Cryo-Electron Tomography

Part of the Springer Handbooks book series (SHB)


Classical structural biology approaches rely on highly purified molecules which are isolated from their neighbors far from the complex macromolecular interaction network of the cell (ex situ). We have seen breathtaking results of such isolated molecular structures at atomic or near-atomic resolution obtained by single-particle cryo-electron microscopy (cryo-EM). However, many supra- and macromolecular complexes involved in key cellular processes cannot be studied in isolation; their function is so deeply rooted in their cellular context that it is impossible to isolate them without compromising their structural integrity. The challenge now is to apply cryo-EM to protein complexes and other biological objects in their natural environment, namely cells. Cryo-electron tomography (cryo-ET) offers this opportunity, and in this chapter we provide an overview of recent advances in sample preparation, data acquisition and data processing, including technology for focused ion beam milling, correlative light and electron microscopy, phase-plate imaging and direct electron detection. We show that these developments can be used synergistically to generate 3-D images of cells of unprecedented quality, enabling direct visualization of macromolecular complexes and their spatial coordination in undisturbed eukaryotic cell environments (in situ).


  1. R.G. Hart: Electron microscopy of unstained biological material – Polytropic montage, Science 159, 1464 (1968)Google Scholar
  2. J.M. Plitzko, W. Baumeister: Cryo-electron tomography (cryo-ET). In: Science of Microscopy, ed. by P.W. Hawkes, J.C.H. Spence (Springer, New York 2007) pp. 535–604Google Scholar
  3. M. Khoshouei, R. Danev, J.M. Plitzko, W. Baumeister: Revisiting the structure of hemoglobin and myoglobin with cryo-electron microscopy, J. Mol. Biol. 429, 2611–2618 (2017)Google Scholar
  4. E. Ruska: The early development of electron lenses and electron microscopy, Microsc. Acta Suppl. 5, 1–140 (1980)Google Scholar
  5. R.M. Glaeser: Limitations to significant information in biological electron microscopy as a result of radiation damage, J. Ultrastruct. Res. 36, 466–482 (1971)Google Scholar
  6. K.R. Porter, J. Blum: A study in microtomy for electron microscopy, Anat. Rec. 117, 685–710 (1953)Google Scholar
  7. F.S. Sjostrand: A new microtome for ultrathin sectioning for high resolution electron microscopy, Experientia 9, 114–115 (1953)Google Scholar
  8. A.C. Steven, W. Baumeister, L.N. Johnson, R.N. Perham: Molecular Biology of Assemblies and Machines (Garland Science, New York 2016) p. 852Google Scholar
  9. H. Fernández-Morán: Cryo-electron microscopy and ultramicrotomy – reminiscences and reflections, Adv. Imaging Electr. Phys. Suppl. 16, 167–223 (1985)Google Scholar
  10. H. Fernández-Morán: Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II, Ann. N. Y. Acad. Sci. 85, 689–713 (1960)Google Scholar
  11. K.A. Taylor, R.M. Glaeser: Electron microscopy of frozen hydrated biological specimens, J. Ultrastruc. Res. 55, 448–456 (1976)Google Scholar
  12. K.A. Taylor, R.M. Glaeser: Electron-diffraction of frozen, hydrated protein crystals, Science 186, 1036–1037 (1974)Google Scholar
  13. E.F. Burton, W.F. Oliver: X-ray diffraction patterns of ice, Nature 135, 505–506 (1935)Google Scholar
  14. E.F. Burton, W.F. Oliver: The crystal structure of ice at low temperatures, Proc. R. Soc. Lond. Ser. A 153, 166–172 (1935)Google Scholar
  15. P. Bruggeller, E. Mayer: Complete vitrification in pure liquid water and dilute aqueous-solutions, Nature 288, 569–571 (1980)Google Scholar
  16. J. Dubochet, A.W. McDowall: Vitrification of pure water for electron microscopy, J. Microsc. 124(3), 3–4 (1981)Google Scholar
  17. J. Dubochet, M. Adrian, J.J. Chang, J.C. Homo, J. Lepault, A.W. McDowall, P. Schultz: Cryo-electron microscopy of vitrified specimens, Q. Rev. Biophys. 21, 129–228 (1988)Google Scholar
  18. J. Dubochet: Cryo-EM–the first thirty years, J. Microsc. 245, 221–224 (2011)Google Scholar
  19. R.M. Glaeser, K.A. Taylor: Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: A review, J. Microsc. 112, 127–138 (1978)Google Scholar
  20. D.J. Derosier, A. Klug: Reconstruction of 3 dimensional structures from electron micrographs, Nature 217, 130 (1968)Google Scholar
  21. W. Hoppe, R. Langer, G. Knesch, C. Poppe: Protein crystal structure analysis with electron radiation, Naturwissenschaften 55, 333–336 (1968)Google Scholar
  22. W. Hoppe: Towards three-dimensional ‘‘electron microscopy'' at atomic resolution, Naturwissenschaften 61, 239–249 (1974)Google Scholar
  23. A.M. Cormack: Representation of a function by its line integrals, with some radiological applications, J. Appl. Phys. 34, 5 (1963)Google Scholar
  24. G.N. Hounsfield: A method of an apparatus for examination of a body by radiation such as x-ray or gamma radiation, Patent Specification 1283915 (1972)Google Scholar
  25. O.L. Krivanek, P.E. Mooney: Applications of slow-scan CCD cameras in transmission electron-microscopy, Ultramicroscopy 49, 95–108 (1993)Google Scholar
  26. O.L. Krivanek, P.E. Mooney, G.Y. Fan, M.L. Leber, C.E. Meyer: Slow-Scan CCD cameras for transmission electron-microscopy, Electron Microsc. Anal. 119, 523–526 (1991)Google Scholar
  27. D. Typke, K. Dierksen, W. Baumeister: Automatic electron tomography. In: 49th Annual Meeting of the Microscopy Society of America (San Francisco Press, San Francisco 1991) pp. 544–545Google Scholar
  28. A.J. Koster, H. Chen, J.W. Sedat, D.A. Agard: Automated microscopy for electron tomography, Ultramicroscopy 46, 207–227 (1992)Google Scholar
  29. K. Dierksen, D. Typke, R. Hegerl, A.J. Koster, W. Baumeister: Towards automatic electron tomography, Ultramicroscopy 40, 71–87 (1992)Google Scholar
  30. R.A. Horowitz, D.A. Agard, J.W. Sedat, C.L. Woodcock: The three-dimensional architecture of chromatin in situ: Electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon, J. Cell Biol. 125, 1–10 (1994)Google Scholar
  31. K. Dierksen, D. Typke, R. Hegerl, J. Walz, E. Sackmann, W. Baumeister: Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography, Biophys. J. 68, 1416–1422 (1995)Google Scholar
  32. R. Grimm, D. Typke, M. Barmann, W. Baumeister: Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging, Ultramicroscopy 63, 169–179 (1996)Google Scholar
  33. J. Walz, D. Typke, M. Nitsch, A.J. Koster, R. Hegerl, W. Baumeister: Electron tomography of single ice-embedded macromolecules: Three-dimensional alignment and classification, J. Struct. Biol. 120, 387–395 (1997)Google Scholar
  34. M. Nitsch, J. Walz, D. Typke, M. Klumpp, L.O. Essen, W. Baumeister: Group II chaperonin in an open conformation examined by electron tomography, Nat. Struct. Biol. 5, 855–857 (1998)Google Scholar
  35. R. Turchetta: Complementary metal-oxide-semiconductor (CMOS) sensors for high-performance scientific imaging. In: In High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Image Sensors, ed. by D. Durini (Woodhead, Cambridge 2014) pp. 281–311Google Scholar
  36. G. McMullan, A.R. Faruqi, R. Henderson: Direct electron detectors, Methods Enzymol. 579, 1–17 (2016)Google Scholar
  37. S.Q. Zheng, E. Palovcak, J.P. Armache, K.A. Verba, Y. Cheng, D.A. Agard: MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy, Nat. Methods 14, 331–332 (2017)Google Scholar
  38. G. McMullan, A.R. Faruqi, D. Clare, R. Henderson: Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy, Ultramicroscopy 147, 156–163 (2014)Google Scholar
  39. X. Li, P. Mooney, S. Zheng, C.R. Booth, M.B. Braunfeld, S. Gubbens, D.A. Agard, Y. Cheng: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM, Nat. Methods 10, 584–590 (2013)Google Scholar
  40. F. Brandt, L.-A. Carlson, F.U. Hartl, W. Baumeister, K. Gruenewald: The three-dimensional organization of polyribosomes in intact human cells, Mol. Cell 39, 560–569 (2010)Google Scholar
  41. R. Fernandez-Busnadiego, B. Zuber, U.E. Maurer, M. Cyrklaff, W. Baumeister, V. Lucic: Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography, J. Cell Biol. 188, 145–156 (2010)Google Scholar
  42. O. Medalia, I. Weber, A.S. Frangakis, D. Nicastro, G. Gerisch, W. Baumeister: Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography, Science 298, 1209–1213 (2002)Google Scholar
  43. D. Nicastro, C. Schwartz, J. Pierson, R. Gaudette, M.E. Porter, J.R. McIntosh: The molecular architecture of axonemes revealed by cryoelectron tomography, Science 313, 944–948 (2006)Google Scholar
  44. J.O. Ortiz, F. Brandt, V.R. Matias, L. Sennels, J. Rappsilber, S.H. Scheres, M. Eibauer, F.U. Hartl, W. Baumeister: Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ, J. Cell Biol. 190, 613–621 (2010)Google Scholar
  45. J.O. Ortiz, F. Forster, J. Kurner, A.A. Linaroudis, W. Baumeister: Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition, J. Struct. Biol. 156, 334–341 (2006)Google Scholar
  46. C.M. Oikonomou, G.J. Jensen: The development of cryo-EM and how it has advanced microbiology, Nat. Microbiol. 2, 1577–1579 (2017)Google Scholar
  47. A. Al-Amoudi, D.C. Diez, M.J. Betts, A.S. Frangakis: The molecular architecture of cadherins in native epidermal desmosomes, Nature 450, 832–838 (2007)Google Scholar
  48. J. Cope, S. Gilbert, I. Rayment, D. Mastronarde, A. Hoenger: Cryo-electron tomography of microtubule-kinesin motor complexes, J. Struct. Biol. 170, 257–265 (2010)Google Scholar
  49. M.P. Scheffer, M. Eltsov, A.S. Frangakis: Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei, Proc. Natl. Acad. Sci. USA 108, 16992–16997 (2011)Google Scholar
  50. D. Studer, A. Klein, I. Iacovache, H. Gnaegi, B. Zuber: A new tool based on two micromanipulators facilitates the handling of ultrathin cryosection ribbons, J. Struct. Biol. 185, 125–128 (2014)Google Scholar
  51. C. Bouchet-Marquis, A. Hoenger: Cryo-electron tomography on vitrified sections: A critical analysis of benefits and limitations for structural cell biology, Micron 42, 152–162 (2011)Google Scholar
  52. J. Pierson, J.J. Fernandez, E. Bos, S. Amini, H. Gnaegi, M. Vos, B. Bel, F. Adolfsen, J.L. Carrascosa, P.J. Peters: Improving the technique of vitreous cryo-sectioning for cryo-electron tomography: electrostatic charging for section attachment and implementation of an anti-contamination glove box, J. Struct. Biol. 169, 219–225 (2010)Google Scholar
  53. M. Marko, C. Hsieh, R. Schalek, J. Frank, C. Mannella: Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy, Nat. Methods 4, 215–217 (2007)Google Scholar
  54. P.S. Erdmann, J.M. Plitzko, W. Baumeister: Addressing cellular compartmentalization by in situ cryo-electron tomography, Curr. Opin. Colloid Interface Sci. 34, 89–99 (2018)Google Scholar
  55. H. Mulders: The use of a SEM/FIB dual beam applied to biological samples, GIT Imaging Microsc. 2, 8–10 (2003)Google Scholar
  56. M. Marko, C. Hsieh, W. Moberlychan, C.A. Mannella, J. Frank: Focused ion beam milling of vitreous water: Prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples, J. Microsc. 222, 42–47 (2006)Google Scholar
  57. A. Rigort, F.J. Bauerlein, A. Leis, M. Gruska, C. Hoffmann, T. Laugks, U. Bohm, M. Eibauer, H. Gnaegi, W. Baumeister, J.M. Plitzko: Micromachining tools and correlative approaches for cellular cryo-electron tomography, J. Struct. Biol. 172, 169–179 (2010)Google Scholar
  58. A. Rigort, F.J. Bauerlein, E. Villa, M. Eibauer, T. Laugks, W. Baumeister, J.M. Plitzko: Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography, Proc. Natl. Acad. Sci. USA 109, 4449–4454 (2012)Google Scholar
  59. C. Hsieh, T. Schmelzer, G. Kishchenko, T. Wagenknecht, M. Marko: Practical workflow for cryo focused-ion-beam milling of tissues and cells for cryo-TEM tomography, J. Struct. Biol. 185, 32–41 (2014)Google Scholar
  60. J. Mahamid, R. Schampers, H. Persoon, A.A. Hyman, W. Baumeister, J.M. Plitzko: A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms, J. Struct. Biol. 192, 262–269 (2015)Google Scholar
  61. A. Sartori, R. Gatz, F. Beck, A. Rigort, W. Baumeister, J.M. Plitzko: Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography, J. Struct. Biol. 160, 135–145 (2007)Google Scholar
  62. C.L. Schwartz, V.I. Sarbash, F.I. Ataullakhanov, J.R. McIntosh, D. Nicastro: Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching, J. Microsc. 227, 98–109 (2007)Google Scholar
  63. J.M. Plitzko, A. Rigort, A. Leis: Correlative cryo-light microscopy and cryo-electron tomography: From cellular territories to molecular landscapes, Curr. Opin. Biotechnol. 20, 83–89 (2009)Google Scholar
  64. M. Schorb, J.A. Briggs: Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity, Ultramicroscopy 143, 24–32 (2014)Google Scholar
  65. J. Arnold, J. Mahamid, V. Lucic, A. de Marco, J.J. Fernandez, T. Laugks, T. Mayer, A.A. Hyman, W. Baumeister, J.M. Plitzko: Site-specific cryo-focused ion beam sample preparation guided by 3d correlative microscopy, Biophys. J. 110, 860–869 (2016)Google Scholar
  66. A. Briegel, S. Chen, A.J. Koster, J.M. Plitzko, C.L. Schwartz, G.J. Jensen: Correlated light and electron cryo-microscopy, Methods Enzymol. 481, 317–341 (2010)Google Scholar
  67. G. Wolff, C. Hagen, K. Grunewald, R. Kaufmann: Towards correlative super-resolution fluorescence and electron cryo-microscopy, Biol. Cell 108, 245–258 (2016)Google Scholar
  68. R. Danev, B. Buijsse, M. Khoshouei, J.M. Plitzko, W. Baumeister: Volta potential phase plate for in-focus phase contrast transmission electron microscopy, Proc. Natl. Acad. Sci. USA 111, 15635–15640 (2014)Google Scholar
  69. H. Boersch: Über die Kontraste von Atomen im Elektronenmikroskop, Z. Naturforsch. A 2, 615–633 (1947)Google Scholar
  70. R. Danev, K. Nagayama: Phase plates for transmission electron microscopy, Methods Enzymol. 481, 343–369 (2010)Google Scholar
  71. J. Mahamid, S. Pfeffer, M. Schaffer, E. Villa, R. Danev, L.K. Cuellar, F. Forster, A.A. Hyman, J.M. Plitzko, W. Baumeister: Visualizing the molecular sociology at the HeLa cell nuclear periphery, Science 351, 969–972 (2016)Google Scholar
  72. T.H. Sharp, F.G.A. Faas, A.J. Koster, P. Gros: Imaging complement by phase-plate cryo-electron tomography from initiation to pore formation, J. Struct. Biol. 197, 155–162 (2017)Google Scholar
  73. P. Chlanda, E. Mekhedov, H. Waters, C.L. Schwartz, E.R. Fischer, R.J. Ryham, F.S. Cohen, P.S. Blank, J. Zimmerberg: The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the target membranes, Nat. Microbiol. 1, 16050 (2016)Google Scholar
  74. S. Asano, B.D. Engel, W. Baumeister: In situ cryo-electron tomography: A post-reductionist approach to structural biology, J. Mol. Biol. 428, 332–343 (2016)Google Scholar
  75. S. Asano, Y. Fukuda, F. Beck, A. Aufderheide, F. Forster, R. Danev, W. Baumeister: Proteasomes. A molecular census of 26S proteasomes in intact neurons, Science 347, 439–442 (2015)Google Scholar
  76. Y. Fukuda, F. Beck, J.M. Plitzko, W. Baumeister: In situ structural studies of tripeptidyl peptidase II (TPPII) reveal spatial association with proteasomes, Proc. Natl. Acad. Sci. USA 114, 4412–4417 (2017)Google Scholar
  77. Y. Fukuda, U. Laugks, V. Lucic, W. Baumeister, R. Danev: Electron cryotomography of vitrified cells with a Volta phase plate, J. Struct. Biol. 190, 143–154 (2015)Google Scholar
  78. W. Kuhlbrandt: The resolution revolution, Science 343, 1443–1444 (2014)Google Scholar
  79. L.M. Gierasch, A. Gershenson: Post-reductionist protein science, or putting Humpty Dumpty back together again, Nat. Chem. Biol. 5, 774–777 (2009)Google Scholar
  80. M.G.L. Gustafsson: Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005)Google Scholar
  81. K.I. Willig, R.R. Kellner, R. Medda, B. Hein, S. Jakobs, S.W. Hell: Nanoscale resolution in GFP-based microscopy, Nat. Methods 3, 721–723 (2006)Google Scholar
  82. M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell: Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005)Google Scholar
  83. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess: Imaging intracellular fluorescent proteins at nanometer resolution, Science 313, 1642–1645 (2006)Google Scholar
  84. S.T. Hess, T.P.K. Girirajan, M.D. Mason: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91, 4258–4272 (2006)Google Scholar
  85. M.J. Rust, M. Bates, X.W. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3, 793–795 (2006)Google Scholar
  86. J.M. Medeiros, D. Bock, G.L. Weiss, R. Kooger, R.A. Wepf, M. Pilhofer: Robust workflow and instrumentation for cryo-focused ion beam milling of samples for electron cryotomography, Ultramicroscopy 190, 1–11 (2018)Google Scholar
  87. J.G. Zhang, G. Ji, X.J. Huang, W. Xu, F. Sun: An improved cryo-FIB method for fabrication of frozen hydrated lamella, J. Struct. Biol. 194, 218–223 (2016)Google Scholar
  88. A. Rigort: Recent developments in FEI's in situ cryo-electron tomography workflow, Nat. Methods 13, III–IV (2016)Google Scholar
  89. J. He, C. Hsieh, Y.P. Wu, T. Schmelzer, P. Wang, Y. Lin, M. Marko, H.X. Sui: Cryo-FIB specimen preparation for use in a cartridge-type cryo-TEM, J. Struct. Biol. 199, 114–119 (2017)Google Scholar
  90. K. Wang, K. Strunk, G.P. Zhao, J.L. Gray, P.J. Zhang: 3D structure determination of native mammalian cells using cryo-FIB and cryo-electron tomography, J. Struct. Biol. 180, 318–326 (2012)Google Scholar
  91. D.A.M. de Winter, R.J. Mesman, M.F. Hayles, C.T.W.M. Schneijdenberg, C. Mathisen, J.A. Post: In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope, J. Struct. Biol. 183, 11–18 (2013)Google Scholar
  92. B.D. Engel, M. Schaffer, S. Albert, S. Asano, L.K. Cuellar, S. Pfeffer, J.M. Plitzko, W. Baumeister: Exploring the native molecular architecture of organelles with in situ cryo-electron tomography, Mol. Biol. Cell 26, 4523 (2015)Google Scholar
  93. B.D. Engel, M. Schaffer, S. Albert, S. Asano, J.M. Plitzko, W. Baumeister: In situ structural analysis of Golgi intracisternal protein arrays, Proc. Natl. Acad. Sci. USA 112, 11264–11269 (2015)Google Scholar
  94. B.D. Engel, M. Schaffer, L.K. Cuellar, E. Villa, J.M. Plitzko, W. Baumeister: Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography, eLife 4, 1–29 (2015)Google Scholar
  95. E.S.F. Rosenzweig, B. Xu, L.K. Cuellar, A. Martinez-Sanchez, M. Schaffer, M. Strauss, H.N. Cartwright, P. Ronceray, J.M. Plitzko, F. Forster, N.S. Wingreen, B.D. Engel, L.C.M. Mackinder, M.C. Jonikas: The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization, Cell 171, 148 (2017)Google Scholar
  96. S. Pfeffer, J. Dudek, M. Schaffer, B.G. Ng, S. Albert, J.M. Plitzko, W. Baumeister, R. Zimmermann, H.H. Freeze, B.D. Engel, F. Forster: Dissecting the molecular organization of the translocon-associated protein complex, Nat. Commun. 8, 14516 (2017)Google Scholar
  97. S. Albert, M. Schaffer, F. Beck, S. Mosalaganti, S. Asano, H.F. Thomas, J.M. Plitzko, M. Beck, W. Baumeister, B.D. Engel: Proteasomes tether to two distinct sites at the nuclear pore complex, Proc. Natl. Acad. Sci. USA 114, 13726–13731 (2017)Google Scholar
  98. F.J.B. Bauerlein, I. Saha, A. Mishra, M. Kalemanov, A. Martinez-Sanchez, R. Klein, I. Dudanova, M.S. Hipp, F.U. Hartl, W. Baumeister, R. Fernandez-Busnadiego: In situ architecture and cellular interactions of polyQ inclusions, Cell 171, 179 (2017)Google Scholar
  99. Q. Guo, C. Lehmer, A. Martinez-Sanchez, T. Rudack, F. Beck, H. Hartmann, M. Perez-Berlanga, F. Frottin, M.S. Hipp, F.U. Hartl, D. Edbauer, W. Baumeister, R. Fernandez-Busnadiego: In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment, Cell 172, 696 (2018)Google Scholar
  100. V. Chaikeeratisak, K. Nguyen, K. Khanna, A.F. Brilot, M.L. Erb, J.K. Coker, A. Vavilina, G.L. Newton, R. Buschauer, K. Pogliano, E. Villa, D.A. Agard, J. Pogliano: Assembly of a nucleus-like structure during viral replication in bacteria, Science 355, 194–197 (2017)Google Scholar
  101. J.M. Medeiros, D. Bock, M. Pilhofer: Imaging bacteria inside their host by cryo-focused ion beam milling and electron cryotomography, Curr. Opin. Microbiol. 43, 62–68 (2018)Google Scholar
  102. S. Nickell, C. Kofler, A.P. Leis, W. Baumeister: A visual approach to proteomics, Nat. Rev. Mol. Cell Biol. 7, 225–230 (2006)Google Scholar
  103. D. Studer, B.M. Humbel, M. Chiquet: Electron microscopy of high pressure frozen samples: Bridging the gap between cellular ultrastructure and atomic resolution, Histochem. Cell Biol. 130, 877–889 (2008)Google Scholar
  104. J.R. Bellare, H.T. Davis, L.E. Scriven, Y. Talmon: Controlled environment vitrification system: An improved sample preparation technique, J. Electron. Microsc. Tech. 10, 87–111 (1988)Google Scholar
  105. C.V. Iancu, W.F. Tivol, J.B. Schooler, D.P. Dias, G.P. Henderson, G.E. Murphy, E.R. Wright, Z. Li, Z.H. Yu, A. Briegel, L. Gan, Y.N. He, G.J. Jensen: Electron cryotomography sample preparation using the Vitrobot, Nat. Protoc. 1, 2813–2819 (2006)Google Scholar
  106. K. McDonald, H. Schwarz, T. Muller-Reichert, R. Webb, C. Buser, M. Morphew: ‘‘Tips and Tricks'' for high-pressure freezing of model systems, Methods Cell Biol. 96, 671–693 (2010)Google Scholar
  107. H. Kanno, R.J. Speedy, C.A. Angell: Supercooling of water to -92 °C under pressure, Science 189, 880–881 (1975)Google Scholar
  108. R. Kaufmann, P. Schellenberger, E. Seiradake, I.M. Dobbie, E.Y. Jones, I. Davis, C. Hagen, K. Grunewald: Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions, Nano Lett. 14, 4171–4175 (2014)Google Scholar
  109. Y.W. Chang, S.Y. Chen, E.I. Tocheva, A. Treuner-Lange, S. Loebach, L. Sogaard-Andersen, G.J. Jensen: Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography, Nat. Methods 11, 737–739 (2014)Google Scholar
  110. B. Liu, Y.H. Xue, W. Zhao, Y. Chen, C.Y. Fan, L.S. Gu, Y.D. Zhang, X. Zhang, L. Sun, X.J. Huang, W. Ding, F. Sun, W. Ji, T. Xu: Three-dimensional super-resolution protein localization correlated with vitrified cellular context, Sci. Rep. 5, 13017 (2015)Google Scholar
  111. M. Beck, W. Baumeister: Cryo-electron tomography: Can it reveal the molecular sociology of cells in atomic detail?, Trends Cell Biol. 26, 825–837 (2016)Google Scholar
  112. A. Al-Amoudi, J.J. Chang, A. Leforestier, A. McDowall, L.M. Salamin, L.P. Norlen, K. Richter, N.S. Blanc, D. Studer, J. Dubochet: Cryo-electron microscopy of vitreous sections, EMBO Journal 23, 3583–3588 (2004)Google Scholar
  113. C.E. Hsieh, M. Marko, J. Frank, C.A. Mannella: Electron tomographic analysis of frozen-hydrated tissue sections, J. Struct. Biol. 138, 63–73 (2002)Google Scholar
  114. A. Al-Amoudi, D. Studer, J. Dubochet: Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy, J. Struct. Biol. 150, 109–121 (2005)Google Scholar
  115. M.F. Hayles, D.A. de Winter, C.T. Schneijdenberg, J.D. Meeldijk, U. Luecken, H. Persoon, J. de Water, F. de Jong, B.M. Humbel, A.J. Verkleij: The making of frozen-hydrated, vitreous lamellas from cells for cryo-electron microscopy, J. Struct. Biol. 172, 180–190 (2010)Google Scholar
  116. M. Schaffer, B.D. Engel, T. Laugks, J. Mahamid, J.M. Plitzko, W. Baumeister: Cryo-focused Ion beam sample preparation for imaging vitreous cells by cryo-electron tomography, Bio. Protoc. 5, e1575 (2015)Google Scholar
  117. M. Schaffer, J. Mahamid, B.D. Engel, T. Laugks, W. Baumeister, J.M. Plitzko: Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins, J. Struct. Biol. 197, 73–82 (2017)Google Scholar
  118. J. Harapin, M. Bormel, K.T. Sapra, D. Brunner, A. Kaech, O. Medalia: Structural analysis of multicellular organisms with cryo-electron tomography, Nat. Methods 12, 634–636 (2015)Google Scholar
  119. W.J.H. Hagen, W. Wan, J.A.G. Briggs: Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging, J. Struct. Biol. 197, 191–198 (2017)Google Scholar
  120. D.N. Mastronarde: Dual-axis tomography: An approach with alignment methods that preserve resolution, J. Struct. Biol. 120, 343–352 (1997)Google Scholar
  121. D.N. Mastronarde: Automated electron microscope tomography using robust prediction of specimen movements, J. Struct. Biol. 152, 36–51 (2005)Google Scholar
  122. C. Suloway, J. Pulokas, D. Fellmann, A. Cheng, F. Guerra, J. Quispe, S. Stagg, C.S. Potter, B. Carragher: Automated molecular microscopy: The new Leginon system, J. Struct. Biol. 151, 41–60 (2005)Google Scholar
  123. C. Suloway, J. Shi, A. Cheng, J. Pulokas, B. Carragher, C.S. Potter, S.Q. Zheng, D.A. Agard, G.J. Jensen: Fully automated, sequential tilt-series acquisition with Leginon, J. Struct. Biol. 167, 11–18 (2009)Google Scholar
  124. S.Q. Zheng, J.W. Sedat, D.A. Agard: Automated data collection for electron microscopic tomography, Methods Enzymol. 481, 283–315 (2010)Google Scholar
  125. A. Korinek, F. Beck, W. Baumeister, S. Nickell, J.M. Plitzko: Computer controlled cryo-electron microscopy – TOM(2) a software package for high-throughput applications, J. Struct. Biol. 175, 394–405 (2011)Google Scholar
  126. S. Nickell, F. Beck, A. Korinek, O. Mihalache, W. Baumeister, J.M. Plitzko: Automated cryoelectron microscopy of ‘‘single particles'' applied to the 26S proteasome, FEBS Letters 581, 2751–2756 (2007)Google Scholar
  127. J.J. Fernandez, S. Li, R.A. Crowther: CTF determination and correction in electron cryotomography, Ultramicroscopy 106, 587–596 (2006)Google Scholar
  128. R. Danev, K. Nagayama: Transmission electron microscopy with Zernike phase plate, Ultramicroscopy 88, 243–252 (2001)Google Scholar
  129. R. Danev, W. Baumeister: Expanding the boundaries of cryo-EM with phase plates, Curr. Opin. Struct. Biol. 46, 87–94 (2017)Google Scholar
  130. W. Wan, J.A.G. Briggs: Cryo-electron tomography and subtomogram averaging, Methods Enzymol. 579, 329–367 (2016)Google Scholar
  131. A.H. Andersen, A.C. Kak: Simultaneous algebraic reconstruction technique (Sart) – A superior implementation of the art algorithm, Ultrason. Imaging 6, 81–94 (1984)Google Scholar
  132. P. Gilbert: Iterative methods for 3-dimensional reconstruction of an object from projections, J. Theor. Biol. 36, 105 (1972)Google Scholar
  133. M. Radermacher: Weighted back-projectrion methods. In: Electron Tomography: Methods for Threedimensional Visualization of Structures in the Cell, ed. by J. Frank (Springer, New York 2006) pp. 245–273Google Scholar
  134. T. Hrabe, Y. Chen, S. Pfeffer, L.K. Cuellar, A.V. Mangold, F. Forster: PyTom: A python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis, J. Struct. Biol. 178, 177–188 (2012)Google Scholar
  135. F. Forster, B.G. Han, M. Beck: Visual protoemics, Methods Enzymol. 483, 215–243 (2010)Google Scholar
  136. J. Boehm, A.S. Frangakis, R. Hegerl, S. Nickell, D. Typke, W. Baumeister: Toward detecting and identifying macromolecules in a cellular context: Template matching applied to electron tomograms, Proc. Natl. Acad. Sci. USA 97, 14245–14250 (2000)Google Scholar
  137. D. Castano-Diez, M. Kudryashev, M. Arheit, H. Stahlberg: Dynamo: A flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments, J. Struct. Biol. 178, 139–151 (2012)Google Scholar
  138. F. Foerster, O. Medalia, N. Zauberman, W. Baumeister, D. Fass: Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography, Proc. Natl. Acad. Sci. USA 102, 4729–4734 (2005)Google Scholar
  139. J. Dubochet: On the development of electron cryo-microscopy (Nobel Lecture), Angew. Chem. Intern. Ed. 57, 10842–10846 (2018)Google Scholar
  140. M. Adrian, J. Dubochet, J. Lepault, A.W. McDowall: Cryo-electron microscopy of viruses, Nature 308, 32–36 (1984)Google Scholar
  141. W.F. Tivol, A. Briegel, G.J. Jensen: An improved cryogen for plunge freezing, Microsc. Microanal. 14, 375–379 (2008)Google Scholar
  142. S.B. Hayward, R.M. Glaeser: Radiation damage of purple membrane at low-temperature, Ultramicroscopy 4, 201–210 (1979)Google Scholar
  143. J. Huebinger, H.M. Han, O. Hofnagel, I.R. Vetter, P.I.H. Bastiaens, M. Grabenbauer: Direct measurement of water states in cryopreserved cells reveals tolerance toward ice crystallization, Biophys. J. 110, 840–849 (2016)Google Scholar
  144. H. Moor: Theory and practice of high pressure freezing. In: Cryo-techniques in Biological Electron Microscopy, ed. by R.A. Steinbrecht, K. Zierold (Springer, Berlin, Heidelberg 1987) pp. 175–191Google Scholar
  145. N. Sartori, K. Richter, J. Dubochet: Vitrification depth can be increased more than 10-fold by high-pressure freezing, J. Microsc. 172, 55–61 (1993)Google Scholar
  146. K.L. McDonald, M. Morphew, P. Verkade, T. Müller-Reichert: Recent advances in high-pressure freezing. In: Methods in Molecular Biology, Electron Microscopy: Methods and Protocols, ed. by J. Kuo (Humana, Totowa 2007) pp. 143–173Google Scholar
  147. L.F. Kourkoutis, J.M. Plitzko, W. Baumeister: Electron microscopy of biological materials at the nanometer scale, Annu. Rev. Mater. Res. 42, 33–58 (2012)Google Scholar
  148. C.A. Volkert, A.M. Minor: Focused ion beam microscopy and micromachining, MRS Bulletin 32, 389–395 (2007)Google Scholar
  149. E.C.G. Kirk, D.A. Williams, H. Ahmed: Cross-sectional transmission electron-microscopy of precisely selected regions from semiconductor-devices. In: Inst. Phys. Conf. Ser (1989) pp. 501–506Google Scholar
  150. J.A.W. Heymann, M. Hayles, I. Gestmann, L.A. Giannuzzi, B. Lich, S. Subramaniam: Site-specific 3D imaging of cells and tissues with a dual beam microscope, J. Struct. Biol. 155, 63–73 (2006)Google Scholar
  151. J.F. Ziegler, M.D. Ziegler, J.P. Biersack: SRIM – The stopping and range of ions in matter (2010), Nucl. Instrum. Meth. Sect. B 268, 1818–1823 (2010)Google Scholar
  152. E. Villa, M. Schaffer, J.M. Plitzko, W. Baumeister: Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography, Curr. Opin. Struct. Biol. 23, 771–777 (2013)Google Scholar
  153. A. Rigort, J.M. Plitzko: Cryo-focused-ion-beam applications in structural biology, Arch. Biochem. Biophys. 581, 122–130 (2015)Google Scholar
  154. L.A. Giannuzzi, F.A. Stevie: A review of focused ion beam milling techniques for TEM specimen preparation, Micron 30, 197–204 (1999)Google Scholar
  155. N. Yao: Focused Ion Beam Systems: Basics and Applications (Cambridge Univ., Cambridge 2007) p. 408Google Scholar
  156. Y. Fujiyoshi, T. Mizusaki, K. Morikawa, H. Yamagishi, Y. Aoki, H. Kihara, Y. Harada: Development of a superfluid-helium stage for high-resolution electron-microscopy, Ultramicroscopy 38, 241–251 (1991)Google Scholar
  157. J. Berriman, N. Unwin: Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets, Ultramicroscopy 56, 241–252 (1994)Google Scholar
  158. P.M. Frederik, F. de Haas, M.M.H. Storms: Controlled vitrification. In: Handbook of Cryo-Preparation Methods for Electron Microscopy, ed. by A. Cavalier (CRC, Boca Raton 2009) pp. 69–100Google Scholar
  159. X. Feng, Z. Fu, S. Kaledhonkar, Y. Jia, B. Shah, A. Jin, Z. Liu, M. Sun, B. Chen, R.A. Grassucci, Y. Ren, H. Jiang, J. Frank, Q. Lin: A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM, Structure 25(e663), 663–670 (2017)Google Scholar
  160. Z. Lu, D. Barnard, T.R. Shaikh, X. Meng, C.A. Mannella, A. Yassin, R. Agrawal, T. Wagenknecht, T.M. Lu: Gas-assisted annular microsprayer for sample preparation for time-resolved cryo-electron microscopy, J. Micromech. Microeng. 24, 115001 (2014)Google Scholar
  161. T.R. Shaikh, D. Barnard, X. Meng, T. Wagenknecht: Implementation of a flash-photolysis system for time-resolved cryo-electron microscopy, J. Struct. Biol. 165, 184–189 (2009)Google Scholar
  162. M.A. Le Gros, G. McDermott, M. Uchida, C.G. Knoechel, C.A. Larabell: High-aperture cryogenic light microscopy, J. Microsc. 235, 1–8 (2009)Google Scholar
  163. P. Schellenberger, R. Kaufmann, C.A. Siebert, C. Hagen, H. Wodrich, K. Grunewald: High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers, Ultramicroscopy 143, 41–51 (2014)Google Scholar
  164. J. Lippincott-Schwartz, G.H. Patterson: Development and use of fluorescent protein markers in living cells, Science 300, 87–91 (2003)Google Scholar
  165. G.E. Sosinsky, B.N. Giepmans, T.J. Deerinck, G.M. Gaietta, M.H. Ellisman: Markers for correlated light and electron microscopy, Methods Cell Biol. 79, 575–591 (2007)Google Scholar
  166. C.P. Mercogliano, D.J. DeRosier: Gold nanocluster formation using metallothionein: mass spectrometry and electron microscopy, J. Mol. Biol. 355, 211–223 (2006)Google Scholar
  167. L.F. van Driel, J.A. Valentijn, K.M. Valentijn, R.I. Koning, A.J. Koster: Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells, Eur. J. Cell Biol. 88, 669–684 (2009)Google Scholar
  168. R. Carzaniga, M.C. Domart, E. Duke, L.M. Collinson: Correlative cryo-fluorescence and cryo-soft x-ray tomography of adherent cells at European synchrotrons, Methods Cell Biol. 124, 151–178 (2014)Google Scholar
  169. C.S. Lopez, C. Bouchet-Marquis, C.P. Arthur, J.L. Riesterer, G. Heiss, G. Thibault, L. Pullan, S. Kwon, J.W. Gray: A fully integrated, three-dimensional fluorescence to electron microscopy correlative workflow. In: Correlative Light and Electron Microscopy III, Vol. 140 (Academic, Cambridge 2017) pp. 149–164Google Scholar
  170. R.N. Bracewell: Strip integration in radio astronomy, Aust. J. Phys. 9, 198–217 (1956)Google Scholar
  171. J. Radon: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Math. Phys. Kl. 69, 262–277 (1917)Google Scholar
  172. S.R. Deans: The Radon Transform and Some of Its Applications (Wiley, New York 1983)Google Scholar
  173. R. Henderson, J.M. Baldwin, T.A. Ceska, F. Zemlin, E. Beckmann, K.H. Downing: Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J. Mol. Biol. 213, 899–929 (1990)Google Scholar
  174. M.F. Perutz, M.G. Rossmann, A.F. Cullis, H. Muirhead, G. Will, A.C.T. North: Structure of haemoglobin – 3-dimensional fourier synthesis at 5.5-\({\AA{}}\) resolution, obtained by x-ray analysis, Nature 185, 416–422 (1960)Google Scholar
  175. D.P. Barnard, J.N. Turner, J. Frank, B.F. Mcewen: A 360° single-axis tilt stage for the high-voltage electron-microscope, J. Microsc. 167, 39–48 (1992)Google Scholar
  176. A. Guesdon, S. Blestel, C. Kervrann, D. Chretien: Single versus dual-axis cryo-electron tomography of microtubules assembled in vitro: limits and perspectives, J. Struct. Biol. 181, 169–178 (2013)Google Scholar
  177. K.M. Davies, C. Anselmi, I. Wittig, J.D. Faraldo-Gomez, W. Kuhlbrandt: Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae, Proc. Natl. Acad. Sci. USA 109, 13602–13607 (2012)Google Scholar
  178. N.V. Dudkina, G.T. Oostergetel, D. Lewejohann, H.P. Braun, E.J. Boekema: Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography, BBA Bioenergetics 1797, 272–277 (2010)Google Scholar
  179. Y.N. He, G.J. Jensen, P.J. Bjorkman: Cryo-electron tomography of homophilic adhesion mediated by the neural cell adhesion molecule L1, Structure 17, 460–471 (2009)Google Scholar
  180. G.P. Henderson, L. Gan, G.J. Jensen: 3-D ultrastructure of O. tauri: Electron cryotomography of an entire eukaryotic cell, Plos One (2007), Scholar
  181. C.V. Iancu, H.J. Ding, D.M. Morris, D.P. Dias, A.D. Gonzales, A. Martino, G.J. Jensen: The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography, J. Molecular Biol. 372, 764–773 (2007)Google Scholar
  182. W.O. Saxton, W. Baumeister, M. Hahn: 3-dimensional reconstruction of imperfect two-dimensional crystals, Ultramicroscopy 13, 57–70 (1984)Google Scholar
  183. S. Nickell, F. Forster, A. Linaroudis, W.D. Net, F. Beck, R. Hegerl, W. Baumeister, J.M. Plitzko: TOM software toolbox: Acquisition and analysis for electron tomography, J. Struct. Biol. 149, 227–234 (2005)Google Scholar
  184. S.Q. Zheng, B. Keszthelyi, E. Branlund, J.M. Lyle, M.B. Braunfeld, J.W. Sedat, D.A. Agard: UCSF tomography: An integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction, J. Struct. Biol. 157, 138–147 (2007)Google Scholar
  185. R.M. Glaeser: Invited review article: Methods for imaging weak-phase objects in electron microscopy, Rev. Sci. Instrum. 84, 111101 (2013)Google Scholar
  186. K. Nagayama: Another 60 years in electron microscopy: Development of phase-plate electron microscopy and biological applications, J. Electron Microsc. 60, S43–S62 (2011)Google Scholar
  187. R. Danev, R.M. Glaeser, K. Nagayama: Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy, Ultramicroscopy 109, 312–325 (2009)Google Scholar
  188. M. Khoshouei, S. Pfeffer, W. Baumeister, F. Forster, R. Danev: Subtomogram analysis using the Volta phase plate, J. Struct. Biol. 197, 94–101 (2017)Google Scholar
  189. O. Schwartz, J.J. Axelrod, D.R. Tuthill, P. Haslinger, C. Ophus, R.M. Glaeser, H. Muller: Near-concentric Fabry-Perot cavity for continuous-wave laser control of electron waves, Opt. Express 25, 14453–14462 (2017)Google Scholar
  190. H. Muller, J. Jin, R. Danev, J. Spence, H. Padmore, R.M. Glaeser: Design of an electron microscope phase plate using a focused continuous-wave laser, New J. Phys. 12, 1–10 (2010)Google Scholar
  191. P. Mooney: Optimization of image collection for cellular electron microscopy, Methods Cell Biol. 79, 661–719 (2007)Google Scholar
  192. A.R. Faruqi, R. Henderson, G. McMullan: Progress and development of direct detectors for electron cryomicroscopy. In: Advances in Imaging and Electron Physics, Vol. 190, ed. by P.W. Hawkes (Academic Press, San Diego, London 2015) pp. 103–141Google Scholar
  193. A.F. Brilot, J.Z. Chen, A.C. Cheng, J.H. Pan, S.C. Harrison, C.S. Potter, B. Carragher, R. Henderson, N. Grigorieff: Beam-induced motion of vitrified specimen on holey carbon film, J. Struct. Biol. 177, 630–637 (2012)Google Scholar
  194. R.M. Glaeser: Specimen behavior in the electron beam, Methods Enzymol. 579, 19–50 (2016)Google Scholar
  195. Z.A. Ripstein, J.L. Rubinstein: Processing of cryo-EM movie data, Methods Enzymol. 579, 103–124 (2016)Google Scholar
  196. T. Grant, N. Grigorieff: Automatic estimation and correction of anisotropic magnification distortion in electron microscopes, J. Struct. Biol. 192, 204–208 (2015)Google Scholar
  197. M.G. Campbell, A.C. Cheng, A.F. Brilot, A. Moeller, D. Lyumkis, D. Veesler, J.H. Pan, S.C. Harrison, C.S. Potter, B. Carragher, N. Grigorieff: Movies of ice-embedded particles enhance resolution in electron cryo-microscopy, Structure 20, 1823–1828 (2012)Google Scholar
  198. F.K.M. Schur, M. Obr, W.J.H. Hagen, W. Wan, A.J. Jakobi, J.M. Kirkpatrick, C. Sachse, H.G. Krausslich, J.A.G. Briggs: An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation, Science 353, 506–508 (2016)Google Scholar
  199. T. Grant, N. Grigorieff: Measuring the optimal exposure for single particle cryo-EM using a 2.6 angstrom reconstruction of rotavirus VP6, eLife 4, 1–19 (2015)Google Scholar
  200. S. Pfeffer, F. Förster: Structural biology in situ using cryo-electron subtomogram analysis. In: Cellular Imaging: Electron Tomography and Related Techniques, ed. by E. Hanssen (Springer, Cham 2018) pp. 237–259Google Scholar
  201. Q.R. Xiong, M.K. Morphew, C.L. Schwartz, A.H. Hoenger, D.N. Mastronarde: CTF determination and correction for low dose tomographic tilt series, J. Struct. Biol. 168, 378–387 (2009)Google Scholar
  202. G. Zanetti, J.D. Riches, S.D. Fuller, J.A.G. Briggs: Contrast transfer function correction applied to cryo-electron tomography and sub-tomogram averaging, J. Struct. Biol. 168, 305–312 (2009)Google Scholar
  203. J.A. Mindell, N. Grigorieff: Accurate determination of local defocus and specimen tilt in electron microscopy, J. Struct. Biol. 142, 334–347 (2003)Google Scholar
  204. A. Rohou, N. Grigorieff: CTFFIND4: Fast and accurate defocus estimation from electron micrographs, J. Struct. Biol. 192, 216–221 (2015)Google Scholar
  205. F.K. Schur, W.J. Hagen, A. de Marco, J.A. Briggs: Determination of protein structure at 8.5A resolution using cryo-electron tomography and sub-tomogram averaging, J. Struct. Biol. 184, 394–400 (2013)Google Scholar
  206. M. Eibauer, C. Hoffmann, J.M. Plitzko, W. Baumeister, S. Nickell, H. Engelhardt: Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography, J. Struct. Biol. 180, 488–496 (2012)Google Scholar
  207. R. Danev, W. Baumeister: Cryo-EM single particle analysis with the Volta phase plate, eLife 5, 1–14 (2016)Google Scholar
  208. L.M. Voortman, E.M. Franken, L.J. van Vliet, B. Rieger: Fast, spatially varying CTF correction in TEM, Ultramicroscopy 118, 26–34 (2012)Google Scholar
  209. L.M. Voortman, S. Stallinga, R.H.M. Schoenmakers, L.J. van Vliet, B. Rieger: A fast algorithm for computing and correcting the CTF for tilted, thick specimens in TEM, Ultramicroscopy 111, 1029–1036 (2011)Google Scholar
  210. B. Turonova, F.K.M. Schur, W. Wan, J.A.G. Briggs: Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 angstrom, J. Struct. Biol. 199, 187–195 (2017)Google Scholar
  211. Y.X. Chen, F. Forster: Iterative reconstruction of cryo-electron tomograms using nonuniform fast Fourier transforms, J. Struct. Biol. 185, 309–316 (2014)Google Scholar
  212. L. Zhang, G. Ren: IPET and FETR: Experimental approach for studying molecular structure dynamics by cryo-electron tomography of a single-molecule structure, PloS One 7, 1–19 (2012)Google Scholar
  213. T.A.M. Bharat, C.J. Russo, J. Lowe, L.A. Passmore, S.H.W. Scheres: Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging, Structure 23, 1743–1753 (2015)Google Scholar
  214. T.A.M. Bharat, S.H.W. Scheres: Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION, Nat. Protoc. 11, 9–20 (2016)Google Scholar
  215. B. Turonova, L. Marsalek, T. Davidovic, P. Slusallek: Progressive stochastic reconstruction technique (PSRT) for cryo electron tomography (vol 189, p. 195, 2015), J. Struct. Biol. 190, 383–383 (2015)Google Scholar
  216. B. Turonova, L. Marsalek, P. Slusallek: On geometric artifacts in cryo electron tomography, Ultramicroscopy 163, 48–61 (2016)Google Scholar
  217. F. Amat, D. Castano-Diez, A. Lawrence, F. Moussavi, H. Winkler, M. Horowitz: Alignment of cryo-electron tomography datasets, Methods Enzymol. 482, 343–367 (2010)Google Scholar
  218. P. Penczek, M. Marko, K. Buttle, J. Frank: Double-tilt electron tomography, Ultramicroscopy 60, 393–410 (1995)Google Scholar
  219. D.C. Diez, A. Seybert, A.S. Frangakis: Tilt-series and electron microscope alignment for the correction of the non-perpendicularity of beam and tilt-axis, J. Struct. Biol. 154, 195–205 (2006)Google Scholar
  220. R. Han, L. Wang, Z. Liu, F. Sun, F. Zhang: A novel fully automatic scheme for fiducial marker-based alignment in electron tomography, J. Struct. Biol. 192, 403–417 (2015)Google Scholar
  221. M. Gruska, O. Medalia, W. Baumeister, A. Leis: Electron tomography of vitreous sections from cultured mammalian cells, J. Struct. Biol. 161, 384–392 (2008)Google Scholar
  222. S. Masich, T. Ostberg, L. Norlen, O. Shupliakov, B. Daneholt: A procedure to deposit fiducial markers on vitreous cryo-sections for cellular tomography, J. Struct. Biol. 156, 461–468 (2006)Google Scholar
  223. H. Winkler, K.A. Taylor: Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography, Ultramicroscopy 106, 240–254 (2006)Google Scholar
  224. D. Castano-Diez, A. Al-Amoudi, A.M. Glynn, A. Seybert, A.S. Frangakis: Fiducial-less alignment of cryo-sections, J. Struct. Biol. 159, 413–423 (2007)Google Scholar
  225. D. Castano-Diez, M. Scheffer, A. Al-Amoudi, A.S. Frangakis: Alignator: A GPU powered software package for robust fiducial-less alignment of cryo tilt-series, J. Struct. Biol. 170, 117–126 (2010)Google Scholar
  226. S.S. Brandt: Markerless alignment in electron tomography. In: Electron Tomography, ed. by J. Frank (Springer, New York 2006) pp. 187–215Google Scholar
  227. P.A. Penczek: Fundamentals of three-dimensional reconstruction from projections, Methods Enzymol. 482, 1–33 (2010)Google Scholar
  228. B.J. Heymann: Tomographic reconstruction from electron micrographs. In: Cellular Imaging: Electron Tomography and Related Techniques, ed. by E. Hanssen (Springer, Cham 2018) pp. 209–236Google Scholar
  229. W. Hoppe, R. Hegerl: Three-dimensional structure determination by electron microscopy (nonperiodic specimens). In: Computer Processing of Electron Microscopic Images, ed. by P.W. Hawkes (Springer, Berlin 1980) pp. 127–185Google Scholar
  230. R.A. Crowther, D.J. Derosier, A. Klug: Reconstruction of 3 dimensional structure from projections and its application to electron microscopy, Proc. R. Soc. Lond. A 317, 319 (1970)Google Scholar
  231. P.R. Smith, T.M. Peters, R.H.T. Bates: Image reconstruction from finite numbers of projections, J. Phys. A 6, 361 (1973)Google Scholar
  232. N. Grigorieff: Three-dimensional structure of bovine NADH: Ubiquinone oxidoreductase (Complex I) at 22 angstrom in ice, J. Molec. Biol. 277, 1033–1046 (1998)Google Scholar
  233. P.A. Penczek, R. Renka, H. Schomberg: Gridding-based direct Fourier inversion of the three-dimensional ray transform, J. Opt. Soc. Am. A 21, 499–509 (2004)Google Scholar
  234. W. Zhang, M. Kimmel, C.M. Spahn, P.A. Penczek: Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis, Structure 16, 1770–1776 (2008)Google Scholar
  235. M. Radermacher: Weighted back-projeciton methods. In: Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope, ed. by J. Frank (Plenum Press, New York 1992) pp. 91–115Google Scholar
  236. C.O.S. Sorzano, R. Marabini, A. Pascual-Montano, S.H.W. Scheres, J.M. Carazo: Optimization problems in electron microscopy of single particles, Ann. Oper. Res. 148, 133–165 (2006)Google Scholar
  237. R. Marabini, G.T. Herman, J.M. Carazo: 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs), Ultramicroscopy 72, 53–65 (1998)Google Scholar
  238. R. Gordon, R. Bender, G.T. Herman: Algebraic reconstruction techniques (Art) for 3-dimensional electron microscopy and x-ray photography, J. Theor. Biol. 29, 471 (1970)Google Scholar
  239. P. Penczek, M. Radermacher, J. Frank: 3-dimensional reconstruction of single particles embedded in ice, Ultramicroscopy 40, 33–53 (1992)Google Scholar
  240. R.A. Crowther, A. Klug: Art and science or conditions for 3-dimensional reconstruction from electron microscope images, J. Theor. Biol. 32, 199 (1971)Google Scholar
  241. J. Frank: Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, 2nd edn. (Springer, New York 2006)Google Scholar
  242. R. Gordon, G.T. Herman: Reconstruction of pictures from their projections, Communications ACM 14, 759 (1971)Google Scholar
  243. J.W. Miao, F. Forster, O. Levi: Equally sloped tomography with oversampling reconstruction, Phys. Rev. B 72, 1–4 (2005)Google Scholar
  244. G. Harauz, M. van Heel: Exact filters for general geometry three dimensional reconstruction, Optik 73, 146–156 (1986)Google Scholar
  245. M. Kunz, A.S. Frangakis: Super-sampling SART with ordered subsets, J. Struct. Biol. 188, 107–115 (2014)Google Scholar
  246. Y.S. Bykov, M. Schaffer, S.O. Dodonova, S. Albert, J.M. Plitzko, W. Baumeister, B.D. Engel, J.A.G. Briggs: The structure of the COPI coat determined within the cell, eLife 6, e32493 (2017)Google Scholar
  247. A. Rigort, D. Gunther, R. Hegerl, D. Baum, B. Weber, S. Prohaska, O. Medalia, W. Baumeister, H.C. Hege: Automated segmentation of electron tomograms for a quantitative description of actin filament networks, J. Struct. Biol. 177, 135–144 (2012)Google Scholar
  248. N. Volkmann: Methods for segmentation and interpretation of electron tomographic reconstructions. In: Methods in Enzymology, Cryo-EM, Part C: Analyses, Interpretation, and Case Studies, Vol. 483 (2010) pp. 31–46Google Scholar
  249. A.S. Frangakis, F. Forster: Computational exploration of structural information from cryo-electron tomograms, Curr. Opin. Struct. Biol. 14, 325–331 (2004)Google Scholar
  250. A.S. Frangakis, R. Hegerl: Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion, J. Struct. Biol. 135, 239–250 (2001)Google Scholar
  251. A.S. Frangakis, A. Stoschek, R. Hegerl: Wavelet transform filtering and nonlinear anisotropic diffusion assessed for signal reconstruction performance on multidimensional biomedical data, IEEE Trans. Biomed. Eng. 48, 213–222 (2001)Google Scholar
  252. J.J. Fernandez, S. Li: An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms, J. Struct. Biol. 144, 152–161 (2003)Google Scholar
  253. A. Buades, B. Coll, J.M. Morel: Image denoising by non-local averaging. In: 2005 IEEE Int. Conf. Acoust. Speech Signal Process, Vol. 1-5 (2005) pp. 25–28Google Scholar
  254. M. Jasnin, S. Asano, E. Gouin, R. Hegerl, J.M. Plitzko, E. Villa, P. Cossart, W. Baumeister: Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails, Proc. Natl. Acad. Sci. USA 110, 20521–20526 (2013)Google Scholar
  255. A. Martinez-Sanchez, I. Garcia, J.J. Fernandez: A ridge-based framework for segmentation of 3D electron microscopy datasets, J. Struct. Biol. 181, 61–70 (2013)Google Scholar
  256. K. Sandberg: Methods for image segmentation in cellular tomography, Methods Cell Biol. 79, 769–798 (2007)Google Scholar
  257. N. Volkmann: Segmentation of features in electron tomographic reconstructions. In: Cellular Imaging: Electron Tomography and Related Techniques, ed. by E. Hanssen (Springer, Cham 2018) pp. 301–318Google Scholar
  258. J.J. Fernandez: Computational methods for electron tomography, Micron 43, 1010–1030 (2012)Google Scholar
  259. H.J. Ding, C.M. Oikonomou, G.J. Jensen: The Caltech Tomography Database and automatic processing pipeline, J. Struct. Biol. 192, 279–286 (2015)Google Scholar
  260. H. Nguyen, Q. Ji: Shape-driven three-dimensional watersnake segmentation of biological membranes in electron tomography, IEEE Trans. Med. Imaging 27, 616–628 (2008)Google Scholar
  261. F. Moussavi, G. Heitz, F. Amat, L.R. Comolli, D. Koller, M. Horowitz: 3D segmentation of cell boundaries from whole cell cryogenic electron tomography volumes, J. Struct. Biol. 170, 134–145 (2010)Google Scholar
  262. A. Martinez-Sanchez, I. Garcia, J.J. Fernandez: A differential structure approach to membrane segmentation in electron tomography, J. Struct. Biol. 175, 372–383 (2011)Google Scholar
  263. A. Martinez-Sanchez, I. Garcia, S. Asano, V. Lucic, J.J. Fernandez: Robust membrane detection based on tensor voting for electron tomography, J. Struct. Biol. 186, 49–61 (2014)Google Scholar
  264. C. Page, D. Hanein, N. Volkmann: Accurate membrane tracing in three-dimensional reconstructions from electron cryotomography data, Ultramicroscopy 155, 20–26 (2015)Google Scholar
  265. S.F. Tasel, E.U. Mumcuoglu, R.Z. Hassanpour, G. Perkins: A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria, J. Struct. Biol. 194, 253–271 (2016)Google Scholar
  266. M. Rusu, Z. Starosolski, M. Wahle, A. Rigort, W. Wriggers: Automated tracing of filaments in 3D electron tomography reconstructions using Sculptor and Situs, J. Struct. Biol. 178, 121–128 (2012)Google Scholar
  267. V. Lučić, R. Fernández-Busnadiego, U. Laugks, W. Baumeister: Hierarchical detection and analysis of macromolecular complexes in cryo-electron tomograms using Pyto software, J. Struct. Biol. 196, 503–514 (2016)Google Scholar
  268. M. Beck, J.A. Malmstrom, V. Lange, A. Schmidt, E.W. Deutsch, R. Aebersold: Visual proteomics of the human pathogen Leptospira interrogans, Nat. Methods 6, 817–855 (2009)Google Scholar
  269. M. Beck, M. Topf, Z. Frazier, H. Tjong, M. Xu, S.H. Zhang, F. Alber: Exploring the spatial and temporal organization of a cell's proteome, J. Struct. Biol. 173, 483–496 (2011)Google Scholar
  270. A.S. Frangakis, J. Bohm, F. Forster, S. Nickell, D. Nicastro, D. Typke, R. Hegerl, W. Baumeister: Identification of macromolecular complexes in cryoelectron tomograms of phantom cells, Proc. Natl. Acad. Sci. USA 99, 14153–14158 (2002)Google Scholar
  271. S. Pruggnaller, M. Mayr, A.S. Frangakis: A visualization and segmentation toolbox for electron microscopy, J. Struct. Biol. 164, 161–165 (2008)Google Scholar
  272. D.J. Zhu, S.T. Moore, T. Raphan: Robust and real-time torsional eye position calculation using a template-matching technique, Comput. Meth. Prog. Biomed. 74, 201–209 (2004)Google Scholar
  273. Y.X. Chen, T. Hrabe, S. Pfeffer, O. Pauly, D. Mateus, N. Navab, F. Forster: Detection and Identification of macromolecular complexes in cryo-electron tomograms using support vector machines. In: 9th IEEE International Symposium on Biomedical Imaging (2012) pp. 1373–1376Google Scholar
  274. S. Pfeffer, M.W. Woellhaf, J.M. Herrmann, F. Forster: Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography, Nat. Commun. 6, 6019 (2015)Google Scholar
  275. R. Fernandez-Busnadiego, S. Asano, A.M. Oprisoreanu, E. Sakata, M. Doengi, Z. Kochovski, M. Zumer, V. Stein, S. Schoch, W. Baumeister, V. Lucic: Cryo-electron tomography reveals a critical role of RIM1 alpha in synaptic vesicle tethering, J. Cell Biol. 201, 725–740 (2013)Google Scholar
  276. Y.X. Chen, S. Pfeffer, T. Hrabe, J.M. Schuller, F. Forster: Fast and accurate reference-free alignment of subtomograms, J. Struct. Biol. 182, 235–245 (2013)Google Scholar
  277. M. Xu, M. Beck, F. Alber: High-throughput subtomogram alignment and classification by Fourier space constrained fast volumetric matching, J. Struct. Biol. 178, 152–164 (2012)Google Scholar
  278. A. Bartesaghi, P. Sprechmann, J. Liu, G. Randall, G. Sapiro, S. Subramaniam: Classification and 3D averaging with missing wedge correction in biological electron tomography, J. Struct. Biol. 162, 436–450 (2008)Google Scholar
  279. S.H.W. Scheres: RELION: Implementation of a Bayesian approach to cryo-EM structure determination, J. Struct. Biol. 180, 519–530 (2012)Google Scholar
  280. N. Grigorieff: Resolution measurement in structures derived from single particles, Acta Crystallogr. Sect. D Biol. Crystallogr. 56, 1270–1277 (2000)Google Scholar
  281. Y.X. Chen, S. Pfeffer, J.J. Fernández, C.O.S. Sorzano, F. Forster: Autofocused 3D classification of cryoelectron subtomograms, Structure 22, 1528–1537 (2014)Google Scholar
  282. M. Stolken, F. Beck, T. Haller, R. Hegerl, I. Gutsche, J.M. Carazo, W. Baumeister, S.H. Scheres, S. Nickell: Maximum likelihood based classification of electron tomographic data, J. Struct. Biol. 173, 77–85 (2011)Google Scholar
  283. P. Unverdorben, F. Beck, P. Sledz, A. Schweitzer, G. Pfeifer, J.M. Plitzko, W. Baumeister, F. Forster: Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome, Proc. Natl. Acad. Sci. USA 111, 5544–5549 (2014)Google Scholar
  284. S. Mosalaganti, J. Kosinski, S. Albert, M. Schaffer, D. Strenkert, P.A. Salome, S.S. Merchant, J.M. Plitzko, W. Baumeister, B.D. Engel, M. Beck: In situ architecture of the algal nuclear pore complex, Nat. Commun. 9, 2361 (2018)Google Scholar
  285. Y.S. Bykov, M. Schaffer, S.O. Dodonova, S. Albert, J.M. Plitzko, W. Baumeister, B.D. Engel, J.A. Briggs: The structure of the COPI coat determined within the cell, Mol. Biol. Cell 27, E65 (2016)Google Scholar
  286. R. Faoro, M. Bassu, Y.X. Mejia, T. Stephan, N. Dudani, C. Boeker, S. Jakobs, T.P. Burg: Aberration-corrected cryoimmersion light microscopy, Proc. Natl. Acad. Sci. USA 115, 1204–1209 (2018)Google Scholar
  287. T.L. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly, A. Gholinia, M.G. Burke, P.J. Withers: Large volume serial section tomography by Xe Plasma FIB dual beam microscopy, Ultramicroscopy 161, 119–129 (2016)Google Scholar
  288. J.P. Rickgauer, N. Grigorieff, W. Denk: Single-protein detection in crowded molecular environments in cryo-EM images, eLife 6, e25648 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany

Personalised recommendations