Scanning Electron Microscopy

  • Natasha Erdman
  • David C. BellEmail author
  • Rudolf Reichelt
Part of the Springer Handbooks book series (SHB)


This chapter provides an overview of the concepts of scanning electron microscopy () from a theoretical as well as practical operational perspective. The theory section begins with the basics of image formation followed by an explanation of the interaction of the electron beam with the sample. A description of the different types of electron guns is also included. The concepts involved with image formation from a rastered (or scanned) electron beam on a surface is explained along with the mechanisms of contrast generation from sample surface topography and sample composition. The different SEM detectors are also explained including a description of the practical application of detectors under various sample conditions. Numerous diagrams and figures in this chapter illustrate imaging geometries and possible SEM system configurations. Included in the chapter is an explanation of the various instrument operation parameters for different samples as well as a discussion of the effects of electron-beam accelerating voltages on sample imaging, contrast, and resolution.

More advanced topics are also included such as the use of beam deceleration and in-lens imaging and detectors. Analytical SEM techniques are also explained with the explanation of the use of energy-dispersive x-ray detectors (EDS) used to measure sample composition as well as provide compositional maps of a sample. Application of SEM to a variety of materials systems under varying conditions are discussed with multiple examples and illustrations given.

scanning electron microscope (SEM) energy dispersive spectroscopy (EDS) variable pressure (VP) secondary electrons backscatter electrons 



In the contribution in Science of Microscopy, on which this chapter is based, the late Professor Reichelt thanked Dipl.-Ing. Harald Nüsse (artwork), Dr. Vladislav Kryzanek (Monte Carlo simulations of scattering in thin and bulk specimens), Mrs. Ulrike Keller (scanning electron microscope expertise) and Mrs. Gudrun Kiefermann (photography), all of the Institut für Medizinische Physik und Biophysik of the University of Münster, for very welcome help. The chapter was dedicated to his wife Doris and his daughter Hanna. D.C.B. and N.E., who have undertaken the revision of the earlier text, would like to thank Mr. Masateru Shibata (JEOL USA) for his kind help with some of the illustrations in this chapter. D.C.B. and N.E. would like to dedicate it to Campbell, Angus, and Gideon.


  1. H. Stintzing: Verfahren und Einrichtung zum automatischen Nachweis, Messung und Zählung von Einzelteilchen beliebiger Art, Form und Grösse, German Patent 485155 (1927)Google Scholar
  2. M. Knoll: Aufladepotential und Sekundäremission eletronenbestrahlter Körper, Z. Tech. Phys. 116, 467 (1935)Google Scholar
  3. M. von Ardenne: Das Elektronen-Rastermikroskop. Praktische Ausführung, Z. Tech. Phys. 19, 407 (1938)Google Scholar
  4. E. Ruska: Die frühe Entwicklung der Elektronenlinsen und der Elektronenmikroskopie (Deutsche Akademie der Naturforscher Leopoldina, Halle 1979)Google Scholar
  5. V.K. Zworykin, J. Hillier, R.L. Snyder: A scanning electron microscope, ASTM Bulletin 117, 15 (1942)Google Scholar
  6. C.W. Oatley: The Scanning Electron Microscope. Part 1: The Instrument (Cambridge Univ. Press, Cambridge 1972)Google Scholar
  7. J. Ohnsorge, R. Holm: Rasterelektronenmikroskopie—Eine Einführung für Mediziner und Biologen (Thieme, Stuttgart 1973)Google Scholar
  8. D.B. Holt, M.D. Muir, P.R. Grant, I.M. Boswarva (Eds.): Quantitative Scanning Electron Microscopy (Academic Press, London 1974)Google Scholar
  9. O.C. Wells: Scanning Electron Microscopy (McGraw-Hill, New York 1974)Google Scholar
  10. M.A. Hayat (Ed.): Principles and Techniques of Scanning Electron Microscopy, Vol. 1–6 (Van Nostrand Reinhold, New York 1974)Google Scholar
  11. J. Goldstein, H. Yakowitz: Practical Scanning Electron Microscopy (Plenum, New York 1975)Google Scholar
  12. L. Reimer, G. Pfefferkorn: Raster‑Elektronenmikroskopie (Springer, Berlin 1973)Google Scholar
  13. L. Reimer, G. Pfefferkorn: Raster‑Elektronenmikroskopie, 2nd edn. (Springer, Berlin 1977)Google Scholar
  14. G. Pfefferkorn (Ed.): Beiträge zur elektronenmikroskopischen Direktabbildung und Analyse von Oberflächen (BEDO), Vol. 1 (R.A. Remy, Münster 1968)Google Scholar
  15. O. Johari (Ed.): Proceedings of the Annual Scanning Electron Microscopy Symposium (IIT Research Institute, Chicago 1987)Google Scholar
  16. L. Reimer: Scanning electron microscopy---Present state and trends, Scanning 1, 3 (1978)Google Scholar
  17. V.H. Heywood: Scanning Electron Microscopy. Systematic and Evolutionary Applications (Academic Press, London 1971)Google Scholar
  18. T. Fujita, M.D.J. Tokunaga, H. Inoue: Atlas of Scanning Electron Microscopy in Medicine (Elsevier, Amsterdam 1971)Google Scholar
  19. P.R. Thornton: Scanning Electron Microscopy. Application to Materials and Device Science (Chapman Hall, London 1972)Google Scholar
  20. P.R. Troughton, L.A. Donaldson: Probing Plant Structure (Chapman Hall, London 1972)Google Scholar
  21. B.M. Siegel, D.R. Beaman: Physical Aspects of Electron Microscopy and Microbeam Analysis (Wiley, New York 1975)Google Scholar
  22. J.A. Chandler: X-Ray Microanalysis in the Electron Microscope (North-Holland, Amsterdam 1978)Google Scholar
  23. J.-P. Revel, G.H. Haggis, T. Barnard (Eds.): The Science of Biological Specimen Preparation for Microscopy and Microanalysis (Scanning Electron Microscopy, Chicago 1983)Google Scholar
  24. D.E. Newbury, D.C. Joy, P. Echlin, C.E. Fiori, J.I. Goldstein: Advanced Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1987)Google Scholar
  25. K. Wetzig, D. Schulze (Eds.): In Situ Scanning Electron Microscopy in Materials Research (Akademie, Berlin 1995)Google Scholar
  26. S.J.B. Reed: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology (Cambridge Univ. Press, Cambridge 1996)Google Scholar
  27. J.J. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1984)Google Scholar
  28. J.J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L.C. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Kluwer Academic/Plenum, New York 2003)Google Scholar
  29. C.E. Lyman, D.E. Newbury, J.I. Goldstein, D.B. Williams, A.D. Romig, J.T. Armstrong, P. Echlin, C.E. Fiori, D.C. Joy, E. Lifshin, K.-R. Peters: Scanning Electron Microscopy, X-Ray Microanalysis and Analytical Electron Microscopy (Plenum, New York 1990)Google Scholar
  30. L. Reimer: Image Formation in Low-Voltage Scanning Electron Microscopy (SPIE, Bellingham/Washington 1993)Google Scholar
  31. D.C. Joy: Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford Univ. Press, New York 1995)Google Scholar
  32. L.C. Sawyer, D.T. Grubb: Polymer Microscopy (Chapman Hall, London 1996)Google Scholar
  33. I. Müllerová, L. Frank: Scanning low-energy electron microscopy, Adv. Imaging Electron Phys. 128, 310–443 (2003)Google Scholar
  34. D.C. Bell, N. Erdman: Low Voltage Electron Microscopy: Principles and Applications (Wiley, New York 2013)Google Scholar
  35. G.D. Danilatos: Foundations of environmental scanning electron microscopy, Adv. Electron. Electron Phys. 71, 109–250 (1988)Google Scholar
  36. G.D. Danilatos: Theory of the gaseous detector device in the ESEM, Adv. Electron. Electron Phys. 78, 1–102 (1990)Google Scholar
  37. D. Stokes: Principles and Practice of Variable Pressure: Environmental Scanning Electron Microscopy (VP-ESEM) (Wiley, New York 2008)Google Scholar
  38. L. Reimer: Scanning Electron Microscopy (Springer, Berlin 1985)Google Scholar
  39. W. DeVore, S.D. Berger: High emittance electron gun for projection lithography, J. Vac. Sci. Technol. B 14, 3764 (1996)Google Scholar
  40. W. Glaser: Grundlagen der Elektronenoptik (Springer, Wien 1952)Google Scholar
  41. P. Grivet: Electron Optics (Pergamon, Oxford 1972)Google Scholar
  42. O. Klemperer: Electron Optics (Cambridge Univ. Press, Cambridge 1971)Google Scholar
  43. L. Reimer: Scanning Electron Microscopy, 2nd edn. (Springer, Berlin 1998)Google Scholar
  44. V.E. Cosslett: Probe size and probe current in the STEM, Optik 36, 85 (1972)Google Scholar
  45. J.E. Barth, P. Kruit: Absorption of additional photons in the multiphoton ionisation continuum of xenon at 1064, 532 and 440 nm, Optik 101, 101 (1996)Google Scholar
  46. R. Kolarik, M. Lenc: An expression for the resolving power of a simple optical system, Optik 106, 135 (1997)Google Scholar
  47. T.E. Everhart, R.F.M. Thornley: Wide-band detector for micro-microampere low-energy electron currents, J. Sci. Instrum. 37, 246 (1960)Google Scholar
  48. A.V. Crewe, M. Isaacson, P. Johnson: Secondary electron detection in a field emission scanning microscope, Rev. Sci. Instrum. 41, 20 (1970)Google Scholar
  49. M.T. Postek, W.J. Keery: Low profile high-efficiency microchannel-plate detector system for scanning electron microscopy applications, Rev. Sci. Instrum. 61, 1648 (1990)Google Scholar
  50. R. Autrata, R. Hermann, M. Müller: An efficient BSE single crystal detector for SEM, Scanning 14, 127 (1992)Google Scholar
  51. R. Autrata, J. Jirák, J. Spinka, O. Hutar: Integrated single crystal detector for simultaneous detection of cathodoluminescence and backscattered electrons in scanning electron microscopy, Scanning Microsc. 6, 69 (1992)Google Scholar
  52. V.N.E. Robinson: BSE imaging at low accelerating voltages, Hitachi Instrum. News 19, 32 (1990)Google Scholar
  53. J. Stephen, B.J. Smith, D.C. Marshall, E.M. Wittam: Applications of a semiconductor backscattered electron detector in a scanning electron microscope, J. Phys. E 8, 607 (1975)Google Scholar
  54. E.F. Bond, D. Beresford, H.H. Haggis: Improved cathodoluminescence ‘microscopy', J. Microsc. 100, 271 (1974)Google Scholar
  55. A. Rasul, S.M. Davidson: Applications of a high performance SEM-based CL analysis system to compound semiconductor devices, Scanning Electron Microsc. I, 233 (1977)Google Scholar
  56. R. Autrata: A modification of the ET secondary electron detector with a single crystal scintillator, Scanning 12, 119 (1990)Google Scholar
  57. R. Autrata, J. Hejna: Detectors for low voltage scanning electron microscopy, Scanning 13, 275 (1991)Google Scholar
  58. R. Autrata, P. Schauer: Cathodoluminecsence of Polysilanes. In: 13th Eur. Congr. Microsc, ed. by D. Schryvers, J.-P. Timmermans, D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liége 2004) pp. 75–76Google Scholar
  59. C.H. Wu, D.B. Wittry: Investigation of minority-carrier diffusion lengths by electron bombardment of Schottky barriers, J. Appl. Phys. 49, 2827 (1974)Google Scholar
  60. P.E. Russel, J.F. Mancuso: Microchannel plate detector for low voltage scanning electron microscopes, J. Microsc. 140, 323 (1985)Google Scholar
  61. F.J. Judge, J.M. Stubbs, J. Philp: A concave mirror, light pipe photon collecting system for cathodoluminescence studies on biological specimens in the JSM 2 scanning electron microscope, J. Phys. E 7, 173 (1974)Google Scholar
  62. A. Boyde, S.A. Reid: New methods for cathodoluminescence in the SEM, Scanning Electron Microsc. 4, 1803 (1983)Google Scholar
  63. W.R. McKinney, P.V.C. Hough: A new detector system for cathodoluminescence ‘microscopy', Scanning Electron Microsc. 1, 251 (1977)Google Scholar
  64. E.M. Hörl: SEM of biological material using cathodoluminescence, Micron 3, 540 (1972)Google Scholar
  65. E.M. Hörl: Rasterelektronenmikroskopie unter Verwendung eines Farbmonitors, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 8, 233 (1975)Google Scholar
  66. E.I. Rau, R.A. Sennov, D.S.H. Chan, J.C.H. Phang: The main principles of improved spatial resolution cathodoluminescence microscopy and microtomography using elliptical mirror optics. In: Proc. 13th Eur. Congr. Microsc., ed. by J.-P. Timmermans, D. Schryvers, D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 411–412Google Scholar
  67. A. Ishikawa, F. Mizuno, Y. Uchikawa, S. Maruse: High resolution and spectroscopic cathodoluminescent images in SEM, Jpn. J. Appl. Phys. 12, 286 (1973)Google Scholar
  68. L. Reimer: Electron signal and detector strategy. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 299–310Google Scholar
  69. S. Kimoto, H. Hashimoto, T. Suganama: Stereoscopic observation in SEM using multiple detectors. In: The Electron Microprobe, ed. by T.D. McKinley, K.F.J. Heinrich, D.B. Wittrey (Wiley, New York 1966) pp. 480–489Google Scholar
  70. J. Hejna, L. Reimer: Backscattered electron multidetector systems for improved quantitative topographic contrast, Scanning 9, 162 (1987)Google Scholar
  71. J. Lebiedzik: An automatic topographical surface reconstruction in the SEM, Scanning 2, 230 (1979)Google Scholar
  72. D. Kaczmarek: The method of increasing COMPO contrast by linearization of backscattering characteristic \(\eta=f(Z)\), Scanning 19, 310 (1997)Google Scholar
  73. D. Kaczmarek, J. Domaradzki: The method for the reconstruction of complex images of specimens using backscattered electrons, Scanning 24, 65 (2002)Google Scholar
  74. I. Müllerová, M. Lenc, M. Florián: Collection of backscattered electrons with a single polepiece lens and a multiple detector, Scanning Microsc. 3, 419 (1989)Google Scholar
  75. P. Kruit: Magnetic through-the-lens detection in electron microscopy and spectroscopy, Part 1. In: Advances in Optical and Electron Microscopy, Vol. 12, ed. by T. Mulvey, C.J.R. Sheppard (Academic Press, London 1991) pp. 93–137Google Scholar
  76. A.E. Lukianov, G.V. Spivak, E.I. Rau, D.D. Gorodsky: The secondary electron SEM-collector with magnetic field. In: Proc. 5th Eur. Congr. Electron Microsc., ed. by V.E. Cosslett (The Institute of Physics, London 1972) pp. 186–187Google Scholar
  77. H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope. In: Proc. EMSA (Claytor's Publishing Division, Baton Rouge 1971) p. 28Google Scholar
  78. J. Zach: Design of a high-resolution low-voltage scanning electron microscope, Optik 83, 30 (1989)Google Scholar
  79. J. Zach, H. Rose: High-resolution low-voltage electron microprobe with large SE detection efficiency. In: Inst. of Phys. Conf. Ser. No. 93 (IOP, Bristol 1988) pp. 81–82Google Scholar
  80. J. Zach, H. Rose: Efficient detection of secondary electrons in low-voltage SEM, Scanning 8, 285 (1988)Google Scholar
  81. J. Frosien, E. Plies, K. Anger: Compound magnetic and electrostatic lenses for low-voltage applications, J. Vac. Sci. Technol. B 7, 1874 (1989)Google Scholar
  82. S. Menzel, K. Wetzig: In situ production and defect characterization of laser PVD layers from YBaCuO HTSC targets inside a scanning electron microscope, J. Mater. Sci. 3, 5 (1992)Google Scholar
  83. A.J. Craven, J.M. Gibons, A. Howie, D.R. Spalding: Study of single-electron excitations by electron microscopy I. Image contrast from delocalized excitations, Philos. Mag. A 38, 519 (1978)Google Scholar
  84. M.S. Isaacson: Specimen damage in the electron microscopy. In: Principles and Techniques of Electron Microscopy, Vol. 7, ed. by M.A. Hayat (Van-Nostrand Reinhold, New York 1977) pp. 1–78Google Scholar
  85. M. Isaacson: Electron beam induced damage of organic solids: Implications for analytical electron microscopy, Ultramicroscopy 4, 193 (1979)Google Scholar
  86. L. Reimer, A. Schmidt: The shrinkage of bulk polymers by radiation damage in an SEM, Scanning 7, 47 (1985)Google Scholar
  87. R.F. Egerton, P. Li, M. Malac: Radiation damage in the TEM and SEM, Micron 35, 399 (2004)Google Scholar
  88. J. Bastacky, C. Wodley, R. Labrie, C. Backhus: Addendum to: A bibliography of low-temperature scanning electron microscopy (LTSEM, Cryo SEM) and scanning electron microscopy of frozen hydrated biological systems, Scanning 10, 37 (1988)Google Scholar
  89. C.E. Jeffree, N.D. Read: Ambient- and low-temperature scanning electron microscopy. In: Electron Microscopy of Plant Cells, ed. by J.L. Hall, C. Hawes (Academic Press, London 1991) pp. 313–413Google Scholar
  90. P. Walther, J. Hentschel, P. Herter, T. Müller, K. Zierold: Imaging of intramembranous particles in frozen-hyrated cells (Saccharomyces cerevisiae) by high-resolution cryo SEM, Scanning 12, 300 (1990)Google Scholar
  91. R.P. Huebener: Scanning electron microscopy at very low temperatures, Adv. Electron. Electron Phys. 70, 1–78 (1988)Google Scholar
  92. L. Lawson: Fatigue stage for quantitative acoustic emission measurements, Scanning 17, 322 (1995)Google Scholar
  93. E. Oho, M. Miyamoto: Mechanical scanning of the specimen in the scanning electron microscope, Scanning 26, 250 (2004)Google Scholar
  94. C. Gerber, G. Binnig, H. Fuchs, O. Marti, H. Rohrer: Scanning tunneling microscope combined with a scanning electron microscope, Rev. Sci. Instrum. 57, 221 (1986)Google Scholar
  95. A. Stemmer, R. Reichelt, R. Wyss, A. Engel: Biological structures imaged in a hybrid scanning transmission electron microscope and scanning tunneling microscope, Ultramicroscopy 35, 255 (1991)Google Scholar
  96. M. Troyon, H.N. Lei, A. Bourhettar: Integration of an STM in an SEM, Ultramicroscopy 1564, 42–44 (1992)Google Scholar
  97. I. Joachimsthaler, R. Heiderhoff, L.J. Balk: A universal scanning-probe-microscope-based hybrid system, Meas. Sci. Technol. 14, 87 (2003)Google Scholar
  98. R. Heiderhoff, O.V. Sergeev, Y.Y. Liu, J.C.H. Phang, L.J. Balk: Comparison between standard and near-field cathodoluminescence, J. Cryst. Growth 210, 303 (2000)Google Scholar
  99. M.T. Postek, A.E. Vladár: Digital imaging for scanning electron microscopy, Scanning 18, 1 (1996)Google Scholar
  100. N.C. Yew: Dynamic focusing technique for tilted samples in SEM. In: Proc. 4th Annu. Scanning Electron Microsc. Symp. (IIT Research Institute, Chicago 1971) pp. 33–40Google Scholar
  101. A.W. Judge: Stereographic Photography (Chapman Hall, London 1950)Google Scholar
  102. W. Malkusch, M.A. Konerding, B. Klapthor, J. Bruch: A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization, Anal. Cell Pathol. 9, 69 (1995)Google Scholar
  103. B. Minnich, H. Leeb, E.W.N. Bernroider, A. Lametschwandtner: A 3-dimensional morphometry in scanning electron ‘microscopy': A technique for accurate dimensional and angular measurements of microstructures using stereopaired digitized images and digital image analysis, J. Microsc. 195, 23 (1999)Google Scholar
  104. B. Minnich, W.-D. Krautgartner, A. Lametschwandtner: Quantitative 3-D analysis in SEM: A review, Microsc. Microanal. 9(S3), 118 (2003)Google Scholar
  105. L. Reimer, E.-R. Krefting: The effect of scattering models on the results of Monte Carlo calculations. In: Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, NBS Special Publication, Vol. 460, ed. by K.F.J. Heinrich, D.E. Newbury, H. Yakowitz (U.S. Dept. of Commerce, Washington 1976) pp. 45–60Google Scholar
  106. P. Rez: Elastic scattering of electrons by atoms. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scattering Electron Microscopy, Chicago 1984) pp. 43–49Google Scholar
  107. L. Reimer, B. Lödding: Theory of secondary electron emission II, Scanning 6, 128 (1984)Google Scholar
  108. Z. Czyżewski, D. O’Neill MacCallum, A. Romig, D.C. Joy: Calculations of Mott scattering cross-sections, J. Appl. Phys. 68, 3066 (1990)Google Scholar
  109. A. Jablonski, F. Salvat, C.J. Powell: NIST Electron Elastic-Scattering Cross Section Datbase #64 Version 3.1 (NIST, Gaithersburg 2003)Google Scholar
  110. H. Raether: Excitation of Plasmons and Interband Transitions by Electrons, Springer Tracts in Modern Physics, Vol. 88 (Springer, Berlin 1980)Google Scholar
  111. C.J. Powell: Inelastic scattering of electrons in solids. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 19–31Google Scholar
  112. M. Isaacson, J.P. Langmore: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy, Optik 41, 92 (1974)Google Scholar
  113. E. Zeitler: Utilization of inelastic scatter in the STEM mode, Ann. N.Y. Acad. Sci. 306, 62 (1978)Google Scholar
  114. R. Reichelt, A. Engel: Contrast and resolution of scanning transmission electron microscope imaging modes, Ultramicroscopy 19, 43 (1986)Google Scholar
  115. D.A. Müller, J. Silcox: Delocalization in inelastic electron scattering. In: 13th Int. Congr. Electron Microsc., Vol. 1, ed. by B. Jouffrey, C. Colliex (Les Editions de Physique, Les Ulis 1994) pp. 741–742Google Scholar
  116. D.A. Müller, J. Silcox: Delocalization in inelastic scattering, Ultramicroscopy 59, 195 (1995)Google Scholar
  117. R.D. Leapman, P. Rez, D.F. Mayers: K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions, J. Chem. Phys. 72, 1232 (1980)Google Scholar
  118. M. Inokuti, S.T. Manson: Cross sections for inelastic scattering of electrons by atoms—Selected topics related to electron microscopy. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 1–17Google Scholar
  119. R.F. Egerton: Electron-Energy-Loss Spectroscopy in the Electron Microscope (Plenum, New York 1986)Google Scholar
  120. C.J. Powell, A. Jablonski: Electron Inelastic-Mean-Free-Path Database Version 1.1, NIST Standard Reference Database 71 (National Institute of Standards and Technology, Gaithersburg 2000)Google Scholar
  121. S.A. Goudsmit, J.L. Saunderson: Multiple scattering of electrons II, Phys. Rev. 58, 36 (1940)Google Scholar
  122. D.F. Kyser: Monte Carlo calculations for electron microscopy, microanalysis, and microlithography. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 119–135Google Scholar
  123. L. Reimer, D. Stelter: FORTRAN 77 Monte-Carlo program for minicomputers using Mott cross-sections, Scanning 8, 265 (1986)Google Scholar
  124. D.C. Joy: A model for calculating secondary and backscattered electron yields, J. Microsc. 147, 51 (1987)Google Scholar
  125. L. Reimer: Monte-Carlo-Rechnungen zur Elektronendiffusion, Optik 27, 86 (1968)Google Scholar
  126. L. Reimer: MOCASIM – Ein Monte Carlo Programm für Forschung und Lehre, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 29, 1–10 (1996)Google Scholar
  127. D. Drouin, P. Hovington, R. Gauvin: CASINO: A new Monte Carlo code in C language for the electron beam interactions---Part II: Tabulated values of the Mott cross section, Scanning 19, 20 (1997)Google Scholar
  128. P. Hovington, D. Drouin, R. Gauvin: CASINO: A new Monte Carlo code in C language for electron beam interaction---Part I: Description of the program, Scanning 19, 1 (1997)Google Scholar
  129. P. Hovington, D. Drouin, R. Gauvin, D.C. Joy, N. Evans: CASINO: A new Monte Carlo code in C language for electron beam interactions---Part III: Stopping power at low energies, Scanning 19, 29 (1997)Google Scholar
  130. H. Bethe: Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. 5, 325 (1930)Google Scholar
  131. M.J. Berger, S.M. Seltzer: Tables of energy losses and ranges of electrons and positrons. In: Studies in Penetration of Charged Particles in Matter, ed. by U. Fano (National Academies Press, Washington 1964) pp. 205–268Google Scholar
  132. D.C. Joy, S. Luo: An empirical stopping power relationship for low-energy electrons, Scanning 11, 176 (1989)Google Scholar
  133. R. Reichelt, A. Engel: Monte Carlo calculations of elastic and inelastic electron scattering in biological and plastic materials, Ultramicroscopy 13, 279 (1984)Google Scholar
  134. V. Krzyzanek, R. Reichelt: MONCA: A new MATLAB package for Monte Carlo simulation of electron scattering in thin specimens in the energy range 10–200 keV, Microsc. Microanal. 9(S3), 110 (2003)Google Scholar
  135. R. Kollath: Sekundärelektronen-Emission fester Körper bei Bestrahlung mit Elektronen. In: Electron-Emission Gas Discharges I/Elektronen-Emission Gasentladungen I, Handbuch der Physik, Vol. 4/21 (Springer, Berlin 1956) pp. 232–302Google Scholar
  136. A.J. Dekker: Secondary electron emission, Solid State Phys. 6, 251 (1958)Google Scholar
  137. K. Kanaya, S. Ono: Interaction of electron beam with the target in scanning electron microscope. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 69–98Google Scholar
  138. H. Seiler: Einige aktuelle Probleme der Sekundärelektron-Emission, Z. Angew. Phys. 22, 249 (1967)Google Scholar
  139. H. Seiler: Secondary electron emission. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 33–42Google Scholar
  140. J.L.H. Jonker: On the theory of secondary emission of metals, Philips Res. Rep. 12, 249 (1957)Google Scholar
  141. W. Oppel, H. Jahrreiss: Messungen der Winkelverteilung von Sekundärelektronen an dünnen freitragenden Al- und Au-Schichten, Z. Phys. 252, 107 (1972)Google Scholar
  142. H. Drescher, L. Reimer, H. Seidel: Rückstreukoeffizient und Sekundärelektronenausbeute von 10--100 keV-Elektronen und Beziehungen zur Raster-Elektronenmikroskopie, Z. Angew. Phys. 29, 331 (1970)Google Scholar
  143. S. Ono, K. Kanaya: The energy dependence of secondary emission based on the range-energy retardation power formula, J. Phys. D 12, 619 (1979)Google Scholar
  144. H.E. Bauer, H. Seiler: Determination of the non-charging electron beam energies of electrically floating metal samples. In: Scanning Electron Microscopy, Vol. 3, ed. by O. Johari (Scanning Electron Microscopy, Chicago 1984) pp. 1081–1088Google Scholar
  145. D.C. Joy: A data base on electron-solid interactions, (2001)
  146. K.F.J. Heinrich: Optiques de rayons X et microanalyse. In: Fourth International Congress on X-Ray Optics and Microanalysis, ed. by R. Castaing, P. Deschamps, J. Philibert (Hermann, Paris 1966) pp. 159–167Google Scholar
  147. D.B. Wittry: Secondary electron emission in the electron probe. In: 4th Int. Congr. X-ray Opt. Microanal., ed. by R. Castaing, P. Deschamps, J. Philibert (Hermann, Paris 1966) pp. 168–180Google Scholar
  148. H. Seiler: Die physikalischen Aspekte der Sekundärelektronenemission für die Elektronen-Raster-Mikroskopie, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 1, 27 (1968)Google Scholar
  149. K. Murata: Monte Carlo simulation of electron scattering in resist film/substrate targets. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 311–329Google Scholar
  150. K. Murata: Spatial distribution of backscattered electrons in the SEM and electron microprobe, J. Appl. Phys. 45, 4110 (1974)Google Scholar
  151. H. Seiler: Determination of the information depth in the SEM, Scanning Electron Microsc. 1, 9 (1976)Google Scholar
  152. L. Reimer, C. Tollkamp: Measuring the backscattering coefficient and secondary electron yield inside a scanning electron microscope, Scanning 3, 35 (1980)Google Scholar
  153. W. Reuter: The ionization function and its application to the electron probe analysis of thin films. In: 6th Int. Congr. X-ray Opt. Microanal, ed. by G. Shinoda, K. Kohra, T. Ichinokawa (Tokyo Univ. Press, Tokyo 1972) pp. 121–130Google Scholar
  154. H.-J. Hunger, L. Küchler: Measurements of the electron backscattering coefficient for quantitative EPMA in the energy range of 4 to 40 keV, Phys. Status Solidi (a) 56, K45 (1979)Google Scholar
  155. D.C. Joy: Contrast in high-resolution scanning electron microscope images, J. Microsc. 161, 343 (1991)Google Scholar
  156. M. Zadrazil, M.M. El-Gomati, A. Walker: Measurements of very low energy secondary and backscattered electron coefficients, J. Comput. Assist. Microsc. 9, 123 (1997)Google Scholar
  157. F. Arnal, P. Verdier, P.-D. Vincensini: Coefficient de retrodiffusion dans le cas d' électrons monocinétiques arrivant sur la cible sous une incidence oblique, C. R. Acad. Sci. 268, 1526 (1969)Google Scholar
  158. L. Reimer, H.G. Badde, H. Seidel: Orientierungsanisotropie des Rückstreukoeffizienten und der Sekundärelektronenausbeute von 10–100 keV Elektronen, Z. Angew. Phys. 31, 145 (1971)Google Scholar
  159. E. Oho, T. Sasaki, K. Adachi, Y. Muranaka, K. Kanaya: An inexpensive and highly efficient device for observing a STEM image in a SEM. In: 11th Int. Congr. Electron Microsc, ed. by T. Imura, S. Maruse, T. Suzuki (Japanese Society of Electron Microscopy, Kyoto 1986) pp. 421–422Google Scholar
  160. R. Reichelt, A. Engel: Quantitative scanning transmission ‘electron microscopy' in biology, J. Microsc. Spectrosc. Electron. 10, 491 (1985)Google Scholar
  161. J. Frank, P. Bussler, R. Langer, W. Hoppe: Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronenmikroskopischen Bildern hoher Auflösung, Ber. Bunsenges. Phys. Chem. 74, 1105 (1970)Google Scholar
  162. D.C. Joy: SMART–A program to measure SEM resolution and imaging performance, J. Microsc. 208, 24 (2002)Google Scholar
  163. J. Frank: The role of correlation techniques in computer image processing. In: Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes (Springer, New York 1980) pp. 187–222Google Scholar
  164. M.D. Muir, P.R. Grant: Cathodoluminescence. In: Quantitative Scanning Electron Microscopy, ed. by D.B. Holt, M.D. Muir, P.R. Grant, I.M. Boswarva (Academic Press, London 1974) pp. 287–334Google Scholar
  165. D.B. Holt, B.G. Yacobi: Cathodoluminescence characterization of semiconductors. In: SEM Microcharacterization of Semiconductors, ed. by D.B. Holt, D.C. Joy (Academic Press, London 1989) pp. 373–423Google Scholar
  166. B.G. Yakobi, D.B. Holt (Eds.): Cathodoluminescence Microscopy of Inorganic Solids (Plenum, New York 1990)Google Scholar
  167. D.B. Holt, F.M. Saba: The cathodoluminescence mode of the SEM: A powerful microcharacterization technique, Scanning Electron Microsc. 3, 1023 (1985)Google Scholar
  168. M. DeMets: Relationship between cathodoluminescence and molecular structure of organic compounds, Microsc. Acta 76, 405 (1975)Google Scholar
  169. M. DeMets, K.J. Howlett, A.O. Yoffe: Cathodoluminescent spectra of organic compounds, J. Microsc. 102, 125 (1974)Google Scholar
  170. W. Bröcker, E.-R. Krefting, L. Reimer: Abhängigkeit des Kathodolumineszenzsignals vom Kippwinkel der Probe im Raster-Elektronenmikroskop, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 10, 647 (1977)Google Scholar
  171. H.A. Kramers: On the theory of x-ray absorption and of the continuous x-ray spectrum, Philos. Mag. 46, 836 (1923)Google Scholar
  172. S.T. Stephenson: The continuous x-ray spectrum. In: Handbuch der Physik, Vol. 30 (Springer, Berlin 1957) pp. 337–370Google Scholar
  173. W. Bambynek, B. Crasemann, R.W. Fink, H.U. Freund, H. Mark, C.D. Swift, R.E. Price, P.V. Rao: X-ray fluorescent yields, Auger, and Coster–Kronig transition probabilities, Rev. Mod. Phys. 44, 716 (1972)Google Scholar
  174. J.A. Bearden: X-ray wavelengths, Rev. Mod. Phys. 39, 78 (1967)Google Scholar
  175. J.A. Bearden: Reevaluation of x-ray atomic energy levels, Rev. Mod. Phys. 39, 125 (1967)Google Scholar
  176. W.L. Baun: Changes in x-ray emission spectra observed between pure elements in combination with others to form compounds or alloys, Adv. Electron. Electron Phys. 6, 155 (1969)Google Scholar
  177. E.H.S. Burhop: The Auger Effect (Cambridge Univ. Press, Cambridge 1952)Google Scholar
  178. T. Åberg, G. Howat: Theory of the Auger effect. In: Handbuch der Physik, Vol. 31, ed. by W. Mehlhorn, S. Flügge (Springer, Berlin 1982) pp. 469–619Google Scholar
  179. H.H. Madden: Chemical information from Auger electron spectroscopy, J. Vac. Sci. Technol. 18, 677 (1981)Google Scholar
  180. H.E. Bishop: The role of the background in Auger spectroscopy. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 259–269Google Scholar
  181. P.W. Palmberg: Quantitative analysis of solid surfaces by Auger electron spectroscopy, Anal. Chem. 45, 549A (1973)Google Scholar
  182. M.P. Seah, W.A. Dench: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal. 1, 2 (1979)Google Scholar
  183. E. Bauer, W. Telieps: Emission and low energy reflection ‘electron' microscopy. In: Surface and Interface Characterization by Electron Optical Methods, ed. by A. Howie, A. Valdre (Plenum, New York 1988) pp. 195–233Google Scholar
  184. H.E. Bishop, J.C. Riviere: Surface segregation in boron doped iron observed by Auger, J. Appl. Phys. 40, 1740 (1969)Google Scholar
  185. J. Kirschner: The role of backscattered electrons in scanning Auger microscopy. In: Scanning Electron Microscopy, Vol. 1, ed. by O. Johari (Scanning Electron Microscopy, Chicago 1976) pp. 215–220Google Scholar
  186. M. Jacka: Scanning Auger microscopy: Recent progress in data analysis and instrumentation, J. Electron Spectrosc. Relat. Phenom. 277, 114–116 (2001)Google Scholar
  187. D.E. Newbury: The utility of specimen current imaging in the SEM, Scanning Electron Microsc. 1, 111 (1976)Google Scholar
  188. D.K. Hindermann, R.H. Davis: SEM techniques for the examination of blind and through holes, Scanning Electron Microsc. 1, 183 (1974)Google Scholar
  189. K.-R. Peters: Generation, collection and properties of an SE-I enriched signal suitable for high resolution SEM on bulk specimens. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 363–372Google Scholar
  190. H. Seiler, G. Kuhnle: Zur Anisotropie der Elektronenausbeute in Abhängigkeit von der Energie der auslösenden Primärelektronen von 5 bis 50 keV, Z. Angew. Phys. 29, 254 (1970)Google Scholar
  191. L. Reimer: Methods of detection of radiation damage in electron microscopy, Ultramicroscopy 14, 291 (1984)Google Scholar
  192. B. Volbert, L. Reimer: Advantages of two opposite Everhart–Thornley detectors in SEM, Scanning Electron Microsc. 4, 1 (1980)Google Scholar
  193. P. Rappaport: The electron-voltaic effect in p-n junctions induced by beta-particle bombardment, Phys. Rev. 93, 246 (1954)Google Scholar
  194. C.W. Oatley, T.E. Everhart: The examination of p-n junctions with the scanning electron microscope, J. Electron. Control 2, 568 (1957)Google Scholar
  195. T.E. Everhart, O.C. Wells, C.W. Oatley: Factors affecting contrast and resolution in the scanning electron microscope, J. Electron. Control 7, 97 (1959)Google Scholar
  196. W.S.M. Werner, H. Lakatha, H.E. Smith, L. LeTarte, V. Ambrose, J. Baker: Auger voltage contrast imaging for the delineation of two-dimensional junctions in cross-sectioned metal-oxide-semiconductor devices, J. Vac. Sci. Technol. B 16, 420 (1998)Google Scholar
  197. J. Edelmann, K. Wetzig: Low-temperature microscopy and analysis. In: In Situ Scanning Electron Microscopy in Materials Research, ed. by K. Wetzig, D. Schulze (Akademie, Berlin 1995) pp. 109–125Google Scholar
  198. Y. Uchikawa, S. Ikeda: Application of scanning electron microscopy (SEM) to analysis of surface domain structure of ferroelectrics, Scanning Electron Microsc. 1, 209 (1981)Google Scholar
  199. D. Hesse, K.-P. Meyer: Domänenstruktur ferroelektrischer und ferromagnetischer Festkörper. In: Elektronenmikroskopie in der Festkörperphysik, ed. by H. Bethge, J. Heydenreich (DVW, Berlin 1982) pp. 473–507Google Scholar
  200. D.V. Roshchupkin, M. Brunel: SEM observation of the voltage contrast image of the ferroelectric domain structure in the LiNbO3 crystal, Scanning Microsc. 7, 543 (1993)Google Scholar
  201. H. Bahadur, R. Parshad: SEM of vibrating quartz crystals—A review, Scanning Electron Microsc. 1, 509 (1980)Google Scholar
  202. A.E. Lukianov, G.V. Spivak: Electron mirror microscopy of transient phenomena in semiconductor diodes. In: Electron Microscopy, Vol. 2, ed. by R. Uyeda (Maruzen, Tokyo 1966) p. 611Google Scholar
  203. G.S. Plows, W.C. Nixon: Stroboscopic electron microscopy, J. Phys. E 1, 595 (1968)Google Scholar
  204. T. Hosokawa, H. Fujioka, K. Ura: Generation and measurement of subpicosecond electron beam pulses, Rev. Sci. Instrum. 49, 624 (1978)Google Scholar
  205. H. Fujioka, K. Ura: Waveform measurements on gigahertz semiconductor devices by scanning electron microscope stroboscopy, Appl. Phys. Lett. 39, 81 (1981)Google Scholar
  206. S.M. Davidson: Voltage contrast and stroboscopy. In: SEM Microcharacterization of Semiconductors, Techniques in Physics, Vol. 12, ed. by D.B. Holt, D.C. Joy (Academic Press, New York 1989) pp. 153–240Google Scholar
  207. P. Girard: Voltage contrast, J. Phys. IV 01, C6–259 (1991)Google Scholar
  208. L. Dubbeldam: Advances in voltage-contrast detectors in scanning electron microscopes. In: Advances in Optical and Electron Microscopy, Vol. 12, ed. by T. Mulvey, C.J.R. Sheppard (Academic Press, London 1991) pp. 139–242Google Scholar
  209. J.M. McKenzie, D.A. Bromely: Observation of charged-particle reaction products, Phys. Rev. Lett. 2, 303 (1959)Google Scholar
  210. D.B. Holt: Quantitative scanning electron microscope studies of cathodoluminescence in adamantine semiconductors. In: Quantitative Scanning Electron Microscopy, ed. by D.B. Holt, M.D. Muir, P.R. Grant, I.M. Boswarva (Academic Press, London 1974) pp. 213–286Google Scholar
  211. D.B. Holt: The conductive mode. In: SEM Microcharacterization of Semiconductors, ed. by D.B. Holt, D.C. Joy (Academic Press, London 1989) pp. 241–338Google Scholar
  212. H.J. Deamy: Charge collection scanning electron microscopy, J. Appl. Phys. 53, R51 (1982)Google Scholar
  213. S.P. Shea, L.D. Partain, P.J. Warter: Resolution limits of the EBIC technique in the determination of diffusion lengths in semiconductors, Scanning Electron Microsc. 1, 435 (1978)Google Scholar
  214. H. Alexander: What information on extended defects do we obtain from beam-injection methods?, Mater. Sci. Eng. B 24, 1 (1994)Google Scholar
  215. E.B. Yakimov: Electron-beam-induced-current study of defects in GaN; experiments and simulation, J. Phys. Condens. Matter 14, 13069 (2002)Google Scholar
  216. A.E. Grün: Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen. Eindimensionaler Fall in Luft, Z. Naturforsch. A 12, 89 (1957)Google Scholar
  217. T.E. Everhart, P.H. Hoff: Determination of kilovolt electron energy dissipation vs. penetration distance in solid materials, J. Appl. Phys. 42, 5837 (1971)Google Scholar
  218. H.E. Bishop: Electron---Solid interactions and energy dissipation. In: Quantitative Scanning Electron Microscopy, ed. by D.B. Holt, M.D. Muir, P.R. Grant, I.M. Boswarva (Academic Press, London 1974) pp. 41–64Google Scholar
  219. H.J. Leamy: Charge collection scanning electron microscopy, J. Appl. Phys. 53, R51 (1982)Google Scholar
  220. A. Georges, J.M. Fournier, D. Bois: Time resolved EBIC: A non destructive method technique for an accurate determination of p-n junction depth, Scanning Electron Microsc. 1, 147 (1982)Google Scholar
  221. T. Sekiguchi, K. Sumino: Quantitative electron-beam tester for defects in semiconductors (CL/EBIC/SDLTS system), Rev. Sci. Instrum. 66, 4277 (1995)Google Scholar
  222. D.S.H. Chan, J.C.H. Phang, J.M. Chin, S. Kolachina: Single contact beam induced current phenomena—A review, Solid State Phenom. 78–79, 11–18 (2000)Google Scholar
  223. H. Drescher, E.-R. Krefting, L. Reimer, H. Seidel: The orientation dependence of the electron backscattering coefficient of gold single crystal films, Z. Naturforsch. A 29, 833 (1974)Google Scholar
  224. J.R. Dorsey: Scanning electron probe measurements of magnetic fields. In: Electron Probe Microanalysis, ed. by A.J. Tousimis, L. Marton (Academic Press, New York 1969) pp. 291–321Google Scholar
  225. G.A. Wardly: Magnetic contrast in the scanning electron microscope, J. Appl. Phys. 42, 376 (1971)Google Scholar
  226. V. Szmaja: Improvements and actual problems in domain imaging by type-I magnetic contrast in SEM, Czechoslov. J. Phys. 52(S1), A145 (2002)Google Scholar
  227. W. Szmaja: Digitally enhanced type-I magnetic contrast in SEM as a method of domain investigation, J. Magn. Magn. Mater. 219, 281 (2000)Google Scholar
  228. J. Philibert, R. Tixier: Effets de contraste cristallin en microscopie électronique à balayage, Micron 1, 174 (1969)Google Scholar
  229. D.J. Fathers, J.P. Jacubovics, D.C. Joy, D.E. Newbury, H. Yakowitz: A new method of observing magnetic domains by scanning electron microscopy. I. Theory of the image contrast, Phys. Status Solidi (a) 20, 535 (1973)Google Scholar
  230. T. Yamamoto, H. Nishizawa, K. Tsuno: Magnetic domain contrast in backscattered electron images obtained with a scanning electron microscope, Philos. Mag. 34, 311 (1976)Google Scholar
  231. O.C. Wells: Isolation of type-2 magnetic contrast in the SEM by a lock-in technique, Appl. Phys. Lett. 35, 644 (1979)Google Scholar
  232. L. Reimer: Elektronenmikroskopische Untersuchungs- und Präparationsmethoden, 2nd edn. (Springer, Berlin 1967)Google Scholar
  233. M.A. Hayat (Ed.): Principles and Techniques of Biological Scanning Electron Microscopy (Univ. Park Press, Baltimore 1978)Google Scholar
  234. J.M. Polak, J.M. Varndell (Eds.): Immunolabelling for Electron Microscopy (Elsevier, Amsterdam 1984)Google Scholar
  235. M. Müller (Ed.): The Science of Biological Specimen Preparations for Microscopy and Microanalysis (Scanning Microscopy International, Chicago 1985)Google Scholar
  236. R.A. Steinbrecht, K. Zierold (Eds.): Cryotechniques in Biological Electron Microscopy (Springer, Berlin 1987)Google Scholar
  237. R.M. Albrecht, R.L. Ornberg (Eds.): The Science of Biological Specimen Preparations for Microscopy and Microanalysis (Scanning Microscopy International, Chicago 1988)Google Scholar
  238. L. Edelmann, G.M. Roomans (Eds.): The Science of Biological Specimen Preparations for Microscopy and Microanalysis (Scanning Microscopy International, Chicago 1990)Google Scholar
  239. F. Grasenick, A. Aldrian, R. Bauer, H. Bangert, R. Essl, R.H. Haefer, P. Hagemann, K.-H. Hermann, E.M. Hörl, P. Karnthaler, E. Knapek, R. Nobiling, K.-R. Peters, G. Weber: Elektronenmikroskopie. Erweiterte Einsatzmöglichkeiten und spezielle Abbildungs- und Präparationsmethoden (Expert, Ehningen 1991)Google Scholar
  240. P. Echlin: Low-Temperature Microscopy and Analysis (Plenum, New York 1992)Google Scholar
  241. M. Malecki, G.M. Roomans (Eds.): The Science of Biological Specimen Preparations for Microscopy (Scanning Microscopy International, Chicago 1996)Google Scholar
  242. G. Schimmel, W. Vogell: Methodensammlung der Elektronenmikroskopie (Wissenschaftliche Verlagsgesellschaft, Stuttgart 1970)Google Scholar
  243. A.W. Robards, A.J. Wilson (Eds.): Procedures in Electron Microscopy (Wiley, Chichester 1993)Google Scholar
  244. T.C. Isabell, P.E. Fischione, C. O’Keefe, M.U. Guruz, V.P. Dravid: Plasma cleaning and its applications for electron microscopy, Microsc. Microanal. 5, 126 (1999)Google Scholar
  245. J.H.M. Willison, A.J. Rowe: Replica, Shadowing and Freeze-Etching Techniques (North-Holland, Amsterdam 1980)Google Scholar
  246. Y. Shibata, T. Arima, T. Yamamoto: Double-axis rotary replication for deep-etching, J. Microsc. 136, 121 (1984)Google Scholar
  247. R. Hermann, J. Pawley, T. Nagatani, M. Müller: Double-axis rotary shadowing for high resolution scanning electron microscopy, Scanning Microsc. 2, 1215 (1988)Google Scholar
  248. R.P. Apkarian, J.C. Curtis: Hormonal regulation of capillary fenestrae in the rat adrenal cortex: Quantitative studies using objective lens staging scanning electron microscopy, Scanning Electron Microsc. 4, 1381 (1986)Google Scholar
  249. T. Nagatani, S. Saito: Development of a high resolution SEM and comparative TEM/SEM observation of fine metal particles and thin films, Inst. Phys. Conf. Ser. 98, 519–522 (1989)Google Scholar
  250. T. Müller, P. Walther, C. Scheidegger, R. Reichelt, S. Müller, R. Guggenheim: Cryo-preparation and planar magnetron sputtering for low temperature ‘scanning' electron microscopy, Scanning Microsc. 4, 863 (1990)Google Scholar
  251. H. Gross, T. Müller, I. Wildhaber, H. Winkler: High resolution metal replication, quantified by image processing of periodic test specimens, Ultramicroscopy 16, 287 (1985)Google Scholar
  252. R. Wepf, H. Gross: Pt/Ir/C: a powerful coating material for high resolution SEM. In: 12th Int. Congr. Electron Microsc., ed. by L.D. Peachy, D.B. Williams (San Francisco Press, Seattle 1990) pp. 6–7Google Scholar
  253. R. Wepf, M. Amrein, U. Bürkli, H. Gross: Platinum/iridium/carbon: A high-resolution shadowing material for TEM, STM and SEM of biological macromolecular structures, J. Microsc. 163, 51–64 (1991)Google Scholar
  254. K.-R. Peters: Penning sputtering of ultra thin metal films for high resolution electron microscopy, Scanning Electron Microsc. I, 143 (1980)Google Scholar
  255. A.M. Glauert (Ed.): Practical Methods in Electron Microscopy (North-Holland, Amsterdam 1973)Google Scholar
  256. W. Hauffe: Development of the surface topography on polycrystalline metals by ion bombardment investigated by scanning electron microscopy, Phys. Status Solidi (a) 4, 111 (1971)Google Scholar
  257. W. Hauffe: Ion bombardment experiments. In: In Situ Scanning Electron Microscopy in Materials Research, ed. by K. Wetzig, D. Schulze (Akademie, Berlin 1995) pp. 195–218Google Scholar
  258. N. Reid, J.E. Beesely: Sectioning and Cryosectioning for Electron Microscopy, Practical Methods in Electron Microscopy, Vol. 13 (Elsevier, Amsterdam 1991)Google Scholar
  259. H. Sitte: Process of ultrathin sectioning. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis (Scanning Electron Microscopy, Chicago 1984) pp. 97–104Google Scholar
  260. H. Sitte: Advanced instrumentation and methodology related to cryoultramicrotomy: a review. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis, ed. by M. Malecki, G.M. Roomans (Scanning Microscopy International, Chicago 1996) pp. 387–466Google Scholar
  261. W. Hauffe: Das Ionenstrahl-Böschungsschnitt-Verfahren, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 23, 305–310 (1990)Google Scholar
  262. W. Hauffe, S. Pannicke, S. Däbritz, P. Schade: Combined application of ion beam slope cutting and SEM/EDX for investigation of the surface layer system on tungsten microwires after tribological treatment, Surf. Interface Anal. 34, 768 (2002)Google Scholar
  263. N. Erdman, R. Campbell, S. Asahina: Precise SEM cross section polishing via argon beam milling, Microsc. Today 14(3), 22 (2006)Google Scholar
  264. E.C.G. Kirk, R.A. McMahon, J.R.A. Cleaver, H. Ahmed: Scanning ion microscopy and microsectioning of electron beam recrystallized silicon on insulator devices, J. Vac. Sci. Technol. B 6, 1940 (1988)Google Scholar
  265. K. Madl, A.L. Toth, A. Barna: p/n junction localization in integrated-circuits with scanning electron-microscope, Inst. Phys. Conf. Ser. 93, 65 (1988)Google Scholar
  266. T. Ishitani, T. Yaguchi: Cross-sectional sample preparation by focused ion beam: A review of ion-sample interaction, Microsc. Res. Tech. 35, 320 (1996)Google Scholar
  267. M. Shibata: Cross section specimen preparation device using argon ion beam for SEM—Cross section polisher (CP) SM-09010, JEOL News 39(1), 28 (2004)Google Scholar
  268. L.A. Giannuzzi, F.A. Stevie: Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer, New York 2005)Google Scholar
  269. P. Sudraud, P. Ballongue, E. Varoquaux, O. Avenel: Focused ion-beam milling of a submicrometer aperture for a hydrodynamic Josephson-effect experiment, J. Appl. Phys. 62, 2163 (1987)Google Scholar
  270. P. Gnauck, P. Hoffrogge, J. Greiser: New crossbeam inspection tool combining ultrahigh resolution FESEM and FIB, Microsc. Anal. 94(3), 11–13 (2003)Google Scholar
  271. P. Gnauck, U. Zeile, W. Rau, M. Schuhmann: Real time SEM imaging of FIB milling processes for extended accuracy in cross-sectioning and TEM preparation, Microsc. Microanal. 9(S3), 524 (2003)Google Scholar
  272. P.E. McGuinness: DualBeam focused ion beam technology, Scanning 25, 221 (2003)Google Scholar
  273. L. Holzer, F. Indutnyi, P.H. Gasser, B. Munch, M. Wegmann: Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography, J. Microsc. 216, 84 (2004)Google Scholar
  274. U. Sennhauser, P. Jacob, P. Gasser: Anwendung der FIB für Materialwissenschaft und Fehleranalyse, Prakt. Metallogr. 41, 199 (2004)Google Scholar
  275. R. Flindt: Biologie in Zahlen, 5th edn. (Spektrum, Berlin 2000)Google Scholar
  276. M. Milani, F.P. Pucillo, M. Ballerini, M. Camatini, M. Gualtieri, S. Martino: First evidence of tire debris characterization at the nanoscale by focused ion beam, Mater. Charact. 52, 283 (2004)Google Scholar
  277. N. Feder, R.L. Sidman: Methods and principles of fixation by freeze-substitution, J. Biophys. Biochem. Cytol. 4, 593 (1958)Google Scholar
  278. M.W. Hess: Of plants and other pets: Practical aspects of freeze-substitution and resin embedding, J. Microsc. 212, 44 (2003)Google Scholar
  279. E. Kellenberger, J. Kistler: The physics of specimen preparation. In: Unconventional Electron Microscopy for Molecular Structure Determination, Advances in Structure Research by Diffraction Methods, Vol. 3, ed. by W. Hoppe, R. Mason (Vieweg, Wiesbaden 1979) pp. 49–79Google Scholar
  280. E. Kellenberger, M. Häner, M. Wurtz: The wrapping phenomenon in air-dried and negatively stained preparations, Ultramicroscopy 9, 139 (1982)Google Scholar
  281. A.W. Robards, U.B. Sleytr: Low Temperature Methods in Biological Electron Microscopy, Vol. 10 (North-Holland, Amsterdam 1985)Google Scholar
  282. M.J. Dykstra: Biological Electron Microscopy (Plenum, New York 1992)Google Scholar
  283. E. Kellenberger, R. Johansen, M. Maeder, B. Bohrmann, E. Stauffer, W. Villiger: Artefacts and morphological changes during chemical fixation, J. Microsc. 168, 181 (1992)Google Scholar
  284. N.J. Severs, D.M. Shotton (Eds.): Rapid Freezing, Freeze Fracture and Deep Etching (Wiley, Chichester 1995)Google Scholar
  285. P. Walther: Recent progress in freeze-fracturing of high-pressure frozen samples, J. Microsc. 212, 34 (2003)Google Scholar
  286. P. Echlin: The examination of biological material at low temperatures, Scanning Electron Microsc. 1, 225 (1971)Google Scholar
  287. R. Hermann, M. Müller: Progress in scanning electron microscopy of frozen-hydrated biological specimens, Scanning Microsc. 7, 343 (1993)Google Scholar
  288. P. Walther, M. Müller: Biological ultrastructure as revealed by high resolution cryo-SEM of block faces after cryo-sectioning, J. Microsc. 196, 279 (1999)Google Scholar
  289. S.P. Shea: Energy and atomic number dependence of electron depth-dose and lateral-dose functions. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 145–151Google Scholar
  290. R.O. Bolt, J.G. Carroll (Eds.): Radiation Effects on Organic Materials (Academic Press, New York 1963)Google Scholar
  291. M. Dole (Ed.): The Radiation Chemistry of Macromolecules (Academic Press, New York 1973)Google Scholar
  292. W. Baumeister, M. Hahn, J. Seredynski, L.M. Herbertz: Radiation damage of proteins in the solid state: Changes of amino acid composition in catalase, Ultramicroscopy 1, 377 (1976)Google Scholar
  293. R.F. Egerton: Electron-Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum, New York 1989)Google Scholar
  294. R.F. Egerton: Dose-rate dependence of electron-induced mass loss from organic specimens, Ultramicroscopy 80, 247 (1999)Google Scholar
  295. R.F. Egerton, P.A. Crozier, P. Rice: Electron energy-loss spectroscopy and chemical change, Ultramicroscopy 23, 305 (1987)Google Scholar
  296. A. Engel: Beam damage, contamination and etching. In: Microsc. Électron. Sci. Matér., Bombannes, ed. by B. Jouffrey, A. Bourret, C. Colliex (CNRS, Toulouse 1983) pp. 185–192Google Scholar
  297. K. Siangchaew, M. Libera: The influence of fast secondary electrons on the aromatic structure of polystyrene, Philos. Mag. A 80, 1001 (2000)Google Scholar
  298. J. Strane, L.D. Marks, D.E. Luzzi, M.I. Buckett, J.P. Zhang, B.W. Wessels: Encapsulation, diffusion and DIET in the electron microscope, Ultramicroscopy 25, 253 (1988)Google Scholar
  299. S.M. Salih, V.E. Cosslett: Reduction in electron irradiation damage to organic compounds by conducting coatings, Philos. Mag.: J. Theor. Exp. Appl. Phys. 30(1), 225–228 (1974)Google Scholar
  300. J.T. Fourie: A theory of surface origination contamination and a method for its elimination, Scanning Electron Microsc. 2, 87 (1979)Google Scholar
  301. J.S. Wall: Contamination in the STEM at ultra high vacuum, Scanning Electron Microsc. 1, 99 (1980)Google Scholar
  302. M.T. Postek: Immunolabelling for electron microscopy, Scanning 18, 269 (1996)Google Scholar
  303. M. Isaacson, D. Kopf, M. Ohtsuki, M. Utlaut: Contamination as a psychological problem, Ultramicroscopy 4, 97 (1979)Google Scholar
  304. L.-M. Peng, Q. Chen, X.L. Liang, S. Gao, J.Y. Wang, S. Kleindiek, S.W. Tai: Performing probe experiments in the SEM, Micron 35, 495 (2004)Google Scholar
  305. A. Boyde: Improved depth of field in the ‘scanning' electron microscope derived from through-focus image stacks, Scanning 26, 265 (2004)Google Scholar
  306. G. Pfefferkorn, M. Pfautsch: Präparation biologischer Objekte für die Raster‑Elektronenmikroskopie, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 4, 137–157 (1971)Google Scholar
  307. A. Rukosujew, R. Reichelt, A.M. Fabricius, G. Drees, T.T.D. Tjan, M. Rothen-Burger, A. Hoffmeier, H.H. Scheld, C. Schmid: Skeletonization versus pedicle preparation of the radial artery with and without the ultrasonic scalpel, Ann. Thorac. Surg. 77, 120 (2004)Google Scholar
  308. H. Ishikawa, H. Dobashi, T. Kodama, T. Furuhashi, Y. Uchikawa: Investigation of micro mechanical vibration of piezoelectric actuators. Using a stroboscopic SEM, J. Electron Microsc. 42, 35 (1993)Google Scholar
  309. S. Aoyagi: JEOL’s challenge to nanotechnology, JEOL News 37, 70 (2002)Google Scholar
  310. J.L. Hernandez-Lopez, R.E. Bauer, W.S. Chang, G. Glasser, D. Grebel-Koehler, M. Klapper, M. Kreiter, J. Leclaire, J.P. Majoral, S. Mittler, K. Mullen, K. Vasilev, T. Weil, J. Wu, T. Zhu, W. Knoll: Functional polymers as nanoscopic building blocks, Mater. Sci. Eng. C 23, 267 (2003)Google Scholar
  311. B. Khamsehpour, S.T. Davies: Micromachining of semi-conductor materials by focused ion beams, Vacuum 45, 1169 (2004)Google Scholar
  312. K.D. Micheva, S.J. Smith: Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits, Neuron 55, 25 (2007)Google Scholar
  313. W. Denk, H. Horstmann: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure, PLoS Biol. 2, e329 (2004)Google Scholar
  314. D.W. Tuggle, L.W. Swanson: Emission characteristics of the ZrO/W thermal field electron source, J. Vac. Sci. Technol. B 3, 220 (1985)Google Scholar
  315. T. Mulvey: Electron lenses, Scanning Electron Microsc. 1, 43 (1974)Google Scholar
  316. Hitachi: The S-5200 Ultra-High Resolution Field Emission SEM: Features and Some Applications, Technical Data Sheet No. 98, HTD-E050-01 2001.11 (Hitachi, Tokyo 2001)Google Scholar
  317. K.-R. Peters: Conditions required for high quality high magnification images in secondary electron, Scanning Electron Microsc. 4, 1359 (1982)Google Scholar
  318. D.C. Joy: Monte Carlo studies of high-resolution secondary imaging. In: Microbeam Analysis, ed. by A.D. Romig Jr., J.I. Goldstein (San Francisco Press, San Francisco 1984) pp. 81–86Google Scholar
  319. R. Hermann, H. Schwarz, M. Müller: High precision immunoscanning electron microscopy using Fab fragments coupled to ultra-small colloidal gold, J. Struct. Biol. 107, 38 (1991)Google Scholar
  320. W. Baumeister, F. Karrenberg, R. Rachel, A. Engel, B. ten Heggeler, W.O. Saxton: The major cell envelope protein of Micrococcus radiodurans (R1): Structural and chemical characterization, Eur. J. Biochem. 125, 535 (1982)Google Scholar
  321. R. Reichelt: Rasterelektronenmikroskopie und Röntgenmikroanalyse. In: Mikroskopie in Forschung und Praxis, ed. by H. Robenek (GIT, Darmstadt 1995) pp. 185–217Google Scholar
  322. G. Griffith: Fine Structure Immunocytochemistry (Springer, Berlin 1993)Google Scholar
  323. M.A. Hayat (Ed.): Colloidal Gold. Principles, Methods, and Applications, Vol. 1 (Academic Press, London 1989)Google Scholar
  324. M.A. Hayat (Ed.): Microscopy, Immunohistochemistry, and Antigen Retrieval Methods: For Light and Electron Microscopy (Kluwer Academic/Plenum, New York 2002)Google Scholar
  325. A. Verkleij, J. Leunissen: Immunogold Labelling in Cell Biology (CRC, Boca Raton 1989)Google Scholar
  326. E. de Harven, R. Leung, H. Christensen: A novel approach for scanning electron microscopy of colloidal gold-labeled cell surfaces, J. Cell Biol. 99, 53 (1984)Google Scholar
  327. H. Gamliel, A. Polliack: The use of scanning immuno-electron microscopy to detect surface membrane immunoglobulins and antigens on normal and leukemic human leukocytes: Current status, Scanning Electron Microsc. 2, 929 (1983)Google Scholar
  328. D. Hicks, R.S. Molday: Analysis of cell labelling for scanning and transmission electron microscopy. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis, ed. by J.-P. Revel, T. Barnard, C.H. Haggis (Scanning Electron Microscopy, Chicago 1984) pp. 203–220Google Scholar
  329. R.S. Molday, P. Maher: A review of cell surface markers and labelling techniques for scanning electron microscopy, Histochem. J. 12, 273 (1980)Google Scholar
  330. P. Walther, M. Müller: Detection of small (5--15 nm) gold-labelled surface antigens by back-scattered electrons. In: 43rd Annu. Meet. Electron Microsc. Soc. Am, ed. by G.W. Bailey (San Francisco Press, San Francisco 1985) pp. 538–541Google Scholar
  331. P. Walther, M. Müller: Detection of small (5--15 nm) gold-labelled surface antigens by back-scattered electrons. In: Science of Biological Specimen Preparation, ed. by M. Müller, R.P. Becker, A. Boyde, J.J. Wolosewick (Scanning Electron Microscopy, Chicago 1986) pp. 195–201Google Scholar
  332. T. Ushiki, R. Yui, T. Fujita: Immunohistochemical localization of serotonin in the third ventricular wall of the lamprey, using backscattered electron imaging, J. Electron Microsc. 35, 157 (1986)Google Scholar
  333. R.M. Albrecht, S.R. Simmons, J.R. Prudent, C.M. Erickson: High resolution SEM of colloidal gold labels. In: Proc. 46th Annu. Meet. Electron Microsc. Soc. Am, ed. by G.W. Bailey (San Francisco Press, San Francisco 1988) pp. 214–217Google Scholar
  334. P. Hirsch, M. Kässens, L. Reimer, R. Senkel, M. Spranck: Contrast of colloidal gold particles and thin films on a silicon substrate observed by backscattered electrons in a low-voltage scanning electron microscope, Ultramicroscopy 50, 263 (1993)Google Scholar
  335. S.R. Simmons, J.B. Pawley, R.M. Albrecht: Optimizing parameters for correlative immunogold localization by video-enhanced light microscopy, high-voltage transmission electron microscopy, and field emission scanning electron microscopy, J. Histochem. Cytochem. 38, 1781 (1990)Google Scholar
  336. W. Baschong, N.G. Wrigley: Colloidal gold conjugated to Fab fragments or to immunoglobulin G as high resolution labels for immunoelectron microscopy, J. Electron Microsc. Tech. 14, 313 (1990)Google Scholar
  337. M. Müller, R. Hermann: Towards high resolution SEM of biological objects, Hitachi Instrum. News 19, 50 (1990)Google Scholar
  338. R.P. Apkarian, D.C. Joy: Analysis of metal films suitable for high-resolution SE-I microscopy. In: Microbeam Analysis, ed. by D.E. Newbury (San Francisco Press, San Francisco 1988) pp. 459–462Google Scholar
  339. S.L. Erlandsen, R.D. Nelson, S.R. Hasslen, G.M. Dunney, S.B. Olmsted, C. Frethem, C.L. Wells: High resolution. FESEM: Application of backscatter electron (BSE) imaging for biological samples, Hitachi Instrum. News 27, 10 (1995)Google Scholar
  340. M. Grote, V. Mahler, S. Spitzauer, T. Fuchs, R. Valenta, R. Reichelt: In situ localization of latex allergens in 3 different brands of latex gloves by means of immunogold field emission scanning and transmission electron microscopy, J. Allergy Clin. Immunol. 105, 561 (2000)Google Scholar
  341. M. Müller, R. Hermann: High resolution SEM‑immunocytochemistry. In: 10th Eur. Congr. Electron Microsc., Vol. 3, ed. by L. Megías-Megías, M.I. Rodríguez-García, A. Ríos, J.M. Arias (Secretariado de Publicaciones de la Universidad de Granada, Granada 1992) pp. 741–742Google Scholar
  342. H. Ris, M. Malecki: High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: A new approach to correlative ultrastructural and immunocytochemical studies, J. Struct. Biol. 111, 148 (1993)Google Scholar
  343. J. Yamaguchi, M. Shibano, T. Saito: Immuno-scanning electron microscopic study of cytoskeletons and actin-binding proteins on phagocytosis of zymosans in mouse macrophages by using double marking method. In: 13th Int. Congr. Electron Microsc, Vol. 3A, ed. by B. Jouffrey, C. Colliex (Les Editions de Physique, Les Ulis 1994) pp. 43–44Google Scholar
  344. P. Walther, E. Wehrli, R. Hermann, M. Müller: Double-layer coating for high-resolution low-temperature scanning electron ‘microscopy', J. Microsc. 179, 229 (1995)Google Scholar
  345. M. Suga, S. Asahina, Y. Sakuda, H. Kazumori, H. Nishiyama, T. Nokuo, V. Alfredsson, T. Kjellman, S.M. Stevens, H.S. Cho, M. Cho, L. Han, S. Che, M.W. Anderson, F. Schüth, H. Deng, O.M. Yaghi, Z. Liu, H.Y. Jeong, A. Stein, K. Sakamoto, R. Ryoo, O. Terasaki: Recent ‘progress' in scanning electron microscopy for the characterization of fine structural details of nano materials, Prog. Solid State Chem. 42, 1 (2014)Google Scholar
  346. B. Fruhstorfer, V. Mohles, R. Reichelt, E. Nembach: Quantitative characterisation of second phase particles by atomic force microscopy (AFM) and scanning electron microscopy (SEM), Philos. Mag. A 82, 2575 (2002)Google Scholar
  347. E. Nembach: Particle Strengthening of Metals and Alloys (Wiley, New York 1996)Google Scholar
  348. E.J. Anglin, M.P. Schwartz, V.P. Ng, L.A. Perelman, M.J. Sailor: Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid, Langmuir 20, 11264 (2004)Google Scholar
  349. A.C. Galca, E.S. Kooij, H. Wormeester, C. Salm, V. Leca, J.H. Rector, B. Poelsema: Structural and optical characterization of porous anodic aluminum oxide, J. Appl. Phys. 94, 4296 (2003)Google Scholar
  350. H. Pan, H. Gao, S.H. Lim, Y.P. Feng, J. Lin: Highly ordered carbon nanotubes based on porous aluminum oxide, J. Nanosci. Nanotechnol. 4, 1014 (2004)Google Scholar
  351. Y. Yamazaki: Application of MEMS technology to micro fuel cells, Electrochim. Acta 50, 663 (2004)Google Scholar
  352. Y.C. Zhao, M. Chen, Y.N. Zhang, T. Xu, W.M. Liu: A facile approach to formation of through-hole porous anodic aluminum oxide film, Mater. Lett. 59, 40 (2005)Google Scholar
  353. Z.X. Zhao, R.Q. Cui, F.Y. Meng, Z.B. Zhou, H.C. Yu, T.T. Sun: Nanocrystalline silicon thin films deposited by high-frequency sputtering at low temperature, Solar Energy Mater. Solar Cells 86, 135–144 (2005)Google Scholar
  354. A. Engel: Molecular weight determination by scanning transmission electron microscopy, Ultramicroscopy 3, 273 (1978)Google Scholar
  355. J.S. Wall: Mass measurement in electron microscope, Scanning Electron Microsc. 2, 291 (1979)Google Scholar
  356. R. Reichelt, A. Engel, U. Aebi: Adaptation of an annular dark field detector capable of single-electron counting to a high resolution field emission scanning electron microscopy. In: Proc. 9th Eur. Congr. Electron Microsc., ed. by H.G. Dickinson, P.J. Goodhew (IOP, York 1988) pp. 33–34Google Scholar
  357. D.C. Bell, M. Mankin, R.W. Day, N. Erdman: Successful application of low voltage electron microscopy to practical materials problems, Ultramicroscopy 145, 56–65 (2014)Google Scholar
  358. S.A. Müller, A. Engel: Structure and mass analysis by scanning transmission electron microscopy, Micron 32, 21 (2001)Google Scholar
  359. M. Nagase, K. Kurihara: Imaging of Si nano-patterns embedded in SiO2 using scanning electron microscopy, Microelectron. Eng. 53, 57 (2000)Google Scholar
  360. M. Nagase, H. Namatsu: A method for assembling nano-electromechanical devices on microcantilevers using focused ion beam technology, Jpn. J. Appl. Phys. 43, 4624 (2004)Google Scholar
  361. D.C. Joy: Control of charging in low-voltage SEM, Scanning 11, 1 (1989)Google Scholar
  362. R. Schmid, K.H. Gaukler, H. Seiler: Measurement of elastically reflected electrons (E\(<2.5\) keV) for imaging of surfaces in a simple ultra high vacuum ‘scanning electron microscope', Scanning Electron Microsc. 2, 501 (1983)Google Scholar
  363. I. Müllerová, L. Frank, O. Hutar: Visualization of the energy band contrast in SEM through low-energy electron reflectance, Scanning 23, 115 (2001)Google Scholar
  364. D.C. Joy: Low voltage scanning electron microscopy. In: Electron Microscopy Microanalysis, Institute of Physics Conference Series, Vol. 90, ed. by J.N. Chapman, A.J. Craven (Institute of Physics, Bristol 1987) pp. 175–180Google Scholar
  365. R. Böngeler, U. Golla, M. Kässens, L. Reimer, B. Schindler, R. Senkel, M. Spranck: Electron-specimen interactions in LVSEM, Scanning 15, 1 (1993)Google Scholar
  366. E.H. Darlington, V.E. Cosslett: Backscattering of 0.5–10 keV electrons from solid targets, J. Phys. D 5, 1969 (1972)Google Scholar
  367. B. Lödding, L. Reimer: Monte Carlo Rechnungen im Energiebereich 1--20 keV, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 14, 315 (1981)Google Scholar
  368. S. Uno, K. Honda, N. Nakamura, M. Matsuya, J. Zach: Probe shape extraction and automatic aberration correction in scanning electron microscopes. In: 8th Asia-Pac. Conf. Electron Microsc. (Yoshida, Kanazawa 2004) pp. 46–47Google Scholar
  369. H. Kazumori, K. Honda, M. Matsuya, M. Date, C. Nielsen: Field emission SEM with a spherical and chromatic aberration corrector, Microsc. Microanal. 10(S02), 1370–1371 (2004)Google Scholar
  370. R.J. Young, G.N. van Veen, A. Henstra, L. Tuma: Extreme high-resolution (XHR) SEM using S beam monochromator. In: Low Voltage Electron Microscopy: Principles and Applications, ed. by D.C. Bell, N. Erdman (Wiley, Chichester 2013) pp. 57–71Google Scholar
  371. B. Lencová, M. Lenc: Computation of properties of electrostatic lenses, Optik 97, 121 (1994)Google Scholar
  372. B. Lencová: Electrostatic lenses. In: Handbook of Charged Particle Optics, ed. by J. Orloff (CRC, New York 1997) pp. 177–221Google Scholar
  373. R.S. Paden, W.C. Nixon: Retarding field scanning electron microscopy, J. Phys. E 2, 1073 (1968)Google Scholar
  374. E. Munro, J. Orloff, R. Rutherford, J. Wallmark: High-resolution, low-energy beams by means of mirror optics, J. Vac. Sci. Technol. B 6, 1971 (1988)Google Scholar
  375. I. Müllerová, M. Lenc: The scanning very low-energy electron microscope, Mikrochim. Acta 12, 173 (1992)Google Scholar
  376. P. Adamec, A. Delong, B. Lencova: Miniature magnetic electron lenses with permanent magnets, J. Microsc. 179, 129 (1995)Google Scholar
  377. A. Khursheed, J.C. Phang, J.T.L. Thong: A portable scanning electron microscope column design based on the use of permanent magnets, Scanning 20, 87 (1998)Google Scholar
  378. A. Khursheed: Recent developments in scanning electron microscope design, Rev. Sci. Instrum. 71, 1712 (2000)Google Scholar
  379. T.H.P. Chang, D.P. Kern, L.P. Muray: Microminiaturization of electron optical systems, J. Vac. Sci. Technol. B 8, 1698 (1990)Google Scholar
  380. W. Liu, T. Ambe, R.F. Pease: Micro objective lens with compact secondary electron detector for miniature low voltage electron beam systems, J. Vac. Sci. Technol. B 14, 3738 (1996)Google Scholar
  381. E.W. Wollman, C.D. Frisbie, M.S. Wrighton: Scanning electron microscopy for imaging photopatterned, self-assembled monolayers on gold, Langmuir 9, 1517 (1993)Google Scholar
  382. A.L. Bleloch, M.R. Castell, A. Howie, C.A. Walsh: Atomic and electronic Z-contrast effects in high-resolution imaging, Ultramicroscopy 54, 107 (1994)Google Scholar
  383. D.D. Perovic, M.R. Castell, A. Howie, C. Lavoie, T. Tiedje, J.S.W. Cole: Doping layer imaging in the field emission scanning electron microscope. In: 13th Int. Congr. Electron Microsc., ed. by B. Jouffrey, C. Colliex (Les Editions de Physique, Les Ulis 1994) pp. 91–92Google Scholar
  384. T.R. Matzelle, N. Kruse, R. Reichelt: Characterization of the cutting edge of glass knives for ultramicrotomy by scanning force ‘microscopy' using cantilevers with a defined tip geometry, J. Microsc. 199, 239 (2000)Google Scholar
  385. T.R. Matzelle, H. Gnaegi, A. Ricker, R. Reichelt: Characterization of the cutting edge of glass and diamond knives for ultramicrotomy by scanning force ‘microscopy' using cantilevers with a defined tip geometry, J. Microsc. 209, 113 (2003)Google Scholar
  386. R. Reichelt: Unpublished results (1997)Google Scholar
  387. A. von Nahmen, M. Schenk, M. Sieber, M. Amrein: The structure of a model pulmonary surfactant as revealed by scanning force microscopy, Biophys. J. 72, 463 (1997)Google Scholar
  388. A.G. Bittermann, S. Jacobi, L.F. Chi, H. Fuchs, R. Reichelt: Contrast studies on organic monolayers of different molecular packing in FESEM and their correlation with SFM data, Langmuir 17, 1872 (2001)Google Scholar
  389. V.K. Berry: Characterization of polymer blends by low voltage scanning electron microscopy, Scanning 10, 19 (1988)Google Scholar
  390. J.H. Butler, D.C. Joy, G.F. Bradley, S.J. Krause: Low-voltage scanning electron microscopy of polymers, Polymer 36, 1781 (1995)Google Scholar
  391. G.M. Brown, J.H. Butler: New method for the characterization of domain morphology of polymer blends using ruthenium tetroxide staining and low voltage scanning electron microscopy (LVSEM), Polymer 38, 3937 (1997)Google Scholar
  392. V.N.E. Robinson: The elimination of charging artefacts in the scanning electron microscope, J. Phys. E 8, 638 (1975)Google Scholar
  393. G.D. Danilatos: An atmospheric scanning electron microscope (ASEM), Scanning 3, 215 (1980)Google Scholar
  394. G.D. Danilatos: The examination of fresh or living plant material in an environmental scanning electron ‘microscope', J. Microsc. 121, 235 (1981)Google Scholar
  395. E. Lax (Ed.): D’Ans-Lax Taschenbuch für Chemiker und Physiker (Springer, Berlin 1967)Google Scholar
  396. G.D. Danilatos: Review and outline of environmental SEM at present, J. Microsc. 162, 391 (1991)Google Scholar
  397. S.A. Wight, C.J. Zeissler: Direct measurement of electron beam scattering in the environmental scanning electron microscope using phosphor imaging plates, Scanning 22, 167 (2000)Google Scholar
  398. G.D. Danilatos: Design and construction of an atmospheric or environmental SEM (Part 3), Scanning 7, 26 (1985)Google Scholar
  399. G.D. Danilatos: Cathodoluminescence and gaseous scintillation in the environmental SEM, Scanning 8, 279 (1986)Google Scholar
  400. B.L. Thiel, I.C. Bache, A.L. Fletcher, P. Meredith, A.M. Donald: An improved model for gaseous amplification in the environmental SEM, J. Microsc. 187, 143 (1997)Google Scholar
  401. J. Cazaux: About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution, Microsc. Microanal. 10, 670 (2004)Google Scholar
  402. Y. Ji, H.S. Guo, T.X. Zhong, H. Zhang, X.L. Quan, Y.Q. Zhang, X.D. Xu: Charge and charging compensation on oxides and hydroxides in oxygen environmental SEM, Ultramicroscopy 103, 191 (2005)Google Scholar
  403. X. Tang, D.C. Joy: Quantitative measurements of charging in a gaseous environment, Scanning 25, 194 (2003)Google Scholar
  404. B.L. Thiel, M. Toth, J.P. Craven: Charging processes in low vacuum scanning electron microscopy, Microsc. Microanal. 10, 711 (2004)Google Scholar
  405. K. Robertson, R. Gauvin, J. Finch: Charge contrast imaging of gibbsite using the variable pressure SEM, Microsc. Microanal. 10, 721 (2004)Google Scholar
  406. M. Toth, M.R. Phillips: The role of induced contrast in images obtained using the environmental scanning electron microscope, Scanning 22, 370 (2000)Google Scholar
  407. M. Schenk, M. Füting, R. Reichelt: Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy, J. Appl. Phys. 84, 4880 (1998)Google Scholar
  408. S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, E. Moses: Scanning electron microscopy of cells and tissues under fully hydrated conditions, Proc. Natl. Acad. Sci. U.S.A. 101, 3346 (2004)Google Scholar
  409. A. Cismak, M. Schwanecke, M. Füting, A. Heilmann: Environmental scanning electron microscopy of living mammalian cell cultures, Microsc. Microanal. 9(S3), 480 (2003)Google Scholar
  410. R.E. de la Parra: A method to detect variations in the wetting properties of microporous polymer membranes, Microsc. Res. Tech. 25, 362 (1993)Google Scholar
  411. N.A. Stelmashenko, J.P. Craven, A.M. Donald, E.M. Terentjev, B.L. Thiel: Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy, J. Microsc. 204, 172 (2001)Google Scholar
  412. A. Liukkonen: Contact angle of water on paper components: Sessile drops versus environmental scanning electron microscope measurements, Scanning 19, 411 (1997)Google Scholar
  413. M.P. Rossi, H.H. Ye, Y. Gogotsi, S. Babu, P. Ndungu, J.C. Bradley: Environmental scanning electron microscopy study of water in carbon nanopipes, Nano Lett. 4, 989 (2004)Google Scholar
  414. B. Bennett, J.O. Buckman, B.F. Bowler, S.R. Larter: Wettability alteration in petroleum systems: The role of polar non-hydrocarbons, Petroleum Geosci. 10, 271 (2004)Google Scholar
  415. E. Kowalewski, T. Boassen, O. Torsaeter: Wettability alterations due to aging in crude oil; wettability and cryo-ESEM analyses, J. Petrol Sci. Eng. 39, 377 (2003)Google Scholar
  416. M. Robin: Interfacial phenomena: Reservoir wettability in oil recovery, Oil Gas Sci. Technol. 56, 55 (2001)Google Scholar
  417. Y. Cao, H.L. Li: Interfacial activity of a novel family of polymeric surfactants, Eur. Polym. J. 38, 1457 (2002)Google Scholar
  418. S. Kitching, A.M. Donald: Beam damage in the ESEM: an FTIR study of polypropylene. In: 11th Europ. Conf. Electron Microsc., Dublin, Vol. 1 (1996) pp. 138–139Google Scholar
  419. C.P. Royall, B.L. Thiel, A.M. Donald: Radiation damage of water in environmental scanning electron ‘microscopy', J. Microsc. 204, 185 (2001)Google Scholar
  420. K. Kanaya, S.O. Kayama: Penetration and energy-loss theory of electrons in solid targets, J. Appl. Phys. D 5, 43 (1972)Google Scholar
  421. K.F.J. Heinrich: Microbeam Analysis (San Francisco Press, San Francisco 1982)Google Scholar
  422. K.F.J. Heinrich, D.E. Newbury (Eds.): Electron Probe Quantification (Plenum, New York 1991)Google Scholar
  423. D.E. Newbury, D.S. Bright: ‘‘Derived spectra'' software tools for detecting spatial and spectral features in spectrum images, Scanning 27, 15 (2005)Google Scholar
  424. V.E. Cosslett, P. Duncumb: Micro-analysis by a flying-spot x-ray method, Nature 177, 1172 (1956)Google Scholar
  425. J.J. Friel, R. Terborg, S. Langner, T. Salge, M. Rohde, J. Berlin: X-Ray and Image Analysis in Electron Microscopy, 3rd edn. (Pro Business, Berlin 2017)Google Scholar
  426. J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Springer, New York 2003)Google Scholar
  427. L. Strüder, P. Lechner, P. Leutenegger: Silicon drift detector—The key to new experiments, Naturwissenschaften 85, 539 (1998)Google Scholar
  428. L. Strüder, N. Meidinger, D. Stotter, J. Kemmer, P. Lechner, P. Leutenegger, H. Soltau, F. Eggert, M. Rohde, T. Schulein: High-resolution x-ray spectroscopy close to room temperature, Microsc. Microanal. 4, 622 (1998)Google Scholar
  429. P. Lechner, C. Fiorini, R. Hartmann, J. Kemmer, N. Krause, P. Leutenegger, A. Longoni, H. Soltau, D. Stotter, R. Stotter, L. Strüder, U. Weber: Silicon drift detectors for high count rate x-ray spectroscopy at room temperature, Nucl. Instrum. Methods Phys. Res. A 458, 281 (2001)Google Scholar
  430. P. Poelt, M. Schmied, I. Obernberger, T. Brunner, J. Dahl: Automated analysis of submicron particles by computer-controlled scanning electron microscopy, Scanning 24, 92 (2002)Google Scholar
  431. Y. Hu, Y. Pan: Method for the calculation of the chemical composition of a thin film by Monte Carlo simulation and electron probe microanalysis, X-Ray Spectrom. 30, 110 (2001)Google Scholar
  432. D.G. Rickerby, N. Wächter, R. Reichelt: Quantitative EDX analysis of SiO2/Al2O3/TiO2 multilayer films, Mikrochim. Acta Suppl. 15, 149 (1998)Google Scholar
  433. G.C. Smith, D. Park, O. Cochonneau: Maximum entropy reconstruction of compositional depth profiles from electron probe microanalysis data, J. Microsc. 178, 48 (1995)Google Scholar
  434. P. Poelt: Low voltage EDXS and elements of the first transition series, Mikrochim. Acta 132, 129 (2000)Google Scholar
  435. R. Wurster: EDX measurements on nanoparticles in a high resolution scanning electron microscope, J. Trace Microprobe Tech. 15, 467 (1997)Google Scholar
  436. D.C. Joy, D.E. Newbury, D.L. Davidson: Electron channeling patterns in scanning electron microscope, J. Appl. Phys. 53, R81 (1982)Google Scholar
  437. C.G. van Essen, E.M. Schulson, R.H. Donaghay: The generation and identification of SEM channeling patterns from 10 \(\upmu\)m selected areas, J. Mater. Sci. 6, 213 (1971)Google Scholar
  438. J.A. Venables, C.J. Harland: Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope, Philos. Mag. 27, 74 (1973)Google Scholar
  439. A.J. Wilkinson, P.B. Hirsch: Electron diffraction based techniques in scanning electron microscopy of bulk materials, Micron 28, 279 (1997)Google Scholar
  440. N.C. Krieger-Lassen, D. Juul-Jensen, K. Conradsen: Image processing procedures for analysis of electron back scattering patterns, Scanning Microsc. 6, 115 (1992)Google Scholar
  441. B.L. Adams, S.I. Wright, K. Kunze: Orientation imaging: The emergence of a new microscopy, Metall. Trans. A 24, 819 (1993)Google Scholar
  442. S. Zaefferer: The electron backscatter diffraction technique—A powerful tool to study microstructures by SEM, JEOL News 39, 10 (2004)Google Scholar
  443. S. Zaefferer, J. Ohlert, W. Bleck: A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel, Acta Mater. 52, 2765 (2004)Google Scholar
  444. A.J. Wilkinson: Advances in SEM-based diffraction studies of defects and strains in semiconductors, J. Electron Microsc. 49, 299 (2000)Google Scholar
  445. D. Katrakova, F. Mücklich: Specimen preparation for electron backscatter diffraction (EBSD)-Part II: Ceramics, Prakt. Metallogr. 39, 644 (2002)Google Scholar
  446. M.R. Koblischka, A. Koblischka-Veneva: Characterization of bulk superconductors through EBSD methods, Physica C 392, 545 (2003)Google Scholar
  447. A. Mauler, G. Godard, K. Kunze: Crystallographic fabrics of omphacite, rutile and quartz in vendee eclogites (Armorican Massif, France): Consequences for deformation mechanisms and regimes, Tectonophysics 342, 81 (2001)Google Scholar
  448. D.J. Prior, A.P. Boyle, F. Brenker, M.C. Cheadle, A. Day, G. Lopez, L. Peruzzo, G.J. Potts, S. Reddy, R. Spiess, N.E. Timms, P. Trimby, J. Wheeler, L. Zeterstrom: The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks, Am. Mineral. 84, 1741 (1999)Google Scholar
  449. P.W. Trimby: Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope, Ultramicroscopy 120, 16 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natasha Erdman
    • 1
  • David C. Bell
    • 2
    Email author
  • Rudolf Reichelt
    • 3
  1. 1.JEOL USA Inc.Peabody, MAUSA
  2. 2.Center for Nanoscale SystemsHarvard UniversityCambridge, MAUSA
  3. 3.Abberior Instruments GmbHGöttingenGermany

Personalised recommendations