Advertisement

High-Speed Electron Microscopy

  • Geoffrey H. CampbellEmail author
  • Joseph T. McKeown
  • Melissa K. Santala
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

High-speed electron microscopy has emerged as a well-established in situ transmission electron microscopy () capability that can provide observations and measurements of complex, transient materials phenomena with high spatial and temporal resolutions. The development and advancement of the two categories of high-speed electron microscopy, each optimized for specific regimes of spatial and temporal resolutions—single-shot dynamic TEM () and stroboscopic or ultrafast TEM ()—are reviewed and the technologies employed in both techniques are described. Limitations of the techniques are described and example applications are provided. Finally, an outlook for future development of time-resolved electron microscopy is provided, offering potential directions for new levels of performance and flexibility.

Notes

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344. Activities and personnel at LLNL were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP SCW0974.

References

  1. P.B. Hirsch: Direct observations of dislocations by transmission electron microscopy: Recollections of the period 1946–56, Proc. Royal Soc. A 371, 160 (1980)Google Scholar
  2. P.B. Hirsch: Direct observations of moving dislocations: Reflections on the thirtieth anniversary of the first recorded observations of moving dislocations by transmission electron microscopy, Mater. Sci. Eng. 84, 1 (1986)Google Scholar
  3. P.B. Hirsch, R.W. Horne, M.J. Whelan: Direct observations of the arrangement and motion of dislocations in aluminium, Philos. Mag. 1, 677 (1956)Google Scholar
  4. G. Mourou, S. Williamson: Picosecond electron-diffraction, Appl. Phys. Lett. 41, 44 (1982)Google Scholar
  5. S. Williamson, G. Mourou: Electron-diffraction in the picosecond domain, Appl. Phys. B 28, 249 (1982)Google Scholar
  6. S. Williamson, G. Mourou, J.C.M. Li: Time-resolved laser-induced phase-transformation in aluminum, Phys. Rev. Lett. 52, 2364 (1984)Google Scholar
  7. H.E. Elsayed-Ali, J.W. Herman: Picosecond time-resolved surface-lattice temperature probe, Appl. Phys. Lett. 57, 1508 (1990)Google Scholar
  8. R.C. Dudek, P.M. Weber: Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene, J. Phys. Chem. A 105, 4167 (2001)Google Scholar
  9. C.Y. Ruan, F. Vigliotti, V.A. Lobastov, S.Y. Chen, A.H. Zewail: Ultrafast electron crystallography: Transient structures of molecules, surfaces, and phase transitions, Proc. Natl. Acad. Sci. USA 101, 1123 (2004)Google Scholar
  10. C.Y. Ruan, V.A. Lobastov, F. Vigliotti, S.Y. Chen, A.H. Zewail: Ultrafast electron crystallography of interfacial water, Science 304, 80 (2004)Google Scholar
  11. B.J. Siwick, J.R. Dwyer, J.E. Jordan, R.J.D. Miller: Femtosecond electron diffraction studies of strongly driven structural phase transitions, Chem. Phys. 299, 285 (2004)Google Scholar
  12. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, J. Galayda: First lasing of an ångstrom-wavelength free-electron laser, Nat. Photonics 4, 641 (2010)Google Scholar
  13. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa, T. Hatsui, A. Higashiya, T. Hirono, N. Hosoda, M. Ishii, T. Inagaki, Y. Inubushi, T. Itoga, Y. Joti, M. Kago, T. Kameshima, H. Kimura, Y. Kirihara, A. Kiyomichi, T. Kobayashi, C. Kondo, T. Kudo, H. Maesaka, X.M. Maréchal, T. Masuda, S. Matsubara, T. Matsumoto, T. Matsushita, S. Matsui, M. Nagasono, N. Nariyama, H. Ohashi, T. Ohata, T. Ohshima, S. Ono, Y. Otake, C. Saji, T. Sakurai, T. Sato, K. Sawada, T. Seike, K. Shirasawa, T. Sugimoto, S. Suzuki, S. Takahashi, K. Takebe, A. Tokuhisa, H. Tomizawa, K. Tono, S. Wu, M. Yabashi, M. Yamaga, A. Yamashita, K. Yanagida, C. Zhang, T. Shintake, H. Kitamura, N. Kumagai: A compact x-ray free-electron laser emitting in the sub-ångstrom region, Nat. Photonics 6, 540 (2010)Google Scholar
  14. S.P. Weathersby, G. Brown, M. Centurion, T.F. Chase, R. Coffee, J. Corbett, J.P. Eichner, J.C. Frisch, A.R. Fry, M. Gühr, N. Hartmann, C. Hast, R. Hettel, R.K. Jobe, E.N. Jongewaard, J.R. Lewandowski, R.K. Li, A.M. Lindenberg, I. Makasyuk, J.E. May, D. McCormick, M.N. Nguyen, A.H. Reid, X. Shen, K. Sokolowski-Tinten, T. Vecchione, S.L. Vetter, J. Wu, J. Yang, H.A. Dürr, X.J. Wang: Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory, Rev. Sci. Instrum. 86, 073702 (2015)Google Scholar
  15. V.A. Lobastov, R. Srinivasan, A.H. Zewail: Four-dimensional ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 102, 7069 (2005)Google Scholar
  16. A.H. Zewail: 4D ultrafast electron diffraction, crystallography, and microscopy, Annu. Rev. Phys. Chem. 57, 65 (2006)Google Scholar
  17. B. Barwick, H.S. Park, O.H. Kwon, J.S. Baskin, A.H. Zewail: 4D imaging of transient structures and morphologies in ultrafast electron microscopy, Science 322, 1227 (2008)Google Scholar
  18. A.H. Zewail: Four-dimensional electron microscopy, Science 328, 187 (2010)Google Scholar
  19. A.H. Zewail, J.M. Thomas: 4D Electron Microscopy (Imperial College Press, London 2010)Google Scholar
  20. T. LaGrange, M.R. Armstrong, K. Boyden, C.G. Brown, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F.V. Hartemann, J.S. Kim, W.E. King, B.J. Pyke, B.W. Reed, M.D. Shirk, R.M. Shuttlesworth, B.C. Stuart, B.R. Torralva, N.D. Browning: Single-shot dynamic transmission electron microscopy, Appl. Phys. Lett. 89, 044105 (2006)Google Scholar
  21. M.R. Armstrong, K. Boyden, N.D. Browning, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F. Hartemann, J.S. Kim, W.E. King, T.B. LaGrange, B.J. Pyke, B.W. Reed, R.M. Shuttlesworth, B.C. Stuart, B.R. Torralva: Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy, Ultramicroscopy 107, 356 (2007)Google Scholar
  22. M.R. Armstrong, B.W. Reed, B.R. Torralva, N.D. Browning: Prospects for electron imaging with ultrafast time resolution, Appl. Phys. Lett. 90, 114101 (2007)Google Scholar
  23. T. LaGrange, G.H. Campbell, B. Reed, M. Taheri, J.B. Pesavento, J.S. Kim, N.D. Browning: Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM), Ultramicroscopy 108, 1441 (2008)Google Scholar
  24. B. Reed, M.R. Armstrong, N.D. Browning, G.H. Campbell, J.E. Evans, T. LaGrange, D.J. Masiel: The evolution of ultrafast electron microscope instrumentation, Microsc. Microanal. 15, 272 (2009)Google Scholar
  25. G.H. Campbell, T. LaGrange, J.S. Kim, B.W. Reed, N.D. Browning: Quantifying transient states in materials with the dynamic transmission electron microscope, J. Electron Microsc. 59, S67 (2010)Google Scholar
  26. B.W. Reed, T. LaGrange, R.M. Shuttlesworth, D.J. Gibson, G.H. Campbell, N.D. Browning: Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope, Rev. Sci. Instrum. 81, 053706 (2010)Google Scholar
  27. T. LaGrange, B.W. Reed, M.K. Santala, J.T. McKeown, A. Kulovits, J.M. Wiezorek, L. Nikolova, F. Rosei, B.J. Siwick, G.H. Campbell: Approaches for ultrafast imaging of transient material processes in the transmission electron microscope, Micron 43, 1108 (2012)Google Scholar
  28. G.H. Campbell, J.T. McKeown, M.K. Santala: Time resolved electron microscopy for in situ experiments, Appl. Phys. Rev. 1, 041101 (2014)Google Scholar
  29. T. LaGrange, B.W. Reed, D.J. Masiel: Movie-mode dynamic electron microscopy, MRS Bulletin 40, 22 (2015)Google Scholar
  30. T. LaGrange, G.H. Campbell, J.D. Colvin, B. Reed, W.E. King: Nanosecond time resolved electron diffraction studies of the \(\upalpha\rightarrow\upbeta\) transition in pure Ti thin films using the dynamic transmission electron microscope (DTEM), J. Mater. Sci. 41, 4440 (2006)Google Scholar
  31. J.S. Kim, T. LaGrange, B.W. Reed, M.L. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, G.H. Campbell: Imaging of transient structures using nanosecond in situ TEM, Science 321, 1472 (2008)Google Scholar
  32. M.K. Santala, B.W. Reed, S. Raoux, T. Topuria, T. LaGrange, G.H. Campbell: Irreversible reactions studied with nanosecond TEM movies: Laser crystallization of phase change materials, Appl. Phys. Lett. 102, 174105 (2013)Google Scholar
  33. J.T. McKeown, Y. Wu, J.D. Fowlkes, P.D. Rack, G.H. Campbell: Simultaneous in-situ synthesis and characterization of Co@Cu core-shell nanoparticle arrays, Adv. Mater. 27, 1060 (2014)Google Scholar
  34. J.T. McKeown, A. Kulovits, C. Liu, K. Zweiacker, B.W. Reed, T. LaGrange, J.M.K. Wiezorek, G.H. Campbell: In situ transmission electron microscopy of crystal growth-mode transitions during rapid solidification of a hypoeutectic Al-Cu alloy, Acta Mater. 65, 56 (2014)Google Scholar
  35. B.W. Reed, F.R. Chung, M.J. Wang, T. LaGrange, K.J. Koski: Temperature-driven disorder-order transitions in 2D copper-intercalated MoO\({}_{3}\) revealed using dynamic transmission electron microscopy, 2D Materials 1, 035001 (2014)Google Scholar
  36. M.K. Santala, S. Raoux, G.H. Campbell: Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic TEM, Appl. Phys. Lett. 107, 252106 (2015)Google Scholar
  37. J.T. McKeown, K. Zweiacker, C. Liu, D.R. Coughlin, A.J. Clarke, J.K. Baldwin, J.W. Gibbs, J.D. Roehling, S.D. Imhoff, P.J. Gibbs, D. Tourret, J.M.K. Wiezorek, G.H. Campbell: Time-resolved in situ measurements during rapid alloy solidification: Experimental insight for additive manufacturing, JOM 68, 985 (2016)Google Scholar
  38. O. Bostanjoglo, R. Elschner, Z. Mao, T. Nink, M. Weingartner: Nanosecond electron microscopes, Ultramicroscopy 81, 141 (2000)Google Scholar
  39. O. Bostanjoglo: High-speed electron microscopy, Adv. Imaging Electron Phys. 121, 1 (2002)Google Scholar
  40. H. Dömer, O. Bostanjoglo: High-speed transmission electron microscope, Rev. Sci. Instrum. 74, 4369 (2003)Google Scholar
  41. C.D. Child: Discharge from hot CaO, Phys. Rev. 32, 492 (1911)Google Scholar
  42. O. Bostanjoglo, T. Rosin: Stroboscopic study on ultrasonic activity in electron-microscope, Mikroskopie 32, 190 (1976)Google Scholar
  43. A. Takaoka, K. Ura: Velocity measuring system for interface motion in TEM, J. Electron Microsc. 37, 117 (1988)Google Scholar
  44. H.S. Park, J.S. Baskin, O.-H. Kwon, A.H. Zewail: Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy, Nano Lett. 7, 2545 (2007)Google Scholar
  45. G.V. Spivak, O.P. Pavlyuchenko, V.I. Petrov: Electron microscopic observation of alterations of the domain structure of magnetic films, Bull. Acad. Sci. USSR Phys. Ser. 30, 822 (1966)Google Scholar
  46. O. Bostanjoglo, T. Rosin: Stroboscopic TEM studies of high-frequency magnetic test materials, Mikroskopie 36, 344 (1980)Google Scholar
  47. O.-H. Kwon, B. Barwick, H.S. Park, J.S. Baskin, A.H. Zewail: Nanoscale mechanical drumming visualized by 4D electron microscopy, Nano Lett. 8, 3557 (2008)Google Scholar
  48. D.J. Flannigan, P.C. Samartzis, A. Yurtsever, A.H. Zewail: Nanomechanical motions of cantilevers: Direct imaging in real space and time with 4D electron microscopy, Nano Lett. 9, 875 (2009)Google Scholar
  49. F. Carbone, B. Barwick, O.H. Kwon, H.S. Park, J.S. Baskin, A.H. Zewail: EELS femtosecond resolved in 4D ultrafast electron microscopy, Chem. Phys. Lett. 468, 107 (2009)Google Scholar
  50. B.-L. Qian, H.E. Elsayed-Ali: Electron pulse broadening due to space charge effects in a photoelectron gun for electron diffraction and streak camera systems, J. Appl. Phys. 91, 462 (2002)Google Scholar
  51. D.J. Bradley, A.G. Roddie, W. Sibbett, M.H. Key, M.J. Lamb, C.L.S. Lewis, P. Sachsenmaier: Picosecond x-ray chronoscopy, Opt. Commun. 15, 231–236 (1975)Google Scholar
  52. Z. Chang, A. Rundquist, J. Zhou, M.M. Murnane, H.C. Kapteyn, X. Liu, B. Shan, J. Liu, L. Niu, M. Gong, X. Zhang: Demonstration of a sub-picosecond x-ray streak camera, Appl. Phys. Lett. 69, 133 (1996)Google Scholar
  53. R.K. Li, P. Musumeci: Single-shot MeV transmission electron microscopy with picosecond temporal resolution, Phys. Rev. Appl. 2, 024003 (2014)Google Scholar
  54. D. Xiang, F. Fu, J. Zhang, X. Huang, L. Wang, X. Wang, W. Wan: Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution, Nucl. Instrum. Methods Phys. Res. A 759, 74 (2014)Google Scholar
  55. S. Hihath, M.K. Santala, K. van Benthem: High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy, J. Appl. Phys. 120, 085301 (2016)Google Scholar
  56. R.K. Reich, D.D. Rathman, D.M. O'Mara, D.J. Young, A.H. Loomis, E.J. Kohler, R.M. Osgood, R.A. Murphy, M. Rose, R. Berger, S.A. Watson, M.D. Ulibarri, T. Perry, B.B. Kosicki: High-speed, electronically shuttered solid-state imager technology, Rev. Sci. Instrum. 74, 2027 (2003)Google Scholar
  57. T.G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A.J.P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, Y. Takano: An image sensor which captures 100 consecutive frames at 1000000 frames/s, IEEE Trans. Electron Dev. 50, 144 (2003)Google Scholar
  58. H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, T.G. Etoh: High-speed time-resolved color schlieren visualization of shock wave phenomena, Shock Waves 14, 333 (2005)Google Scholar
  59. M. El-Desouki, M.J. Deen, Q.Y. Fang, L. Liu, F. Tse, D. Armstrong: CMOS image sensors for high speed applications, Sensors 9, 430 (2009)Google Scholar
  60. Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, S. Sugawa: A global-shutter CMOS image sensor with readout speed of 1-Tpixel/s burst and 780-Mpixel/s continuous, IEEE J. Solid-State Circuits 48, 329 (2013)Google Scholar
  61. M.D. Grapes, T. LaGrange, L.H. Friedman, B.W. Reed, G.H. Campbell, T.P. Weihs, D.A. LaVan: Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling, Rev. Sci. Instrum. 85, 084902 (2014)Google Scholar
  62. M.D. Grapes, Y. Zhang, M.K. Santala, T. Voisin, G.H. Campbell, T.P. Weihs: In situ high-rate mechanical testing in the dynamic transmission electron microscope. In: MEMS and Nanotechnology, onference Proceedings of the Society for Experimental Mechanics Series, Vol. 5, ed. by B. Prorok, L. Starman (Springer, Cham 2016)Google Scholar
  63. T. Voisin, M.D. Grapes, Y. Zhang, N.J. Lorenzo, J.P. Ligda, B.E. Schuster, M.K. Santala, T. Li, G.H. Campbell, T.P. Weihs: DTEM in situ mechanical testing: Defect motion at high strain rates. In: Dynamic Behavior of Materials, Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics, Vol. 1, ed. by D. Casem, L. Lamberson, J. Kimberley (Springer, Cham 2016)Google Scholar
  64. W.E. King, G.H. Campbell, A. Frank, B. Reed, J.F. Schmerge, B.J. Siwick, B.C. Stuart, P.M. Weber: Ultrafast electron microscopy in materials science, biology, and chemistry, J. Appl. Phys. 97, 111101 (2005)Google Scholar
  65. H. Rose, R. Spehr: Energy broadening in high-density electron and ion-beams: The Boersch effect. In: Applied Charged Particle Optics, Adv. Electron. Electron Phys. Suppl. 13C, ed. by A. Septier (1983) p. 475Google Scholar
  66. G.H. Jansen: Coulomb Interactions in Particle Beams (Academic Press, San Diego 1990)Google Scholar
  67. P. Kruit, G.H. Jansen: Space charge and statistical Coulomb effects. In: Handbook of Charged Particle Optics, ed. by J. Orloff (CRC, Boca Raton 1997) p. 275Google Scholar
  68. O. Bostanjoglo, F. Heinricht, F. Wunsch: Performance of a laser-pulsed thermal electron gun. In: Proc. 12th Int. Congr. Electron Microsc. (1990) p. 124Google Scholar
  69. K.H. Loeffler: Energy-spread generation in electron-optical instruments, Z. Angew. Phys. 27, 145 (1969)Google Scholar
  70. J.M. Cowley: Imaging. In: High-Resolution Transmission Electron Microscopy and Associated Techniques, ed. by P. Buseck, J.M. Cowley, L.E. Eyring (Oxford Univ. Press, Oxford 1992)Google Scholar
  71. A. Kulovits, J.M. Wiezorek, T. LaGrange, B.W. Reed, G.H. Campbell: Revealing the transient states of rapid solidification in aluminum thin films using ultrafast in situ transmission electron microscopy, Philos. Mag. Lett. 91, 287 (2011)Google Scholar
  72. K. Zweiacker, J.T. McKeown, C. Liu, T. LaGrange, B.W. Reed, G.H. Campbell, J.M. Wiezorek: Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal in situ transmission electron microscopy, J. Appl. Phys. 120, 055106 (2016)Google Scholar
  73. M.M. Winseck, H.-Y. Cheng, G.H. Campbell, M.K. Santala: Crystallization kinetics of the phase change material GeSb\({}_{6}\)Te measured with dynamic transmission electron microscopy, Dalton Trans. 45, 9988 (2016)Google Scholar
  74. R.F. Egerton: Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York 1986)Google Scholar
  75. R. Henderson: Realizing the potential of electron cryo-microscopy, Q. Rev. Biophys. 37, 3 (2004)Google Scholar
  76. R.F. Egerton: Control of radiation damage in the TEM, Ultramicroscopy 127, 100 (2013)Google Scholar
  77. R. Henderson: Cryoprotection of protein crystals against radiation-damage in electron and x-ray-diffraction, Proc. Royal Soc. B 241, 6–8 (1990)Google Scholar
  78. H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian, A. Aquila, M.S. Hunter, J. Schulz, D.P. DePonte, U. Weierstall, R.B. Doak, F. Maia, A.V. Martin, I. Schlichting, L. Lomb, N. Coppola, R.L. Shoeman, S.W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M.N. Liang, M. Barthelmess, C. Caleman, S. Boutet, M.J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.U. Kuhnel, M. Messerschmidt, J.D. Bozek, S.P. Hau-Riege, M. Frank, C.Y. Hampton, R.G. Sierra, D. Starodub, G.J. Williams, J. Hajdu, N. Timneanu, M.M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.D. Schroter, F. Krasniqi, M. Bott, K.E. Schmidt, X.Y. Wang, I. Grotjohann, J.M. Holton, T.R.M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, J.C.H. Spence: Femtosecond x-ray protein nanocrystallography, Nature 470, 73 (2011)Google Scholar
  79. J.C.H. Spence: X-ray imaging: Ultrafast diffract-and-destroy movies, Nat. Photonics 2, 390 (2008)Google Scholar
  80. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G.J. Williams, J.E. Koglin, D. Oberthuer, M. Heymann, C. Kupitz, C. Conrad, J. Coe, G.J. Roy-Chowdhury, U. Weierstall, D. James, D.J. Wang, T. Grant, A. Barty, O. Yefanov, J. Scales, C. Gati, C. Seuring, V. Srajer, R. Henning, P. Schwander, R. Fromme, A. Ourmazd, K. Moffat, J.J. Van Thor, J.C.H. Spence, P. Fromme, H.N. Chapman, M. Schmidt: Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein, Science 346, 1242 (2014)Google Scholar
  81. J.C.H. Spence: Outrunning damage: Electrons vs x-rays—timescales and mechanisms, Struct. Dyn. 4, 044027 (2017)Google Scholar
  82. J.C.H. Spence, G. Subramanian, P. Musumeci: Hollow cone illumination for fast TEM, and outrunning damage with electrons, J. Phys. B 48, 214003 (2015)Google Scholar
  83. S.P. Hau-Riege, R.A. London, H.N. Chapman: Pulse Requirements for Electron Diffraction Imaging of Single Biological Molecules, Lawrence Livermore National Laboratory Internal Report UCRL-TR-207533 (Lawrence Livermore National Lab. (LLNL), Livermore 2004)Google Scholar
  84. J.W. Lewellen: Overview of high-brightness electron guns. In: Proc. 22nd Int. Conf. LINAC (2004) pp. 842–846Google Scholar
  85. J.R. Fryer: The effect of dose-rate on imaging aromatic organic-crystals, Ultramicroscopy 23, 321 (1987)Google Scholar
  86. D.A. Plemmons, P.K. Suri, D.J. Flannigan: Probing structural and electronic dynamics with ultrafast electron microscopy, Chem. Mater. 27, 3178 (2015)Google Scholar
  87. A. Gahlmann, S.T. Park, A.H. Zewail: Ultrafast electron pulses for diffraction, crystallography and microscopy: Theoretical and experimental resolutions, Phys. Chem. Chem. Phys. 10, 2894 (2008)Google Scholar
  88. L. Piazza, T.T.A. Lummen, E. Quinonez, Y. Murooka, B.W. Reed, B. Barwick, F. Carbone: Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field, Nat. Commun. 6, 6407 (2015)Google Scholar
  89. O. Bostanjoglo, H.P. Gemund: Low-temperature specimen holder for magnetization processes by means of short field pulse, Mikroskopie 34, 188 (1978)Google Scholar
  90. O. Bostanjoglo, T. Rosin: Resonance oscillations of magnetic domain-walls and Bloch lines observed by stroboscopic electron-microscopy, Phys. Status Solidi (a) 57, 561 (1980)Google Scholar
  91. O. Bostanjoglo, R. Liedtke: Tracing fast phase-transitions by electron-microscopy, Phys. Status Solidi (a) 60, 451 (1980)Google Scholar
  92. O. Bostanjoglo, G. Schlotzhauer: Impulse stimulated crystallization of Sb films investigated by time resolved TEM, Phys. Status Solidi (a) 68, 555 (1981)Google Scholar
  93. O. Bostanjoglo, G. Schlotzhauer, S. Schade: Shaping trigger pulses from noisy signals and time-resolved TEM of fast phase-transitions, Optik 61, 91 (1982)Google Scholar
  94. O. Bostanjoglo: Time-resolved TEM of pulsed crystallization of amorphous Si and Ge films, Phys. Status Solidi (a) 70, 473 (1982)Google Scholar
  95. O. Bostanjoglo, G. Hoffmann: Time-resolved TEM of transient effects in pulse annealing of Ge and Ge-Te films, Phys. Status Solidi (a) 73, 95 (1982)Google Scholar
  96. O. Bostanjoglo, W.R. Horinek: Pulsed TEM—A new method to detect transient structures in fast phase-transitions, Optik 65, 361 (1983)Google Scholar
  97. A.A. Ischenko, V.V. Golubkov, V.P. Spiridonov, A.V. Zgurskii, A.S. Akhmanov, M.G. Vabischevich, N. Bagratashvili: A stroboscopical gas-electron diffraction method for the investigation of short-lived molecular-species, Appl. Phys. B 32, 161 (1983)Google Scholar
  98. R.S. Becker, G.S. Higashi, J.A. Golovchenko: Low-energy electron-diffraction during pulsed laser annealing: A time-resolved surface structural study, Phys. Rev. Lett. 52, 307 (1984)Google Scholar
  99. A.P. Rood, J. Milledge: Combined flash-photolysis and gas-phase electron-diffraction studies of small molecules, J. Chem. Soc. Faraday Trans. 80, 1145 (1984)Google Scholar
  100. J.D. Ewbank, L. Schäfer, D.W. Paul, O.J. Benson, J.C. Lennox: Real-time data acquisition for gas electron-diffraction, Rev. Sci. Instrum. 55, 1598 (1984)Google Scholar
  101. O. Bostanjoglo, E. Endruschat, F. Heinricht, R.P. Tornow, W. Tornow: Short-interval electron-microscopy and pulsed lasers, Eur. J. Cell Biol. 44, 10 (1987)Google Scholar
  102. O. Bostanjoglo, J. Kornitzky, R.P. Tornow: Nanosecond double-frame electron-microscopy of fast phase-transitions, J. Phys. E 22, 1008 (1989)Google Scholar
  103. O. Bostanjoglo, R.P. Tornow, W. Tornow: Nanosecond-exposure electron-microscopy of laser-induced phase-transformations, Ultramicroscopy 21, 367 (1987)Google Scholar
  104. J.D. Ewbank, J.Y. Luo, J.T. English, R.F. Liu, W.L. Faust, L. Schafer: Time-resolved gas electron-diffraction study of the 193-nm photolysis of 1,2-dichloroethenes, J. Phys. Chem. 97, 8745 (1993)Google Scholar
  105. M. Dantus, S.B. Kim, J.C. Williamson, A.H. Zewail: Ultrafast electron-diffraction. 5. Experimental time resolution and applications, J. Phys. Chem. 98, 2782 (1994)Google Scholar
  106. H. Ihee, V.A. Lobastov, U.M. Gomez, B.M. Goodson, R. Srinivasan, C.Y. Ruan, A.H. Zewail: Direct imaging of transient molecular structures with ultrafast diffractions, Science 291, 458 (2001)Google Scholar
  107. J. Cao, Z. Hao, H.S. Park, C. Tao, D. Kau, L. Blaszczyk: Femtosecond electron diffraction for direct measurement of ultrafast atomic motions, Appl. Phys. Lett. 83, 1044 (2003)Google Scholar
  108. H. Dömer, O. Bostanjoglo: Phase explosion in laser-pulsed metal films, Appl. Surf. Sci. 208, 442 (2003)Google Scholar
  109. B.J. Siwick, J.R. Dwyer, J.E. Jordan, R.J.D. Miller: An atomic-level view of melting using femtosecond electron diffraction, Science 302, 1382 (2003)Google Scholar
  110. O. Bostanjoglo, T. Rosin: Stroboscopic Lorentz TEM at 100 kV up to 100 MHz. In: Proc. 7th Eur. Congr. Electron Microsc., ed. by P. Brederoo, G. Boom (1980) p. 88Google Scholar
  111. O. Bostanjoglo, T. Rosin: Ultrasonically induced magnetoelastic effects observed by stroboscopic electron microscopy. In: Proc. 6th Eur. Congr. Electron Microsc., ed. by D.G. Brandon (1976) p. 360Google Scholar
  112. O. Bostanjoglo, T. Rosin: Ultrasonically induced magnetic reversals observed by stroboscopic electron-microscopy, Opt. Acta 24, 657 (1977)Google Scholar
  113. O. Bostanjoglo, T. Rosin: Mass and relaxation time of domain walls in thin NiFe films from forced oscillations, J. Magn. Magn. Mater. 1529, 15–18 (1980)Google Scholar
  114. O. Bostanjoglo, E. Endruschat: Kinetics of laser-induced crystallization of amorphous germanium films, Phys. Status Solidi (a) 91, 17 (1985)Google Scholar
  115. O. Bostanjoglo, E. Endruschat, W. Tornow: Time-resolved TEM of laser-induced phase transitions in a-Ge and a-Si/Al-films, Mater. Res. Soc. Symp. Proc. 71, 345 (1986)Google Scholar
  116. O. Bostanjoglo, T. Nink: Hydrodynamic instabilities in laser pulse-produced melts of metal films, J. Appl. Phys. 79, 8725 (1996)Google Scholar
  117. O. Bostanjoglo, T. Nink: Liquid motion in laser-pulsed Al, Co, and Au films, Appl. Surf. Sci. 109/110, 101 (1996)Google Scholar
  118. O. Bostanjoglo, J. Kornitzky: Nanoseconds double-frame and streak transmission electron microscopy. In: Proc. 12th Int. Congr. Electron Microsc. (1990) p. 180Google Scholar
  119. O. Bostanjoglo, J. Kornitzky, R.P. Tornow: High-speed electron-microscopy of laser-induced vaporization of thin-films, J. Appl. Phys. 69, 2581 (1991)Google Scholar
  120. O. Bostanjoglo, R.P. Tornow, W. Tornow: A pulsed image converter for nanosecond electron-microscopy, Scanning Microsc. Suppl. 1, 197 (1987)Google Scholar
  121. O. Bostanjoglo, R. Niedrig, B. Wedel: Ablation of metal-films by picosecond laser-pulses imaged with high-speed electron-microscopy, J. Appl. Phys. 76, 3045 (1994)Google Scholar
  122. O. Bostanjoglo, F. Heinricht: Producing high-current nanosecond electron pulses with a standard tungsten hairpin gun, J. Phys. E 120, 1491 (1987)Google Scholar
  123. B. Schäfer, O. Bostanjoglo: Laser driven thermionic electron-gun, Optik 92, 9 (1992)Google Scholar
  124. O. Bostanjoglo, D. Otte: High-speed transmission electron-microscopy of laser quenching, Mater. Sci. Eng. A 173, 407 (1993)Google Scholar
  125. O. Bostanjoglo, D. Otte: High-speed electron-microscopy of nanocrystallization in Al-Ni films by nanosecond laser-pulses, Phys. Status Solidi (a) 150, 163 (1995)Google Scholar
  126. T. Nink, F. Galbert, Z.L. Mao, O. Bostanjoglo: Dynamics of laser pulse-induced melts in Ni-P visualized by high-speed transmission electron microscopy, Appl. Surf. Sci. 139, 439 (1999)Google Scholar
  127. T. Nink, Z.L. Mao, O. Bostanjoglo: Melt instability and crystallization in thin amorphous Ni-P films, Appl. Surf. Sci. 154, 140 (2000)Google Scholar
  128. H. Dömer, O. Bostanjoglo: Laser ablation of thin films with very high induced stresses, J. Appl. Phys. 91, 5462 (2002)Google Scholar
  129. H. Dömer, O. Bostanjoglo: Relaxing melt and plasma bubbles in laser-pulsed metals, J. Appl. Phys. 94, 6280 (2003)Google Scholar
  130. T. LaGrange, G.H. Campbell, P.E.A. Turchi, W.E. King: Rapid phase transformation kinetics on a nanoscale: Studies of the \(\upalpha\rightarrow\upbeta\) transformation in pure, nanocrystalline Ti using the nanosecond dynamic transmission electron microscope, Acta Mater. 55, 5211 (2007)Google Scholar
  131. J.S. Kim, T. LaGrange, B.W. Reed, R. Knepper, T.P. Weihs, N.D. Browning, G.H. Campbell: Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy, Acta Mater. 59, 3571 (2011)Google Scholar
  132. T. LaGrange, D.S. Grummon, B.W. Reed, N.D. Browning, W.E. King, G.H. Campbell: Strongly driven crystallization processes in a metallic glass, Appl. Phys. Lett. 94, 184101 (2009)Google Scholar
  133. M.K. Santala, B.W. Reed, S. Raoux, T. Topuria, T. LaGrange, G.H. Campbell: Nanosecond-scale time-resolved electron imaging during laser crystallization of GeTe, Phys. Status Solidi (b) 249, 1907 (2012)Google Scholar
  134. M.K. Santala, S. Raoux, T. Topuria, B.W. Reed, T. LaGrange, G.H. Campbell: Distinguishing mechanisms of morphological instabilities in phase change materials during switching, Thin Solid Films 571, 39 (2014)Google Scholar
  135. M.K. Santala, B.W. Reed, T. Topuria, S. Raoux, S. Meister, Y. Cui, T. LaGrange, G.H. Campbell, N.D. Browning: Nanosecond in situ transmission electron microscope studies of the reversible Ge\({}_{2}\)Sb\({}_{2}\)Te\({}_{5}\) crystalline ⇔ amorphous phase transformation, J. Appl. Phys. 111, 024309 (2012)Google Scholar
  136. L. Nikolova, T. LaGrange, B.W. Reed, M.J. Stern, N.D. Browning, G.H. Campbell, J.C. Kieffer, B.J. Siwick, F. Rosei: Nanocrystallization of amorphous germanium films observed with nanosecond temporal resolution, Appl. Phys. Lett. 97, 203102 (2010)Google Scholar
  137. L. Nikolova, T. LaGrange, M.J. Stern, J.M. MacLeod, B.W. Reed, H. Ibrahim, G.H. Campbell, F. Rosei, B.J. Siwick: Complex crystallization dynamics in amorphous germanium observed with dynamic transmission electron microscopy, Phys. Rev. B 87, 064105 (2013)Google Scholar
  138. G.C. Egan, K.T. Sullivan, T. LaGrange, B.W. Reed, M.R. Zachariah: In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates, J. Appl. Phys. 115, 084903 (2014)Google Scholar
  139. J.T. McKeown, N.A. Roberts, J.D. Fowlkes, Y. Wu, T. LaGrange, B.W. Reed, G.H. Campbell, P.D. Rack: Real-time observation of nanosecond liquid-phase assembly of nickel nanoparticles via pulsed-laser heating, Langmuir 28, 17168 (2012)Google Scholar
  140. B. Barwick, D.J. Flannigan, A.H. Zewail: Photon-induced near-field electron microscopy, Nature 462, 902 (2009)Google Scholar
  141. G.C. Egan, T. LaGrange, M.R. Zachariah: Time-resolved nanosecond imaging of nanoscale condensed phase reaction, J. Phys. Chem. C 119, 2792 (2015)Google Scholar
  142. T.T. Li, L.B. Bayu Aji, T.W. Heo, M.K. Santala, S.O. Kucheyev, G.H. Campbell: Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films, Appl. Phys. Lett. 108, 221906 (2016)Google Scholar
  143. R.M. van der Veen, O.-H. Kwon, A. Tissot, A. Hauser, A.H. Zewail: Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy, Nat. Chem. 5, 395 (2013)Google Scholar
  144. D.J. Flannigan, V.A. Lobastov, A.H. Zewail: Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy, Angew. Chem. Int. Ed. 46, 9206 (2007)Google Scholar
  145. O.-H. Kwon, V. Ortalan, A.H. Zewail: Macromolecular structural dynamics visualized by pulsed dose control in 4D electron microscopy, Proc. Natl. Acad. Sci. USA 108, 6026 (2011)Google Scholar
  146. A.W.P. Fitzpatrick, S.T. Park, A.H. Zewail: Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy, Proc. Natl. Acad. Sci. USA 110, 10976 (2013)Google Scholar
  147. A.W.P. Fitzpatrick, G.M. Vanacore, A.H. Zewail: Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy, Proc. Natl. Acad. Sci. USA 112, 3380 (2015)Google Scholar
  148. D.J. Flannigan, D.R. Cremons, D.T. Valley: Multimodal visualization of the optomechanical response of silicon cantilevers with ultrafast electron microscopy, J. Mater. Res. 32, 239 (2017)Google Scholar
  149. M.S. Grinolds, V.A. Lobastov, J. Weissenrieder, A.H. Zewail: Four-dimensional ultrafast electron microscopy of phase transitions, Proc. Natl. Acad. Sci. USA 103, 18427 (2006)Google Scholar
  150. V.A. Lobastov, J. Weissenrieder, J. Tang, A.H. Zewail: Ultrafast electron microscopy (UEM): Four-dimensional imaging and diffraction of nanostructures during phase transitions, Nano Lett. 7, 2552 (2007)Google Scholar
  151. O.-H. Kwon, H.S. Park, J.S. Baskin, A.H. Zewail: Nonchaotic nonlinear motion visualized in complex nanostructures by stereographic 4D electron microscopy, Nano Lett. 10, 3190 (2010)Google Scholar
  152. J.S. Baskin, H.S. Park, A.H. Zewail: Nanomusical systems visualized and controlled in 4D electron microscopy, Nano Lett. 11, 2183 (2011)Google Scholar
  153. O.F. Mohammed, P.C. Samartzis, A.H. Zewail: Heating and cooling dynamics of carbon nanotubes by temperature-jump spectroscopy and electron microscopy, J. Am. Chem. Soc. 131, 16010 (2009)Google Scholar
  154. D.J. Flannigan, B. Barwick, A.H. Zewail: Biological imaging with 4D ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 107, 9933 (2010)Google Scholar
  155. A. Yurtsever, J.S. Baskin, A.H. Zewail: Entangled nanoparticles: Discovery by visualization in 4D electron microscopy, Nano Lett. 12, 5027 (2012)Google Scholar
  156. D.J. Flannigan, A.H. Zewail: Optomechanical and crystallization phenomena visualized with 4D electron microscopy: Interfacial carbon nanotubes on silicon nitride, Nano Lett. 10, 1892 (2010)Google Scholar
  157. U.J. Lorenz, A.H. Zewail: Biomechanics of DNA structures visualized by 4D electron microscopy, Proc. Natl. Acad. Sci. USA 110, 2822 (2013)Google Scholar
  158. J. Hu, G.M. Vanacore, Z. Yang, X. Miao, A.H. Zewail: Transient structures and possible limits of data recording in phase-change materials, ACS Nano 9, 6728 (2015)Google Scholar
  159. B.-K. Yoo, Z. Su, J.M. Thomas, A.H. Zewail: On the dynamical nature of the active center in a single-site photocatalyst visualized by 4D ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 113, 503 (2016)Google Scholar
  160. D.R. Cremons, D.A. Plemmons, D.J. Flannigan: Femtosecond electron imaging of defect-modulated phonon dynamics, Nat. Commun. 7, 11230 (2016)Google Scholar
  161. D.T. Valley, V.E. Ferry, D.J. Flannigan: Imaging intra- and interparticle acousto-plasmonic vibrational dynamics with ultrafast electron microscopy, Nano Lett. 16, 7302 (2016)Google Scholar
  162. O.-H. Kwon, B. Barwick, H.S. Park, J.S. Baskin, A.H. Zewail: 4D visualization of embryonic, structural crystallization by single-pulse microscopy, Proc. Natl. Acad. Sci. USA 105, 8519 (2008)Google Scholar
  163. H.S. Park, O.-H. Kwon, J.S. Baskin, B. Barwick, A.H. Zewail: Direct observation of martensitic phase-transformation dynamics in iron by 4D single-pulse electron microscopy, Nano Lett. 9, 3953 (2009)Google Scholar
  164. F. Carbone, O.-H. Kwon, A.H. Zewail: Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy, Science 325, 181 (2009)Google Scholar
  165. R.M. van der Veen, T.J. Penfold, A.H. Zewail: Ultrafast core-loss spectroscopy in four-dimensional electron microscopy, Struct. Dyn. 2, 024302 (2015)Google Scholar
  166. S.T. Park, A.H. Zewail: Photon-induced near-field electron microscopy: Mathematical formulation of the relation between the experimental observables and the optically driven charge density of nanoparticles, Phys. Rev. A 89, 013851 (2014)Google Scholar
  167. H. Liu, J.S. Baskin, A.H. Zewail: Infrared PINEM developed by diffraction in 4D UEM, Proc. Natl. Acad. Sci. USA 113, 2041 (2016)Google Scholar
  168. A. Yurtsever, A.H. Zewail: 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy, Science 326, 708 (2009)Google Scholar
  169. A. Yurtsever, A.H. Zewail: Kikuchi ultrafast nanodiffraction in four-dimensional electron microscopy, Proc. Natl. Acad. Sci. USA 108, 3152 (2011)Google Scholar
  170. O.-H. Kwon, A.H. Zewail: 4D electron tomography, Science 328, 1668 (2010)Google Scholar
  171. D.-S. Yang, O.F. Mohammed, A.H. Zewail: Scanning ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 107, 14993 (2010)Google Scholar
  172. O.F. Mohammed, D.-S. Yang, S.K. Pal, A.H. Zewail: 4D scanning ultrafast electron microscopy: Visualization of materials surface dynamics, J. Am. Chem. Soc. 133, 7708 (2011)Google Scholar
  173. D.-S. Yang, O.F. Mohammed, A.H. Zewail: Environmental scanning ultrafast electron microscopy: Structural dynamics of solvation at interfaces, Angew. Chem. Int. Ed. 52, 2897 (2013)Google Scholar
  174. H.S. Park, J.S. Baskin, A.H. Zewail: 4D Lorentz electron microscopy imaging: Magnetic domain wall nucleation, reversal, and wave velocity, Nano Lett. 10, 3796 (2010)Google Scholar
  175. V. Ortalan, A.H. Zewail: 4D scanning transmission electron microscopy: Single particle imaging and spectroscopy, J. Am. Chem. Soc. 133, 10731 (2011)Google Scholar
  176. A. Yurtsever, R.M. van der Veen, A.H. Zewail: Subparticle ultrafast spectrum imaging in 4D electron microscopy, Science 335, 59 (2012)Google Scholar
  177. A.W.P. Fitzpatrick, U.J. Lorenz, G.M. Vanacore, A.H. Zewail: 4D cryo-electron microscopy of proteins, J. Am. Chem. Soc. 135, 19123 (2013)Google Scholar
  178. L. Sterafini: Micro-bunch production with radio frequency photo-injectors, IEEE Trans. Plasma Sci. 24, 421 (1996)Google Scholar
  179. L.C. Steinhauer, W.D. Kimura: Longitudinal space charge debunching and compensation in high-frequency accelerators, Phys. Rev. Accel. Beams 2, 081301 (1999)Google Scholar
  180. H. Qin, R.C. Davidson: Longitudinal drift compression and pulse shaping for high-intensity particle beams, Phys. Rev. Accel. Beams 5, 034401 (2002)Google Scholar
  181. S.G. Anderson, J.B. Rosenzweig, P. Musumeci, M.C. Thompson: Horizontal phase-space distortions arising from magnetic pulse compression of an intense, relativistic electron beam, Phys. Rev. Lett. 91, 074803 (2003)Google Scholar
  182. D.H. Dowell, J.L. Adamski, T.D. Hayward, P.E. Johnson, C.D. Parazzoli, A.M. Vetter: Results of the Boeing pulse compression and energy recovery, Nucl. Instrum. Methods Phys. Res. A 393, 184 (1997)Google Scholar
  183. F. Zhou, D.B. Cline, W.D. Kimura: Beam dynamics analysis of femtosecond microbunches produced by the staged electron laser acceleration experiment, Phys. Rev. Accel. Beams 6, 054201 (2003)Google Scholar
  184. P. Kung, H.C. Lihn, H. Wiedmann, D. Bocek: Generation and measurement of 50-fs (rms) electron pulses, Phys. Rev. Lett. 73, 967 (1994)Google Scholar
  185. T. Kozawa, T. Kobayashi, T. Ueda, M. Uesaka: Generation of high-current (1kA) subpicosecond electron single pulse, Nucl. Instrum. Methods Phys. Res. A 399, 180 (1997)Google Scholar
  186. M. Reiser: Theory and Design of Charged Particle Beams (Wiley, New York 1994)Google Scholar
  187. G. Taban, M.P. Reijnders, B. Fleskens, S.B. van der Greer, O.J. Luiten, E.J.D. Vredenbregt: Ultracold electron source for single-shot diffraction studies, Europhys. Lett. 91, 46004 (2010)Google Scholar
  188. B.J. Claessens, S.B. van der Greer, G. Taban, E.J.D. Vredenbregt, O.J. Luiten: Ultracold electron source, Phys. Rev. Lett. 95, 164801 (2005)Google Scholar
  189. B.J. Claessens, M.P. Reijnders, G. Taban, O.J. Luiten, E.J.D. Vredenbregt: Cold electron and ion beams generated from trapped atoms, Phys. Plasmas 14, 093101 (2007)Google Scholar
  190. M.P. Reijnders, P.A. van Kruisbergen, G. Taban, S.B. van der Greer, P.H.A. Mutsaers, E.J.D. Vredenbregt, O.J. Luiten: Low-energy-spread ion bunches from a trapped atomic gas, Phys. Rev. Lett. 102, 034802 (2009)Google Scholar
  191. M.P. Reijnders, N. Debernardi, S.B. van der Greer, P.H.A. Mutsaers, E.J.D. Vredenbregt, O.J. Luiten: Phase-space manipulation of ultracold ion bunches with time-dependent field, Phys. Rev. Lett. 105, 034802 (2010)Google Scholar
  192. D.H. Dowell, J.F. Schmerge: Quantum efficiency and thermal emittance of metal photocathodes, Phys. Rev. Accel. Beams 12, 074201 (2009)Google Scholar
  193. N. Debernardi, M.P. Reijnders, W.J. Engelen, T.T.J. Clevis, P.H.A. Mutsaers, O.J. Luiten, E.J.D. Vredenbregt: Measurement of the temperature of an ultracold ion source using time-dependent electric field, J. Appl. Phys. 110, 024501 (2011)Google Scholar
  194. A.J. McCulloch, D.V. Sheludko, S.D. Saliba, S.C. Bell, M. Junker, K.A. Nugent, R.E. Scholten: Arbitrarily shaped high-coherence electron bunches from cold atoms, Nat. Phys. 7, 785 (2011)Google Scholar
  195. M.P. Reijnders, N. Debernardi, S.B. van der Greer, P.H.A. Mutsaers, E.J.D. Vredenbregt, O.J. Luiten: Time-dependent manipulation of ultracold ion bunches, J. Appl. Phys. 109, 033302 (2011)Google Scholar
  196. E.J.D. Vredenbregt, O.J. Luiten: Electron diffraction: Cool beams in great shape, Nat. Phys. 7, 747 (2011)Google Scholar
  197. W.J. Engelen, M.A. van der Heijden, D.J. Bakker, E.J.D. Vredenbregt, O.J. Luiten: High-coherence electron bunches produced by femtosecond photoionization, Nat. Commun. 4, 1693 (2013)Google Scholar
  198. L. Cultrera, S. Karkare, H. Lee, X. Liu, I. Bazarov, B. Dunham: Cold electron beams from cryocooled, alkali antimonide photocathodes, Phys. Rev. Accel. Beams 18, 113401 (2015)Google Scholar
  199. R. Akre, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, P. Hering, R. Iverson, C. Limborg-Deprey, H. Loos, A. Miahnahri, J. Schmerge, J. Turner, J. Welch, W. White, J. Wu: Commissioning the linac coherent light source injector, Phys. Rev. Accel. Beams 11, 030703 (2008)Google Scholar
  200. A. Chao: Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New York 1993)Google Scholar
  201. D.A. Edwards, M.J. Syphers: An Introduction to the Physics of High Energy Accelerators (Wiley, New York 1993)Google Scholar
  202. J.B. Hastings, F.M. Rudakov, D.H. Dowell, J.F. Schmerge, J.D. Cardoza, J.M. Castro, S.M. Gierman, H. Loos, P.M. Weber: Ultrafast time-resolved electron diffraction with megavolt electron beams, Appl. Phys. Lett. 89, 184109 (2006)Google Scholar
  203. R.K. Li, C.X. Tang, Y.C. Du, W.H. Huang, Q. Du, J.R. Shi, X. Yan, X.J. Wang: Experimental demonstration of high quality MeV ultrafast electron diffraction, Rev. Sci. Instrum. 80, 083303 (2009)Google Scholar
  204. P. Musumeci, J.T. Moody, C.M. Scoby, M.S. Gutierrez, M. Westfall: Laser-induced melting of a single crystal gold sample by time-resolved ultrafast relativistic electron diffraction, Appl. Phys. Lett. 97, 063502 (2010)Google Scholar
  205. Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, K. Tanimura: Transmission-electron diffraction by MeV electron pulses, Appl. Phys. Lett. 98, 251903 (2011)Google Scholar
  206. P.F. Zhu, H. Berger, J. Cao, J. Geck, Y. Hidaka, R. Kraus, S. Pjerov, Y. Shen, R.I. Tobey, Y. Zhu, J.P. Hill, X.J. Wang: Femtosecond time-resolved MeV electron diffraction, New J. Phys. 17, 063004 (2015)Google Scholar
  207. M.Z. Mo, X. Shen, Z. Chen, R.K. Li, M. Dunning, K. Sokolowski-Tinten, Q. Zheng, S.P. Weathersby, A.H. Reid, R. Coffee, I. Makasyuk, S. Edstrom, D. McCormick, K. Jobe, C. Hast, S.H. Glenzer, X. Wang: Single-shot mega-electron volt ultrafast electron diffraction for structure dynamics of warm dense matter, Rev. Sci. Instrum. 87, 11D810 (2016)Google Scholar
  208. R. Li, P. Musumeci: Single-shot ultrafast electron microscopy. In: 25th North Am. Part. Accel. Conf. (2013)Google Scholar
  209. K. Tanimura: Toward ultrafast electron microscope with femtosecond temporal resolution, atomic-level spatial resolution, and single-shot imaging capability, Microsc. Microanal. 21(Suppl. 3), 651 (2015)Google Scholar
  210. J. Yang, K. Kan, T. Kondoh, Y. Yoshida, J. Urakawa: RF gun based ultrafast electron microscopy. In: Proc. IPAC2015 (2015),  https://doi.org/10.18429/JACoW-IPAC2015-TUPWI008CrossRefGoogle Scholar
  211. B.W. Reed, S.T. Park, D.J. Masiel: Beyond movie mode: Bridging the gap of time resolution, Microsc. Microanal. 22(Suppl. 3), 706 (2016)Google Scholar
  212. L.F. Allard, S.H. Overbury, W.C. Bigelow, M.B. Katz, D.P. Nackashi, J. Damiano: Novel MEMS-based gas cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies, Microsc. Microanal. 18, 656 (2012)Google Scholar
  213. S. Mehraeen, J.T. McKeown, P.V. Deshmukh, J.E. Evans, P. Abellan, P. Xu, B.W. Reed, M.L. Taheri, P.E. Fischione, N.D. Browning: A (S)TEM gas cell holder with localized laser heating for in situ experiments, Microsc. Microanal. 19, 470 (2013)Google Scholar
  214. J.E. Evans, K.L. Jungjohann, N.D. Browning, I. Arslan: Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy, Nano Lett. 11, 2809 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Materials Science DivisionLawrence Livermore National LaboratoryLivermore, CAUSA
  2. 2.Materials Science DivisionLawrence Livermore National LaboratoryLivermore, CAUSA
  3. 3.School of Mechanical, Industrial, and Manufacturing EngineeringOregon State UniversityCorvallis, ORUSA

Personalised recommendations