluctuations and step interactions on Mo(011), Surf. Sci. 541, 31–45 (2003)Google Scholar
  215. M. Ondrejcek, W. Swiech, C.P. Flynn: Studies of step stiffnesses and relaxation on Pt(111), Pd(111) and Mo(011), Surf. Sci. 566, 160–164 (2004)Google Scholar
  216. C.P. Flynn, W. Święch: Periodic states in the constrained equilibrium of vicinal Nb(011) miscut along [100], Phys. Rev. Lett. 83, 3482–3485 (1999)Google Scholar
  217. C.P. Flynn, W. Święch, R.S. Appleton, M. Ondrejcek: Nanofaceting of vicinal Nb(011), Phys. Rev. B 62, 2096–2107 (2000)Google Scholar
  218. R.S. Appleton, W. Swiech, M. Ondrejcek, C.P. Flynn: Studies of threading dislocations in Nb(011) films, Philos. Mag. A 83, 1639–1651 (2003)Google Scholar
  219. C.P. Flynn, M. Ondrejcek, W. Swiech: Capillary waves and thermodynamics of multisteps on Pt(111), Chem. Phys. Lett. 378, 161–166 (2003)Google Scholar
  220. M. Ondrejcek, W. Swiech, G. Yang, C.P. Flynn: Crossover from bulk to surface diffusion in the fluctuations of step edges on Pt(111), Philos. Mag. Lett. 84, 69–77 (2004)Google Scholar
  221. B. Poelsema, J.B. Hannon, N.C. Bartelt, G.L. Kellogg: Bulk-surface vacancy exchange on Pt(111), Appl. Phys. Lett. 84, 2551–2553 (2004)Google Scholar
  222. M. Ondrejcek, W. Swiech, M. Rajappan, C.P. Flynn: Ripples formed in the sputter erosion of Pd(111), J. Phys. Condens. Matter 15, L735–L742 (2003)Google Scholar
  223. G.L. Kellogg, N.C. Bartelt: Surface-diffusion-limited island decay on Rh(001), Surf. Sci. 577, 151–157 (2005)Google Scholar
  224. M. Ondrejcek, M. Rajappan, W. Swiech, C.P. Flynn: Step fluctuation spectroscopy of Au(111) by LEEM, Surf. Sci. 574, 111–122 (2005)Google Scholar
  225. W. Telieps, M. Mundschau, E. Bauer: Dark field imaging with LEEM, Optik 77, 93–97 (1987)Google Scholar
  226. W. Telieps, M. Mundschau, E. Bauer: Surface domain structure of reconstructed Au(100) observed by dark field low energy electron microscopy, Surf. Sci. 225, 87–96 (1990)Google Scholar
  227. J. Tersoff, A.W. Denier van der Gon, R.M. Tromp: Critical island size for layer-by-layer growth, Phys. Rev. Lett. 72, 266–269 (1994)Google Scholar
  228. R. Gerlach, T. Maroutian, L. Douillard, D. Martinotti, H.J. Ernst: A novel method to determine the Ehrlich-Schwoebel barrier, Surf. Sci. 480, 97–102 (2001)Google Scholar
  229. M.S. Altman, S. Chiang, P. Statiris, T. Gustafsson, E. Bauer: Stress-induced microfacetted reconstructions of the Pb(110) surface. In: The Structure of Surfaces, Vol. IV, ed. by X.D. Xi, S.Y. Tong, M.A. van Hove (World Scientific, Singapore 1994) pp. 183–191Google Scholar
  230. M.S. Altman, E. Bauer: Reconstructions of the Pb(110) surface studied by low energy electron microscopy, Surf. Sci. 344, 51–64 (1995)Google Scholar
  231. K.F. McCarty, J.A. Nobel, N.C. Bartelt: Vacancies in solids and the stability of surface morphology, Nature 412, 622–625 (2001)Google Scholar
  232. M. Mundschau, E. Bauer, W. Święch: Modification of atomic steps by adsorbates observed by low energy electron microscopy and photoemission microscopy, Catal. Lett. 1, 405–412 (1988)Google Scholar
  233. E. Bauer: Ultrathin metal films: From one to three dimensions, Ber. Bunsenges. Phys. Chem. 95, 1315–1325 (1991)Google Scholar
  234. E.Z. Luo, Q. Cai, W.F. Chung, B.G. Orr, M.S. Altman: Competing desorption pathways during epitaxial growth: LEEM investigation of Cu/W(110) heteroepitaxy, Phys. Rev. B 54, 14673 (1996)Google Scholar
  235. I.K.H. Man, M.S. Altman: Low-energy electron microscopy of layer spacings and quantum electronic structure of ultrathin films, Surf. Interface Anal. 37, 235–238 (2005)Google Scholar
  236. L. Aballe, A. Barinov, A. Locatelli, S. Heun, S. Cherifi, M. Kiskinova: Spectromicroscopy of ultrathin Pd films on W(110): Interplay of morphology and electronic structure, Appl. Surf. Sci. 238, 138–142 (2004)Google Scholar
  237. W.L. Ling, T. Giessel, K. Thürmer, R.Q. Hwang, N.C. Bartelt, K.F. McCarty: Crucial role of substrate steps in de-wetting of crystalline thin films, Surf. Sci. 570, L297–L303 (2004)Google Scholar
  238. K. Pelhos, J.B. Hannon, G.L. Kellogg, T.E. Madey: LEEM investigation of the faceting of the Pt covered W(111) surface, Surf. Sci. 432, 115–124 (1999)Google Scholar
  239. K. Pelhos, J.B. Hannon, G.L. Kellogg, T.E. Madey: Nucleation and growth of the platinum-covered W(111) surface, Surf. Rev. Lett. 6, 767–774 (1999)Google Scholar
  240. D. Wu, W.K. Lau, Z.Q. He, Y.J. Feng, M.S. Altman, C.T. Chan: Ordered alloying of Pd with the Mo(100) surface, Phys. Rev. B 62, 8366–8375 (2000)Google Scholar
  241. A.K. Schmid, N.C. Bartelt, R.Q. Hwang: Alloying at surfaces by the migration of reactive two-dimensional islands, Science 290, 1561–1564 (2000)Google Scholar
  242. G.L. Kellogg, R. Plass: The relationship between the growth shape of three-dimensional Pb islands on Cu(100) and the domain orientation of the underlying C($$5\sqrt{2}\times\sqrt{2}$$)R45 structure, Surf. Sci. 465, L777–L782 (2000)Google Scholar
  243. R. Plass, G.L. Kellogg: Surface morphology changes during Pb deposition on Cu(100): Evidence for surface alloyed Cu(100)-c(\(2\times 2\)) Pb, Surf. Sci. 470, 106–120 (2000)Google Scholar
  244. G.L. Kellogg, R.A. Plass: Mesoscopic scale observations of surface alloying, surface phase transitions, domain coarsening, and 3-D island growth: Pb on Cu(100), Surf. Rev. Lett. 7, 649–655 (2000)Google Scholar
  245. R. Plass, J.A. Last, N.C. Bartelt, G.L. Kellogg: Nanostructures: Self-assembled domain patterns, Nature 412, 875 (2001)Google Scholar
  246. R. Plass, N.C. Bartelt, G.L. Kellogg: Dynamic observations of nanoscale self-assembly on solid surfaces, J. Phys. Condens. Matter 14, 4227–4240 (2002)Google Scholar
  247. R. van Gastel, R. Plass, N.C. Bartelt, G.L. Kellogg: Thermal motion and energetics of self-assembled domain structures: Pb on Cu(111), Phys. Rev. Lett. 91, 055503 (2003)Google Scholar
  248. R. van Gastel, N.C. Bartelt, P.J. Feibelman, F. Léonard, G.L. Kellogg: Relationship between domain-boundary free energy and the temperature dependence of stress-domain patterns of Pb on Cu(111), Phys. Rev. B 70, 245413 (2004)Google Scholar
  249. F. Léonard, N.C. Bartelt, G.L. Kellogg: Effects of elastic anisotropy on the periodicity and orientation of striped stress domain patterns at solid surfaces, Phys. Rev. B 71, 045416 (2005)Google Scholar
  250. G.L. Kellogg: Surface alloying and de-alloying of Pb on single-crystal Cu surfaces. In: The Chemical Physics of Solid Surfaces, ed. by D.P. Woodruff (Elsevier, Amsterdam 2002) pp. 152–183Google Scholar
  251. M.S. Altman, Q. Cai, W.F. Chung, E.Z. Luo, H. Pinkvos, E. Bauer: Role of surface steps in thin film growth and properties studied by LEEM, MRS Proceedings 355, 235 (1994)Google Scholar
  252. E.Z. Luo, Q. Cai, W.F. Chung, M.S. Altman: Interface effects in melting of Pb clusters on the Cu(111) surface, Appl. Surf. Sci. 92, 331–334 (1996)Google Scholar
  253. T. Schmidt, A. Schaak, S.G. Guenther, B. Ressel, E. Bauer, R. Imbihl: In situ imaging of structural changes in a chemical wave with low energy electron microscopy: The system Rh(110)/NO\(+\)H2, Chem. Phys. Lett. 318, 549–554 (2000)Google Scholar
  254. M.S. Altman, E. Bauer: The reaction of oxygen with the hot W(001) surface studied by low-energy electron microscopy, J. Vac. Sci. Technol. A 9, 659–660 (1991)Google Scholar
  255. M.S. Altman, E. Bauer: LEEM/LEED investigation of reconstruction and initial oxidation of the W(001), Surf. Sci. 347, 265–279 (1996)Google Scholar
  256. M. Ondrejcek, R.S. Appleton, W. Swiech, V.L. Petrova, C.P. Flynn: Thermally activated stripe reconstruction induced by O on Nb(011), Phys. Rev. Lett. 87, 116102 (2001)Google Scholar
  257. K.F. McCarty: Imaging the crystallization and growth of oxide domains on the NiAl(110) surface, Surf. Sci. 474, L165–L172 (2001)Google Scholar
  258. B. Rausenberger, W. Świȩch, W. Engel, A.M. Bradshaw, E. Zeitler: LEEM and selected-area LEED studies of reaction front propagation, Surf. Sci. 287/288, 235–240 (1993)Google Scholar
  259. B. Rausenberger, W. Swiech, C.S. Rastomjee, M. Mundschau, W. Engel, E. Zeitler, A.M. Bradshaw: Imaging reaction-diffusion fronts with low-energy electron microscopy, Chem. Phys. Lett. 215, 109–113 (1993)Google Scholar
  260. A.K. Schmid, W. Świȩch, C.S. Rastomjee, B. Rausenberger, W. Engel, E. Zeitler, A.M. Bradshaw: The chemistry of reaction-diffusion fronts investigated by microscopic LEED I–V fingerprinting, Surf. Sci. 331–333, 225–230 (1995)Google Scholar
  261. B. Rausenberger, W. Swiech, A.K. Schmid, C.S. Rastomjee, W. Engel, A.M. Bradshaw: Investigation of the NO+H2 reaction on Pt(100) with low-energy electron microscopy, J. Chem. Soc. Faraday Trans. 94, 963–970 (1998)Google Scholar
  262. K.C. Rose, B. Berton, R. Imbihl, W. Engel, A.M. Bradshaw: Pattern formation in an oscillatory medium with memory effects: Reversible roughening in a surface reaction, Phys. Rev. Lett. 79, 3427 (1997)Google Scholar
  263. H. Wei, G. Lilienkamp, R. Imbihl: Surface topographical changes and chemical wave patterns in catalytic CO oxidation on Pt(110), Chem. Phys. Lett. 389, 284–288 (2004)Google Scholar
  264. H. Marbach, G. Lilienkamp, H. Wei, S. Günther, Y. Suchorski, R. Imbihl: Ordered phases in alkali redistribution during a catalytic surface reaction, Phys. Chem. Chem. Phys. 5, 2730–2735 (2003)Google Scholar
  265. A. Locatelli, S. Heun, M. Kiskinova: Direct observation of reaction-induced lateral redistribution of sub-monolayers of Au deposited on a Rh(110) surface, Surf. Sci. 566-568, 1130–1136 (2004)Google Scholar
  266. K.F. McCarty, N.C. Bartelt: Role of bulk thermal defects in the reconstruction dynamics of the TiO2(110) surface, Phys. Rev. Lett. 90, 046104 (2003)Google Scholar
  267. K.F. McCarty, N.C. Bartelt: The $$1\times 1/1\times 2$$ phase transition of the TiO2(110) surface—Variation of transition temperature with crystal composition, Surf. Sci. 527, L203–L212 (2003)Google Scholar
  268. K.F. McCarty, N.C. Bartelt: Spatially resolved dynamics of the TiO2(110) surface reconstruction, Surf. Sci. 540, 157–171 (2003)Google Scholar
  269. K.F. McCarty: Growth regimes of the oxygen-deficient TiO2(110) surface exposed to oxygen, Surf. Sci. 543, 185–206 (2003)Google Scholar
  270. S. Kodambaka, S.V. Khare, W. Święch, K. Ohmori, I. Petrov, J.E. Greene: Dislocation-driven surface dynamics on solids, Nature 429, 49–52 (2004)Google Scholar
  271. S. Kodambaka, N. Israeli, J. Bareño, W. Święch, K. Ohmori, I. Petrov, J.E. Greene: Low-energy electron microscopy studies of interlayer mass transport kinetics on TiN(111), Surf. Sci. 560, 53–62 (2004)Google Scholar
  272. F.-J. Meyer zu Heringdorf, M.C. Reuter, R.M. Tromp: Growth dynamics of pentacene thin films, Nature 412, 517–520 (2001)Google Scholar
  273. F.-J. Meyer zu Heringdorf, M.C. Reuter, R.M. Tromp: The nucleation of pentacene thin films, Appl. Phys. A 78, 787–791 (2004)Google Scholar
  274. Y. Harada, S. Yamamoto, M. Aoki, S. Masuda, T. Ichinokawa, M. Kato, Y. Sakai: Surface spectroscopy with high spatial resolution using metastable atoms, Nature 372, 657–659 (1994)Google Scholar
  275. S. Yamamoto, S. Masuda, H. Yasufuku, N. Ueno, Y. Harada, T. Ichinokawa, M. Kato, Y. Sakai: Study of solid surfaces by metastable electron emission microscopy: Energy-filtered images and local electron spectra at the outermost surface layer of silicon oxide on Si(100), J. Appl. Phys. 82, 2954–2960 (1997)Google Scholar
  276. G. Lilienkamp, H. Wei, W. Maus-Friedrichs, V. Kempter, H. Marbach, S. Günther, Y. Suchorski: Metastable impact electron emission microscopy of the catalytic H2 oxidation on Rh(110), Surf. Sci. 532–535, 132–136 (2003)Google Scholar
  277. D.T. Pierce: Spin-polarized electron sources. In: Atomic, Molecular and Optical Physics: Charged Particles, Methods in Experimental Physics, Vol. 29A, ed. by F.B. Dunning, R.G. Hulet (Academic Press, San Diego 1995) pp. 1–38Google Scholar
  278. X. Jin, A.A.C. Cotta, G. Chen, A.T. N'Diaye, A.K. Schmid, N. Yamamoto: Low energy electron microscopy and auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode, J. Appl. Phys. 116, 174509 (2014)Google Scholar
  279. T. Nishitani, T. Nakanishi, M. Yamamoto, S. Okumi, F. Furuta, M. Miyamoto, M. Kuwahara, N. Yamamoto, K. Naniwa, O. Watanabe, Y. Takeda, H. Kobayakawa, Y. Takashima, H. Horinaka, T. Matsuyama, K. Togawa, T. Saka, M. Tawada, T. Omori, Y. Kurihara, M. Yoshioka, K. Kato, T. Baba: Highly polarized electrons from GaAs-GaAsP and InGaAs-AlGaAs strained-layer superlattice photocathodes, J. Appl. Phys. 97, 094907 (2005)Google Scholar
  280. X. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa: Super-high brightness and high-spin-polarization photocathode, Appl. Phys. Express 1, 0450023 (2008)Google Scholar
  281. X. Jin, B. Ozdol, M. Yamamoto, A. Mano, N. Yamamoto, Y. Takeda: Effect of crystal quality on performance of spin-polarized photocathode, Appl. Phys. Lett. 105, 203509 (2014)Google Scholar
  282. T. Duden, E. Bauer: A compact electron spin polarization manipulator, Rev. Sci. Instrum. 66, 2861–2864 (1995)Google Scholar
  283. H. Pinkvos, H. Poppa, E. Bauer, G.-M. Kim: A time-resolved SPLEEM study of magnetic microstructure in ultrathin Co films on W(110). In: Magnetism and Structure in Systems of Reduced Dimensions, ed. by R.F.C. Farrow, B. Dieny, M. Donath, A. Fert, B.D. Hermsmeier (Plenum, New York 1993) pp. 25–31Google Scholar
  284. M.S. Altman, I. Hurst, G. Marx, H. Pinkvos, H. Poppa, E. Bauer: Spin polarized low energy electron microscopy of surface magnetic structure, MRS Proceedings 232, 125 (1991)Google Scholar
  285. H. Pinkvos, H. Poppa, E. Bauer, J. Hurst: A spin-polarized low energy electron microscopy study of the magnetic microstructure of ultrathin epitaxial cobalt films on W(110), Ultramicroscopy 47, 339–345 (1992)Google Scholar
  286. H. Poppa, H. Pinkvos, K. Wurm, E. Bauer: Spin polarized low energy electron microscopy (SPLEEM) of single and combined layers of Co, Cu, and Pd on W(110), MRS Proceedings 313, 219 (1993)Google Scholar
  287. M.S. Altman, H. Pinkvos, E. Bauer: Spin polarized low energy electron microscopy for thin film magnetism and microstructure, J. Magn. Soc. Jpn. 19, 129–134 (1995)Google Scholar
  288. E. Bauer, T. Duden, H. Pinkvos, H. Poppa, K. Wurm: LEEM studies of the microstructure and magnetic domain structure of ultrathin films, J. Magn. Magn. Mater. 156, 1–6 (1996)Google Scholar
  289. K. Grzelakowski, T. Duden, E. Bauer, H. Poppa, S. Chiang: A new surface microscope for magnetic imaging, IEEE Trans. Magn. 30, 4500–4502 (1994)Google Scholar
  290. M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, Y. Nakagawa, T. Konomi, A. Mano, N. Yamamoto, M. Kuwahara, M. Yamamoto, S. Okumi, T. Nakanishi, X. Jin, T. Ujihara, Y. Takeda, T. Kohashi, T. Ohshima, T. Saka, T. Kato, H. Horinaka: Real time magnetic imaging by spin-polarized low energy electron microscopy with highly spin-polarized and high brightness electron gun, Appl. Phys. Express 3, 026601 (2010)Google Scholar
  291. T. Yasue, M. Suzuki, K. Tsuno, S. Goto, Y. Arai, T. Koshikawa: Novel multipole Wien filter as three-dimensional spin manipulator, Rev. Sci. Instrum. 85, 043701 (2014)Google Scholar
  292. T. Duden, E. Bauer: Spin-polarized low energy electron microscopy, Surf. Rev. Lett. 5, 1213–1220 (1998)Google Scholar
  293. E. Bauer: Spin-polarized low energy electron microscopy (SPLEEM). In: Novel Techniques for Characterizing Magnetic Materials, ed. by Y. Zhu (Kluwer Academic, Boston 2005) pp. 361–379Google Scholar
  294. E. Bauer: Spin-polarized low energy electron microscopy. In: The Handbook of Magnetism and Advanced Magnetic Materials, Vol. 3, ed. by H. Kronmüller, S. Parkin (Wiley, Chichester 2007) pp. 1470–1487Google Scholar
  295. N. Rougemaille, A.K. Schmid: Magnetic imaging with spin-polarized low-energy electron microscopy, Eur. Phys. J. Appl. Phys. 50, 20101 (2010)Google Scholar
  296. E. Bauer: Spin-polarized low-energy electron microscopy. In: Handbook of Nanoscopy, ed. by G. van Tandeloo, D. van Dyck, S.J. Pennycook (Wiley, Weinheim 2012) pp. 697–707Google Scholar
  297. E.D. Tober, G. Witte, H. Poppa: Variable temperature and ex-situ spin-polarized low-energy electron microscope, J. Vac. Sci. Technol. A 18, 1845 (2000)Google Scholar
  298. T. Duden, E. Bauer: Spin-polarized low energy electron microscopy of ferromagnetic layers, J. Electron Microsc. 47, 379–385 (1998)Google Scholar
  299. T. Duden, E. Bauer: Influence of Au and Cu over layers on the magnetic structure of Co films on W(110), Phys. Rev. B 59, 468–473 (1999)Google Scholar
  300. R. Zdyb, E. Bauer: Spin dependent quantum size effects in the electron reflectivity of ultrathin ferromagnetic crystals, Surf. Rev. Lett. 9, 1485–1491 (2002)Google Scholar
  301. R. Zdyb, E. Bauer: Spin-resolved inelastic mean free path of slow electrons in Fe, J. Phys. Condens. Matter 25, 272201 (2013)Google Scholar
  302. Y.Z. Wu, A.K. Schmid, Z.Q. Qiu: Spin-dependent quantum interference from epitaxial MgO thin films on Fe(001), Phys. Rev. Lett. 97, 217205 (2006)Google Scholar
  303. T. Duden, E. Bauer: Magnetization wrinkle in thin ferromagnetic films, Phys. Rev. Lett. 77, 2308–2311 (1996)Google Scholar
  304. T. Duden, E. Bauer: Magnetic domain structure and spin reorientation transition in the system Co/Au/W(110), MRS Proceedings 475, 283 (1997)Google Scholar
  305. F. El Gabaly, S. Gallego, C. Muñoz, L. Szunyogh, P. Weinberger, C. Klein, A.K. Schmid, K.F. McCarty, J. de la Figuera: Imaging spin-reorientation transitions in consecutive atomic Co layers on Ru(0001), Phys. Rev. Lett. 96, 147202 (2006)Google Scholar
  306. C. Klein, R. Ramchal, M. Farle, A.K. Schmid: Direct imaging of spin-reorientation transitions in ultrathin Ni films by spin-polarized low-energy electron microscopy, Surf. Interface Anal. 38, 1550–1553 (2006)Google Scholar
  307. C. Klein, R. Ramchal, A.K. Schmid, M. Farle: Controlling the kinetic order of spin-reorientation transitions in Ni/Cu(100) films by tuning the substrate step structure, Phys. Rev. B 75, 193405 (2007)Google Scholar
  308. F. El Gabaly, K.F. McCarty, A.K. Schmid, J. de la Figuera, M.C. Muñoz, L. Szunyogh, P. Weinberger, S. Gallego: Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001), New J. Phys. 10, 073024 (2008)Google Scholar
  309. B. Santos, S. Galego, A. Mascaraque, K.F. McCarty, A. Quesada, A.T. N'Diaye, A.K. Schmid, J. de la Figuera: Hydrogen-induced reversible spin-reorientation transition and magnetic stripe domain phase in bilayer Co on Ru(0001), Phys. Rev. B 85, 134409 (2012)Google Scholar
  310. Q. Wu, M.S. Altman: Spin polarized low energy electron microscopy of quantum well resonances in Fe films on the Cu-covered W(110) surface, Ultramicroscopy 130, 109–114 (2013)Google Scholar
  311. Q. Wu, M.S. Altman: Probing buried magnetic interface structure with the quantum size effect in spin-dependent electron reflectivity, Ultramicroscopy 159, 530–535 (2015)Google Scholar
  312. K.L. Man, M.S. Altman, H. Poppa: Spin polarized low energy electron microscopy investigations of magnetic transitions in Fe/Cu(100), Surf. Sci. 480, 163–172 (2001)Google Scholar
  313. K.L. Man, W.L. Ling, S.Y. Paik, H. Poppa, M.S. Altman, Z.Q. Qiu: Modification of initial growth and magnetism in Fe/Cu(100), Phys. Rev. B 65, 024409 (2001)Google Scholar
  314. H. Poppa, E.D. Tober, A.K. Schmid: In situ observation of magnetic domain pattern evolution in applied fields by spin-polarized low energy electron microscopy, J. Appl. Phys. 91, 6932–6934 (2002)Google Scholar
  315. R. Zdyb, E. Bauer: Magnetic domain structure and spin reorientation transition in ultrathin Fe-Co alloy films, Phys. Rev. B 67, 134420 (2003)Google Scholar
  316. R. Zdyb, A. Locatelli, S. Heun, S. Cherifi, R. Belkhou, E. Bauer: Nanomagnetism studies with spin-polarized low energy electron microscopy and x-ray magnetic circular dichroism photo emission electron microscopy, Surf. Interface Anal. 27, 239–243 (2005)Google Scholar
  317. C. Ji, Z. Wang, Q. Wu, L. Huang, M.S. Altman: Controlling magnetic interfaces using ordered surface alloys, Phys. Rev. B 94, 134425 (2016)Google Scholar
  318. T. Duden, R. Zdyb, M. Altman, E. Bauer: Micromagnetic and microcrystalline structure of ultrathin co layers on W single crystal surfaces, Surf. Sci. 480, 145–152 (2001)Google Scholar
  319. K.L. Man, R. Zdyb, Y.I. Feng, T. Chan, M.S. Altman, E. Bauer: Growth morphology, structure and magnetism of ultrathin co films on W(111), Phys. Rev. B 67, 184402 (2003)Google Scholar
  320. Q. Wu, R. Zdyb, E. Bauer, M.S. Altman: Growth, magnetism and ferromagnetic thickness gap in Fe films on the W(111) surface, Phys. Rev. B 87, 104410 (2013)Google Scholar
  321. Y.R. Niu, K.L. Man, A. Pavlovska, E. Bauer, M.S. Altman: Fe on W(001): From continuous films to nanoparticles: Growth and magnetic domain structure, Phys. Rev. B 95, 064404 (2017)Google Scholar
  322. T. Duden, E. Bauer: Biquadratic exchange in ferromagnetic/nonferromagnetic sandwiches: A spin-polarized low energy electron study, Phys. Rev. B 59, 474–479 (1999)Google Scholar
  323. T. Duden, E. Bauer: Exchange coupling in Co/Cu/Co sandwiches studied by spin-polarized low energy electron microscopy, J. Magn. Magn. Mater. 191, 301–312 (1999)Google Scholar
  324. N. Rougemaille, M. Portalupi, A. Brambilla, P. Biagioni, A. Lanzara, M. Finazzi, A.K. Schmid, L. Duò: Exchange-induced frustration in Fe/NiO multilayers, Phys. Rev. B 76(6), 214425–214421 (2007)Google Scholar
  325. M. Suzuki, T. Yasue, T. Koshikawa, E. Bauer: Magnetic structure of Co/Ni thin film magnetic structure of Co/Ni thin films on W(110) studied by high brightness and highly spin-polarized LEEM. In: Proc. 8th Int. Symp. At. Level Charact. New Mater. Devices ALC'11, Seoul (2011) pp. 437–440Google Scholar
  326. M. Suzuki, K. Kudo, K. Kojima, T. Yasue, N. Akutsu, W.A. Diño, H. Kasai, E. Bauer, T. Koshikawa: Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: I. Dynamic observations, J. Phys. Condens. Matter 25, 406001 (2013)Google Scholar
  327. K. Kudo, M. Suzuki, K. Kojima, T. Yasue, N. Akutsu, W.A. Diño, H. Kasai, E. Bauer, T. Koshikawa: Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: II. Numerical simulations, J. Phys. Condens. Matter 25, 395005 (2013)Google Scholar
  328. N. Rougemaille, A.T. N'Diaye, J. Coraux, C. Vo-Van, O. Fruchart, A.K. Schmid: Perpendicular magnetic anisotropy of cobalt films intercalated under graphene, Appl. Phys. Lett. 101, 142403 (2012)Google Scholar
  329. H. Yang, A.D. Vu, A. Hallal, N. Rougemaille, J. Coraux, G. Chen, A.K. Schmid, M. Chshiev: Anatomy and giant enhancement of the perpendicular magnetic anisotropy of cobalt-graphene heterostructures, Nano Lett. 16, 145–151 (2016)Google Scholar
  330. A.D. Vu, J. Coraux, G. Chen, A.T. N'Diaye, A.K. Schmid, N. Rougemaille: Unconventional magnetisation texture in graphene/cobalt hybrids, Sci. Rep. 6, 24783 (2016)Google Scholar
  331. R. Ramchal, A.K. Schmid, M. Farle, H. Poppa: Magnetic domains and domain-wall structure in Ni/Cu(001) films imaged by spin-polarized low-energy electron microscopy, Phys. Rev. B 68, 054418 (2003)Google Scholar
  332. G. Chen, J. Zhu, A. Quesada, J. Li, A.T. N'Diaye, Y. Huo, T.P. Ma, Y. Chen, H.Y. Kwon, C. Won, Z.Q. Qiu, A.K. Schmid, Y.Z. Wu: Novel chiral magnetic domain wall structure in Feo/Ni/Cu(001) films, Phys. Rev. Lett. 110, 177204 (2013)Google Scholar
  333. G. Chen, T. Ma, A.T. N'Diaye, H. Kwon, C. Won, Y. Wu, A.K. Schmid: Tailoring the chirality of magnetic domain walls by interface engineering, Nat. Commun. 4, 2671 (2013)Google Scholar
  334. G. Chen, A.T. N'Diaye, Y. Wu, A.K. Schmid: Ternary superlattice boosting interface-stabilized magnetic chirality, Appl. Phys. Lett. 106, 062402 (2015)Google Scholar
  335. G. Chen, A.T. N'Diaye, S.P. Kang, H.Y. Kwon, C. Won, Y. Wu, Z.Q. Qiu, A.K. Schmid: Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain, Nat. Commun. 6, 6598 (2015)Google Scholar
  336. G. Chen, A. Mascaraque, A.T. N'Diaye, A.K. Schmid: Room temperature skyrmion ground state stabilized through interlayer exchange coupling, Appl. Phys. Lett. 106, 242404 (2015)Google Scholar
  337. G. Chen, A.K. Schmid: Imaging and tailoring the chirality of domain walls in magnetic films, Adv. Mater. 27, 5738–5743 (2015)Google Scholar
  338. E. Bauer, R. Belkhou, S. Cherifi, R. Hertel, S. Heun, A. Locatelli, A. Pavlovska, R. Zdyb, N. Agarwal, H. Wang: Microscopy of mesoscopic ferromagnetic systems with slow electrons, Surf. Interface Anal. 38, 1622–1627 (2006)Google Scholar
  339. R. Zdyb, A. Pavlovska, M. Jałochowski, E. Bauer: Self-organized Fe nanostructures on W(110), Surf. Sci. 600, 1586–1591 (2006)Google Scholar
  340. N. Rougemaille, A.K. Schmid: Self-organization and magnetic domain microstructure of Fe nanowire arrays, J. Appl. Phys. 99, 08S502 (2006)Google Scholar
  341. H.F. Ding, A.K. Schmid, D. Li, K.Y. Guslienko, S.D. Bader: Magnetic bistability of Co nanodots, Phys. Rev. Lett. 94, 157202 (2005)Google Scholar
  342. R. Zdyb, E. Bauer: Coexistence of ferromagnetism and paramagnetism in a ferromagnetic monolayer, Phys. Rev. Lett. 100, 155704 (2008)Google Scholar
  343. J. de la Figuera, Z. Novotny, M. Setvin, T. Liu, Z. Mao, G. Chen, A.T. N'Diaye, M. Schmid, U. Diebold, A.K. Schmid, G.S. Parkinson: Real-space imaging of the Verwey transition at the (100) surface of magnetite, Phys. Rev. B 88, 161410(R) (2013)Google Scholar
  344. J. de la Figuera, L. Vergara, A.T. N'Diaye, A. Quesada, A.K. Schmid: Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy, Ultramicroscopy 130, 77–81 (2013)Google Scholar
  345. T.O. Menteş, A. Locatelli: Angle-resolved x-ray photoemission electron microscopy, J. Electron Spectrosc. Relat. Phenom. 185, 323–329 (2012)Google Scholar
  346. A. Locatelli, L. Aballe, T.O. Menteş, M. Kiskinova, E. Bauer: Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications, Surf. Interface Anal. 38, 1554–1557 (2006)Google Scholar
  347. T.O. Menteş, M.A. Niño, A. Locatelli: Spectromicroscopy with low-energy electrons: LEEM and XPEEM studies at the nanoscale, e-J. Surf. Sci. Nanotechnol. 9, 72–79 (2011)Google Scholar
  348. E. Bauer, S. Cherifi, L. Daeweritz, M. Kaestner, S. Heun, A. Locatelli: Low-energy electron microscopy/x-ray magnetic circular dichroism photoemission electron microscopy study of epitaxial MnAs on GaAs, J. Vac. Sci. Technol. B 20, 2539–2542 (2002)Google Scholar
  349. E. Bauer, R. Belkhou, S. Cherifi, A. Locatelli, A. Pavlovska, N. Rougemaille: Magnetostructure of MnAs on GaAs revisited, J. Vac. Sci. Technol. B 25, 1470–1475 (2007)Google Scholar
  350. A.B. Pang, A. Pavlovska, L. Däweritz, A. Locatelli, E. Bauer, M.S. Altman: LEEM image phase contrast of MnAs stripes, Ultramicroscopy 130, 7–12 (2013)Google Scholar
  351. R. Engel-Herbert, D.M. Schaadt, S. Cherifi, E. Bauer, R. Belkhou, A. Locatelli, S. Heun, A. Pavlovska, J. Mohanty, K.H. Ploog, T. Hesjedal: The nature of charged zig-zag domains in MnAs thin films, J. Magn. Magn. Mater. 305, 457–463 (2006)Google Scholar
  352. R. Engel-Herbert, T. Hesjedal: Micromagnetic analysis of unusual, V-shaped domain transitions in MnAs nanowires, J. Magn. Magn. Mater. 323, 1840–1845 (2011)Google Scholar
  353. K.S.R. Menon, S. Mandal, J. Das, T.O. Menteş, M.A. Niño, A. Locatelli, R. Belkhou: Surface antiferromagnetic domain imaging using low-energy unpolarized electrons, Phys. Rev. B 84, 132402 (2011)Google Scholar
  354. R. Hertel, O. Fruchart, S. Cherifi, P.-O. Jubert, S. Heun, A. Locatelli, J. Kirschner: Three-dimensional magnetic-flux-closure patterns in mesoscopic Fe islands, Phys. Rev. B 72(11), 214409–214401 (2005)Google Scholar
  355. A. Mascaraque, L. Aballe, J.F. Marco, T.O. Menteş, F. El Gabaly, C. Klein, A.K. Schmid, K.F. McCarty, A. Locatelli, J. de la Figuera: Measuring the magnetization of three monolayer thick Co islands and films by x-ray dichroism, Phys. Rev. B 80, 172401 (2009)Google Scholar
  356. M. Monti, B. Santos, A. Mascaraque, O.R. de la Fuente, M.A. Niño, T.O. Menteş, A. Locatelli, K.F. McCarty, J.F. Marco, J. de la Figuera: Magnetism in nanometer-thick magnetite, Phys. Rev. B 85, 020404 (2012)Google Scholar
  357. T.O. Menteş, A. Locatelli, L. Aballe, A. Pavlovska, E. Bauer, T. Pabisiak, A. Kiejna: Surface modification of oxides by electron-stimulated desorption for growth-mode control of metal films: Experiment and density-functional calculations, Phys. Rev. B 76, 155413 (2007)Google Scholar
  358. S. Günther, S. Bocklein, R. Reichelt, J. Wintterlin, A. Barinov, T.O. Menteş, M.A. Niño, A. Locatelli: Surface patterning of silver using an electron- or photon-assisted oxidation reaction, ChemPhysChem 11, 1525–1532 (2010)Google Scholar
  359. J. Laverock, S. Kittiwatanakul, A.A. Zakharov, Y.R. Niu, B. Chen, S.A. Wolf, J.W. Lu, K.E. Smith: Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2, Phys. Rev. Lett. 113, 216402 (2014)Google Scholar
  360. J. Laverock, S. Kittiwatanakul, A.A. Zakharov, Y.R. Niu, B. Chen, J. Kuyyalil, S.A. Wolf, J.W. Lu, K.E. Smith: Simultaneous spectroscopic, diffraction and microscopic study of the metal-insulator transition of VO2, MRS Proceedings 1730, Mrsf14-1730-n05-04 (2015)Google Scholar
  361. F. Genuzio, A. Sala, T. Schmidt, D. Menzel, H.-J. Freund: Phase transformations in thin iron oxide films: Spectromicroscopic study of velocity and shape of the reaction fronts, Surf. Sci. 648, 177–187 (2016)Google Scholar
  362. L.K.E. Ericsson, K.O. Magnusson, A.A. Zakharov: ZnO nanocrystals on SiO2/Si surfaces thermally cleaned in ultrahigh vacuum and characterized using spectroscopic photoemission and low energy electron microscopy, J. Vac. Sci. Technol. A 28, 438–442 (2010)Google Scholar
  363. E. Bauer, K.L. Man, A. Pavlovska, A. Locatelli, T.O. Menteş, M.A. Niño, M.S. Altman: Fe3S4 (greigite) formation by vapor-solid reaction, J. Mater. Chem. A 2, 1903–1913 (2014)Google Scholar
  364. K.L. Man, A. Pavlovska, E. Bauer, A. Locatelli, T.O. Menteş, M.A. Niño, G.K.L. Wong, I.K. Sou, M.S. Altman: Growth, reaction and nanowire formation of Fe on the ZnS(100) surface, J. Phys. Condens. Matter 26, 315006 (2014)Google Scholar
  365. M. Ewert, T. Schmidt, J.I. Flege, I. Heidmann, T. Grzela, W.M. Klesse, M. Foerster, L. Aballe, T. Schroeder, J. Falta: Morphology and chemical composition of cobalt germanide islands on Ge(001), Nanotechnology 27, 325705 (2016)Google Scholar
  366. M. Monti, B. Santos, A. Mascaraque, O.R. de la Fuente, M.A. Niño, T.O. Menteş, A. Locatelli, K.F. McCarty, J.F. Marco, J. de la Figuera: Oxidation pathways in bicomponent ultrathin iron oxide films, J. Phys. Chem. C 116, 11539–11547 (2012)Google Scholar
  367. A. Cornish, T. Eralp, A. Shavorskiy, R.A. Bennett, G. Held, S.A. Cavill, A. Potenza, H. Marchetto, S.S. Dhesi: Oxidation of polycrystalline Ni studied by spectromicroscopy: Phase separation in the early stages of crystallite growth, Phys. Rev. B 81, 085403 (2010)Google Scholar
  368. L. Aballe, S. Matencio, M. Foerster, E. Barrena, F. Sánchez, J. Fontcuberta, C. Ocal: Instability and surface potential modulation of self-patterned (001)SrTiO3 surfaces, Chem. Mater. 27, 6198–6204 (2015)Google Scholar
  369. L. Aballe, A. Barinov, A. Locatelli, S. Heun, M. Kiskinova: Tuning surface reactivity via electron quantum confinement, Phys. Rev. Lett. 93, 196103 (2004)Google Scholar
  370. L. Aballe, A. Barinov, N. Stojic, N. Binggeli, T.O. Menteş, A. Locatelli, M. Kiskinova: The electron density decay length effect on surface reactivity, J. Phys. Condens. Matter 22, 015001 (2010)Google Scholar
  371. B. Kaemena, S.D. Senanayake, A. Meyer, J.T. Sadowski, J. Falta, J.I. Flege: Growth and morphology of ceria on ruthenium (0001), J. Phys. Chem. C 117, 221–232 (2013)Google Scholar
  372. J.I. Flege, J. Höcker, B. Kaemena, T.O. Menteş, A. Sala, A. Locatelli, S. Gangopadhyay, J.T. Sadowski, S.D. Senanayake, J. Falta: Growth and characterization of epitaxially stabilized ceria(001) nanostructures on Ru(0001), Nanoscale 8, 10849–10856 (2016)Google Scholar
  373. J. Höcker, T.O. Menteş, A. Sala, A. Locatelli, T. Schmidt, J. Falta, S.D. Senanayake, J.I. Flege: Unraveling the dynamic nanoscale reducibility (Ce4+ $$\rightarrow$$ Ce3+) of CeOx-Ru in hydrogen activation, Adv. Mater. Interfaces 2, 1500314 (2015)Google Scholar
  374. J. Höcker, J.-O. Krisponeit, J. Cambeis, A. Zakharov, Y. Niu, G. Wei, L. Colombi Ciacchi, J. Falta, A. Schaefer, J.I. Flege: Growth and structure of ultrathin praseodymium oxide layers on ruthenium(0001), Phys. Chem. Chem. Phys. 19, 3480–3485 (2017)Google Scholar
  375. D.C. Grinter, C.-M. Yim, C.L. Pang, B. Santos, T.O. Menteş, A. Locatelli, G. Thornton: Oxidation state imaging of ceria island growth on Re(0001), J. Phys. Chem. C 117, 16509–16514 (2013)Google Scholar
  376. D.C. Grinter, C. Muryn, B. Santos, B.-J. Shaw, T.O. Menteş, A. Locatelli, G. Thornton: Spectromicroscopy of a model water–gas shift catalyst: Gold nanoparticles supported on ceria, J. Phys. Chem. C 118, 19194–19204 (2014)Google Scholar
  377. D.C. Grinter, C. Muryn, A. Sala, C.-M. Yim, C.L. Pang, T.O. Menteş, A. Locatelli, G. Thornton: Spillover reoxidation of ceria nanoparticles, J. Phys. Chem. C 120, 11037–11044 (2016)Google Scholar
  378. A. Locatelli, C. Sbraccia, S. Heun, S. Baroni, M. Kiskinova: Energetically driven reorganization of a modified catalytic surface under reaction conditions, J. Am. Chem. Soc. 127, 2351–2357 (2005)Google Scholar
  379. A. Locatelli, T.O. Menteş, L. Aballe, A. Mikhailov, M. Kiskinova: Formation of regular surface-supported mesostructures with periodicity controlled by chemical reaction rate, J. Phys. Chem. B 110, 19108–19111 (2006)Google Scholar
  380. A. Locatelli, L. Aballe, T.O. Menteş, F.Z. Guo, M. Kiskinova: A spectro-microscopic study of the reactive phase separation of Au\(+\)Pd and O on Rh(110), Surf. Sci. 601, 4663–4668 (2007)Google Scholar
  381. F. Lovis, M. Hesse, A. Locatelli, T.O. Menteş, M.A. Nino, G. Lilienkamp, B. Borkenhagen, R. Imbihl: Self-organization of ultrathin vanadium oxide layers on a Rh(111) surface during a catalytic reaction. Part II: A LEEM and spectromicroscopy study, J. Phys. Chem. C 115, 19149–19157 (2011)Google Scholar
  382. F. Lovis, T. Smolinsky, A. Locatelli, M.A. Niño, R. Imbihl: Chemical waves and rate oscillations in the H2\(+\) O2 reaction on a bimetallic Rh(111)/Ni catalyst, J. Phys. Chem. C 116, 4083–4090 (2012)Google Scholar
  383. S. Günther, H. Liu, T.O. Menteş, A. Locatelli, R. Imbihl: Spectromicroscopy of pulses transporting alkali metal in a surface reaction, Phys. Chem. Chem. Phys. 15, 8752–8764 (2013)Google Scholar
  384. S. Günther, S. Böcklein, J. Wintterlin, M.Á. Niño, T.O. Menteş, A. Locatelli: Locating catalytically active oxygen on Ag(111)—A spectromicroscopy study, ChemCatChem 5, 3342–3350 (2013)Google Scholar
  385. A. Locatelli, C. Wang, C. Africh, N. Stojić, T.O. Menteş, G. Comelli, N. Binggeli: Temperature-driven reversible rippling and bonding of a graphene superlattice, ACS Nano 7, 6955–6963 (2013)Google Scholar
  386. L.I. Johansson, S. Watcharinyanon, A.A. Zakharov, T. Iakimov, R. Yakimova, C. Virojanadara: Stacking of adjacent graphene layers grown on C-face SiC, Phys. Rev. B 84, 125405 (2011)Google Scholar
  387. C. Coletti, S. Forti, A. Principi, K.V. Emtsev, A.A. Zakharov, K.M. Daniels, B.K. Daas, M.V.S. Chandrashekhar, T. Ouisse, D. Chaussende, A.H. MacDonald, M. Polini, U. Starke: Revealing the electronic band structure of trilayer graphene on SiC: An angle-resolved photoemission study, Phys. Rev. B 88, 155439 (2013)Google Scholar
  388. M.S. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T.O. Menteş, A. Locatelli, E.H. Conrad: The bottom-up growth of edge specific graphene nanoribbons, Nano Lett. 14, 6080–6086 (2014)Google Scholar
  389. F. Wang, G. Liu, S. Rothwell, M.S. Nevius, C. Mathieu, N. Barrett, A. Sala, T.O. Menteş, A. Locatelli, P.I. Cohen, L.C. Feldman, E.H. Conrad: Pattern induced ordering of semiconducting graphene ribbons grown from nitrogen-seeded SiC, Carbon 82, 360–367 (2015)Google Scholar
  390. S. Watcharinyanon, C. Xia, Y. Niu, A.A. Zakharov, L.I. Johansson, R. Yakimova, C. Virojanadara: Soft x-ray exposure promotes Na intercalation in graphene grown on Si-face SiC, Materials 8, 4768–4777 (2015)Google Scholar
  391. C. Xia, L.I. Johansson, A.A. Zakharov, L. Hultman, C. Virojanadara: Effects of Al on epitaxial graphene grown on 6H-SiC(0001), Mater. Res. Express 1, 015606 (2014)Google Scholar
  392. S. Forti, A. Stöhr, A.A. Zakharov, C. Coletti, K.V. Emtsev, U. Starke: Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice, 2D Materials 3, 035003 (2016)Google Scholar
  393. C. Africh, C. Cepek, L.L. Patera, G. Zamborlini, P. Genoni, T.O. Menteş, A. Sala, A. Locatelli, G. Comelli: Switchable graphene-substrate coupling through formation/dissolution of an intercalated Ni-carbide layer, Sci. Rep. 6, 19734 (2016)Google Scholar
  394. A. Stöhr, S. Forti, S. Link, A.A. Zakharov, K. Kern, U. Starke, H.M. Benia: Intercalation of graphene on SiC(0001) via ion-implantation, Phys. Rev. B 94, 085431 (2016)Google Scholar
  395. G. Zamborlini, M. Imam, L.L. Patera, T.O. Menteş, N. Stojić, C. Africh, A. Sala, N. Binggeli, G. Comelli, A. Locatelli: Nanobubbles at GPa pressure under graphene, Nano Lett. 15, 6162–6169 (2015)Google Scholar
  396. T.O. Menteş, A. Sala, A. Locatelli, E. Vescovo, J.M. Ablett, M.A. Niño: Phase coexistence in two-dimensional Fe0.70Ni0.30 films on W(110), e-J. Surf. Sci. Nanotechnol. 13, 256–260 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of PhysicsArizona State UniversityTempe, AZUSA

Personalised recommendations