Microscopy in Forensic Sciences

Part of the Springer Handbooks book series (SHB)


This chapter examines the use of electron microscopy, atomic force microscopy and other analytical techniques in forensic investigation and research. These tools can be used to enhance examination of human remains and trace evidence to improve understanding of cause of death, victim identification, or postmortem interval.

A police-designed scenario is used to highlight trace evidence such as glass, gunshot residue, and paint. The validity of forensic techniques is discussed, with reference to international standards, repeatability, and false convictions. Ballistic evidence is used to highlight the complexities in evidence interpretation, including manufacturing variability, environmental effects, and likelihood ratios.

The use of scanning electron microscopy (), atomic force microscopy (), and other techniques in the development of forensic research is showcased, with particular examples from the field of fingerprint analysis. Examples include improvements in the development of fingermarks from difficult surfaces, the interaction of evidence types, and added intelligence from the crime scene, such as forensic timeline or gender of perpetrator.



Thanks to Mrs Isobel Stewart MRSC CChem for helpful comments and to Insp. Dennis Gentles (Retd.) for setting the crime scene.


  1. M. Pieri, A.L. Maldonado, M.M. Ros, F. Massoni, S. Ricci, G. Vacchiano: Post-mortem morphological alterations of human peripheral nerve, Aust. J. Forensic Sci. (2017), Scholar
  2. S. Sanit, K. Sukontason, H. Kurahashi, J.K. Tomberlin, A. Wannasan, R. Kraisittipanit, K.L. Sukontason: Morphology of immature stages of blow fly, Lucilia sinensis Aubertin (Diptera: Calliphoridae), a potential species of forensic importance, Acta Tropica 176, 395–401 (2017)Google Scholar
  3. N. Sontigun, S. Sanit, A. Wannasan, K. Sukontason, J. Amendt, T. Yasanga, K.L. Sukontason: Ultrastructure of male genitalia of blow flies (Diptera: Calliphoridae) of forensic importance, Acta Tropica 179, 61–80 (2018)Google Scholar
  4. W. Li, L. Zhang, Y. Liang, F. Tong, Y. Zhou: Sudden death due to malignant hyperthermia with a mutation of RYR1: Autopsy, morphology and genetic analysis, Forensic Sci. Med. Pathol. 13(4), 444–449 (2017)Google Scholar
  5. S.D. Visonà, Y. Chen, P. Bernardi, L. Andrello, A. Osculati: Diagnosis of electrocution: The application of scanning electron microscope and energy-dispersive x-ray spectroscopy in five cases, Forensic Sci. Int. 284, 107–116 (2018)Google Scholar
  6. H. Kinoshita, M. Nishiguchi, H. Ouchi, T. Minami, A. Kubota, T. Utsumi, N. Sakamoto, N. Kashiwagi, K. Shinomiya, H. Tsuboi, S. Hishida: The application of a variable-pressure scanning electron microscope with energy dispersive X-ray microanalyser to the diagnosis of electrocution: A case report, Leg. Med. 6(1), 55–60 (2004)Google Scholar
  7. D.G. Norman, D.G. Watson, B. Burnett, P.M. Fenne, M.A. Williams: The cutting edge – Micro-CT for quantitative toolmark analysis of sharp force trauma to bone, Forensic Sci. Int. 283, 156–172 (2018)Google Scholar
  8. N. MacPhee, A. Savage, N. Noton, E. Beattie, L. Milne, J. Fraser: A comparison of penetration and damage caused by different types of arrowheads on loose and tight fit clothing, Sci. Justice 58, 109–120 (2018)Google Scholar
  9. R. Montoriol, C. Guilbeau-Frugier, E. Chantalat, M. Roumiguié, M.-B. Delisle, B. Payré, N. Telmon, F. Savall: Detection of glass particles on bone lesions using SEM-EDS, Int. J. Leg. Med. 131(5), 1347–1354 (2017)Google Scholar
  10. E.J. Vermeij, P.D. Zoon, S.B.C.G. Chang, I. Keereweer, R. Pieterman, R.R.R. Gerretsen: Analysis of microtraces in invasive traumas using SEM/EDS, Forensic Sci. Int. 214(1-3), 96–104 (2012)Google Scholar
  11. J. Zhao, C. Liu, A.S.A. Bardeesi, Y. Wu, Y. Ma, S. Hu, H. Shi, J. Cheng: The diagnostic value of quantitative assessment of diatom test for drowning: An analysis of 128 water-related death cases using microwave digestion-vacuum filtration-automated scanning electron microscopy, J. Forensic Sci. 62(6), 1638–1642 (2017)Google Scholar
  12. G.M. Wolten, R.S. Nesbitt, A.R. Calloway, G.L. Loper, P.F. Jones: Final Report on Particle Analysis for Gunshot Residue Detection, Aerospace Report No. ATR-77(7915)-3 (US Department of Justice, Washington 1977)Google Scholar
  13. Z. Brozek-Mucha: Distribution and properties of gunshot residue originating from a Luger 9 mm ammunition in the vicinity of the shooting gun, Forensic Sci. Int. 183, 33–44 (2009)Google Scholar
  14. L.M. Macdonald, B.K. Singh, N. Thomas, M.J. Brewer, C.D. Campbell, L.A. Dawson: Microbial DNA profiling by multiplex terminal restriction fragment length polymorphism for forensic comparison of soil and the influence of sample condition, J. Appl. Microbiol. 105, 813–821 (2008)Google Scholar
  15. D.I. Konopinski, S. Hudziak, R.M. Morgan, P.A. Bull, A.J. Kenyon: Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis, Forensic Sci. Int. 223(1-3), 245–255 (2012)Google Scholar
  16. A. Butterworth, B. German, D. Morgans, A. Scaplehorn: Report on an Investigation into the Trace Elements Present in vehicle Headlamp and auxillary lamp glasses, J. Forensic Sci. Soc. 14, 41–45 (1974)Google Scholar
  17. A.M. Arouca, M.A.M. Lucena, R.J. Rossiter, M. Talhavini, I.T. Weber: Use of luminescent gunshot residues markers in forensic context–Part II, Forensic Sci. Int. 281, 161–170 (2017)Google Scholar
  18. Z. Brożek-Mucha: Trends in analysis of gunshot residue for forensic purposes, Analytical and bioanalytical chemistry 409(25), 5803–5811 (2017)Google Scholar
  19. L. Geddes: Forensic evidence goes on trial, New Sci 201, 2697 (2009)Google Scholar
  20. R. v. Barry George [2007] EWCA Crim 2722Google Scholar
  21. The Innocence Project: Keith Allen Harward,
  22. Michigan Law: National Registry of Exonerations,
  23. H.T. Edwards: First public meeting of the National Commission of Forensic Science, (2014)
  24. US Department of Commerce: National Commission on Forensic Science: Reflecting back, Looking toward the future, (2017)
  25. A. Rennison: Does quality matter? Lund Lecture of the British Academy of Forensic Sciences (2010)Google Scholar
  26. B.J. Jones: Nano Fingerprints: Gathering Intelligence, Mater. Today 14, 567 (2011)Google Scholar
  27. R.P. Downham, V.G. Sears, L. Hussey, C. Boon-Seang, B.J. Jones: Fingermark visualisation with iron oxide powder suspension: The variable effectiveness of iron (II/III) oxide powders, and Tween 20 as an alternative to Triton X-100, Forensic Sci. Int. 292, 190–203 (2018)Google Scholar
  28. F. Li, S. Liu, R. Qi, H. Li, T. Cui: Effective visualization of latent fingerprints with red fluorescent La2(MoO4)3:Eu3+ microcrystals, J. Alloys Compd. 727, 919–924 (2017)Google Scholar
  29. E. Locard: Enquête Criminelle et les Méthodes Scientifiques (Ernest Flammarion, Paris 1920)Google Scholar
  30. A. Martiny, A.P. Campos, M.S. Sader, A.L. Pinto: SEM/EDS analysis and characterization of gunshot residues from Brazilian lead-free ammunition, Forensic Sci. Int. 177, e9–e17 (2008)Google Scholar
  31. T. Jalanti, P. Henchoz, A. Galluser, M.S. Bonafanti: The persistence of gunshot residue on shooters' hands, Sci. Justice 39, 48–52 (1999)Google Scholar
  32. M. Neri, E. Turillazzi, I. Riezzo, V. Fineschi: The determination of firing distance applying a microscopic quantitative method and confocal laser scanning microscopy for detection of gunshot residue particles, Int. J. Leg. Med. 121(4), 287–292 (2007)Google Scholar
  33. J.W. Kilty: Activity after shooting and its effect on the retention of primer GSR, J. Forensic Sci. 20(2), 219–230 (1975)Google Scholar
  34. E. Lindsay, M.J. McVicar, R.V. Gerard, E.D. Randall, J. Pearson: Passive exposure and persistence of gunshot residue (GSR) on bystanders to a shooting: Comparison of shooter and bystander exposure to GSR, Can. Soc. Forensic Sci. J. 44(3), 89–96 (2011)Google Scholar
  35. D.K. Molina, M. Martinez, J. Garcia, V. DiMaio: Gunshot residue testing in suicides: Part I: Analysis by scanning electron microscopy with energy-dispersive x-ray, Am. J. Forensic Med. Pathol. 28, 187–190 (2007)Google Scholar
  36. J. Bueno, V. Sikirzhytski, I.K. Lednev: Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: Potential for ammunition determination, Anal. Chem. 85(15), 7287–7294 (2013)Google Scholar
  37. Y. Mou, J. Lakadwar, J.W. Rabalais: Evaluation of shooting distance by AFM and FTIR/ATR analysis of GSR, J. Forensic Sci. 53, 1381–1386 (2008)Google Scholar
  38. B.J. Jones: “Commentary on evaluation of shooting distance by AFM and FTIR/ATR analysis of GSR Mou Y., Lakadwar J., Rabalais J.W., J. Forensic Sci. 53, 1381-6 (2008)”, J. Forensic Sci. 54, 502 (2009)Google Scholar
  39. A. Joly, A. Smargiassi, T. Kosatsky, M. Fournier, E. Dabek-Zlotorzynska, V. Celo, D. Mathieu, R. Servranckx, R. D'amours, A. Malo, J. Brook: Characterisation of particulate exposure during fireworks displays, Atmos. Environ. 44(34), 4325–4329 (2010)Google Scholar
  40. G. Jackson, C. Aitken, P. Roberts: Case Assessment and Interpretation of Expert (Evidence Royal Statistical Society, London 2013)Google Scholar
  41. A. Berendes, D. Neimke, R. Schumacher, M. Barth: A Versatile Technique for the Investigation of Gunshot Residue Patterns on Fabrics and Other Surfaces: m-XRF, J. Forensic Sci. 51, 1085–1090 (2006)Google Scholar
  42. Z. Huda, K.W. Shi, R. Bulpett: Failure analysis of a steel motorcycle kickstand, J. Fail. Anal. Prev. 9, 305–309 (2009)Google Scholar
  43. B.J. Jones: University Challenge: The opportunities for collaboration between industry and academia are now too big to ignore, Eng. Technol. 5(9), 55–57 (2010)Google Scholar
  44. K. Bari, A. Rolfe, A. Christofi, C. Mazzuca, K.V. Sudhakar: Forensic investigation of a failed connecting rod from a motorcycle engine, Case Stud. Eng. Fail. Anal. 9, 9–16 (2017)Google Scholar
  45. S.P. Gurden, V.F. Monteiro, E. Longo, M.M.C. Ferreira: Quantitative analysis and classification of AFM images of human hair, J. Microsc. 215, 13–23 (2004)Google Scholar
  46. C. Wald: Forensic science: the soil sleuth, Nature 520, 422–424 (2015)Google Scholar
  47. G.E. Garner, C.R. Fontan, D.W. Hobson: Visualization of fingerprints in the scanning electron microscope, J. Forensic Sci. Soc. 15, 281–288 (1975)Google Scholar
  48. T. Kent: Water content of latent fingerprints-dispelling the myth, Forensic Sci. Int. 266, 134–138 (2016)Google Scholar
  49. S. Cadd, M. Islam, P. Manson, S. Bleay: Fingerprint composition and aging: A literature review, Sci. Justice 55(4), 219–238 (2015)Google Scholar
  50. B.J. Jones, A.J. Reynolds, M. Richardson, V.G. Sears: Nano-scale composition of commercial white powders for development of latent fingerprints on adhesives, Sci. Justice 50, 150–155 (2010)Google Scholar
  51. N.J. Bright, T.R. Willson, D.J. Driscoll, S.M. Reddy, R.P. Webb, S. Bleay, N.I. Ward, K.J. Kirkby, M.J. Bailey: Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions, Forensic Sci. Int. 230, 81–86 (2013)Google Scholar
  52. B.J. Jones, R. Downham, V.G. Sears: Nanoscale analysis of the interaction between cyanoacrylate and vacuum metal deposition in the development of latent fingerprints on LDPE, J. Forensic Sci. 57, 196–200 (2012)Google Scholar
  53. H.L. Bandey (Ed.): Fingermark Visualisation Manual (Home Office, London 2014)Google Scholar
  54. B.J. Jones, R. Downham, V.G. Sears: Effect of substrate surface topography on forensic development of latent fingerprints with iron oxide powder suspension, Surf. Interface Anal. 42, 438–442 (2010)Google Scholar
  55. C. Au, H. Jackson-Smith, I. Quinones, B.J. Jones, B. Daniel: Wet powder suspensions as an additional technique for the enhancement of bloodied marks, Forensic Sci. Int. 204, 13–18 (2011)Google Scholar
  56. S.R. Bacon, J.J. Ojeda, R. Downham, V.G. Sears, B.J. Jones: The effects of polymer pigmentation on fingermark development techniques, J. Forensic Sci. 58, 1486–1494 (2013)Google Scholar
  57. O.P. Jasuja, G.D. Singh, G.S. Sodhi: Small particle reagents: Development of fluorescent variant, Sci. Justice 48, 141–145 (2008)Google Scholar
  58. G.S. Sodhi, J. Kaur: Unconventional reagents for detecting latent fingerprints: A review, J. Forensic Med. Toxicol. 19, 18–20 (2002)Google Scholar
  59. P.K. Shahi, P. Singh, A.K. Singh, S.K. Singh, S.B. Rai, R. Prakash: A strategy to achieve efficient dual-mode luminescence in lanthanide-based magnetic hybrid nanostructure and its demonstration for the detection of latent fingerprints, J. Colloid Interface Sci. 491, 199–206 (2017)Google Scholar
  60. M. Wang, Y. Zhu, C. Mao: Synthesis of NIR-responsive NaYF4:Yb,Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates, Langmuir 31, 7084–7090 (2015)Google Scholar
  61. H. McMorris, K.R. Sturrock, D. Gentles, B.J. Jones, K.J. Farrugia: Environmental effects on magnetic fluorescent powder development of fingermarks on bird of prey feathers, Sci. Justice 59, 117–124 (2019)Google Scholar
  62. K.J. Farrugia, J. Fraser, L. Friel, D. Adams, N. Attard-Montalto, P. Deacon: A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks, Forensic Sci. Int. 257, 54–70 (2015)Google Scholar
  63. R. Lam, D. Wilkinson, T. Tse, B. Pynn: Recommended protocols for fingerprint detection on Canadian polymer banknotes – Part I: Chemical development, J. Forensic Identif. 64(4), 375–401 (2014)Google Scholar
  64. R.M. Sapstead, N. Corden, A.R. Hillman: Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3,4-ethylenedioxythiophene on stainless steel, Electrochem. Acta 162, 119–128 (2015)Google Scholar
  65. J.W. Cammidge, K.T. Popov, J.O'Hara, K. Farrugia, B.J.Jones: Development of latent fingerprints on Scottish polymer banknotes, Sci. Justice (2018) submittedGoogle Scholar
  66. A.J. Goddard, A.R. Hillman, J.W. Bond: High resolution imaging of latent fingerprints by localized corrosion on brass surfaces, J. Forensic Sci. 55, 58–65 (2009)Google Scholar
  67. S. Kasas, A. Khanmy-Vital, G. Dietler: Examination of line crossings by atomic force microscopy, Forensic Sci. Int. 119, 290–298 (2001)Google Scholar
  68. G.S. Watson, J.A. Watson: Potential applications of scanning probe microscopy in forensic science, J. Phys.: Conf. Ser. 61, 1251 (2007)Google Scholar
  69. N. Attard Montalto, J.J. Ojeda, B.J. Jones: Determining the order of deposition of natural latent fingerprints and laser printed ink using chemical mapping with secondary ion mass spectrometry, Sci. Justice 53, 2–7 (2013)Google Scholar
  70. N. Attard Montalto, J.J. Ojeda, A. Reynolds, L. Doodkorte, M. de Puit, M. Ismail, M. Bailey, B.J. Jones: Determining the of the order of deposition of natural fingermarks and ink on paper using secondary ion mass spectrometry, Analyst 139, 4641–4653 (2014)Google Scholar
  71. N.J. Bright, R.P. Webb, S. Bleay, S. Hinder, N.I. Ward, J.F. Watts, K.J. Kirkby, M.J. Bailey: Determination of the deposition order of overlapping latent fingerprints and inks using secondary ion mass spectrometry, Anal. Chem. 84(9), 4083–4087 (2012)Google Scholar
  72. K.T. Popov, V.G. Sears, B.J. Jones: Migration of latent fingermarks on non-porous surfaces: Observation technique and nanoscale variations, Forensic Sci. Int. 275, 44–56 (2017)Google Scholar
  73. S. Francese, R. Bradshaw, L.S. Ferguson, R. Wolstenholme, M.R. Clench, S. Bleay: Beyond the ridge pattern: Multi-informative analysis of latent fingermarks by MALDI mass spectrometry, Analyst 138, 4215–4228 (2013)Google Scholar
  74. M.J. Bailey, N.J. Bright, R.S. Croxton, S. Francese, L.S. Ferguson, S. Hinder, S. Jickells, B.J. Jones, B.N. Jones, S.G. Kazarian, J.J. Ojeda, R.P. Webb, R. Wolstenholme, S. Bleay: Chemical characterization of latent fingerprints by matrix-assisted laser desorption ionization, time-of-flight secondary ion mass spectrometry, mega electron volt secondary mass spectrometry, gas chromatography/mass spectrometry, x-ray photoelectron spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopic imaging: An intercomparison, Anal. Chem. 84, 8514–8523 (2012)Google Scholar
  75. M.J. West, M.J. Went: The spectroscopic detection of drugs of abuse in fingerprints after development with powders and recovery with adhesive lifter, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 71, 1984–1988 (2009)Google Scholar
  76. S. Francese, R. Bradshaw, N. Denison: An update on MALDI mass spectrometry based technology for the analysis of fingermarks-stepping into operational deployment, Analyst 142(14), 2518–2546 (2017)Google Scholar
  77. B.N. Dorakumbura, T. Becker, S.W. Lewis: Nanomechanical mapping of latent fingermarks: A preliminary investigation into the changes in surface interactions and topography over time, Forensic Sci. Int. 267, 16–24 (2016)Google Scholar
  78. K.T. Popov, V.G. Sears, B.J. Jones: Nanoscale topography of latent fingermarks: Variation of material migration with donor, Forensic Sci. Int. (2018) submittedGoogle Scholar
  79. C. De Nardi, R. Desplats, P. Perdu, F. Beaudoin, J.-L. Gauffier: Oxide charge measurements in EEPROM devices, Microelectron. Reliab. 45(9-11), 1514–1519 (2005)Google Scholar
  80. B.J. Jones, A.J. Kenyon: Retention of data in heat-damaged SIM cards and potential recovery methods, Forensic Sci. Int. 177, 42–46 (2008)Google Scholar
  81. A.K. Adya, E. Canetta: Atomic force microscopic investigation of commercial pressure sensitive adhesives for forensic analysis, Forensic Sci. Int. 210, 16 (2011)Google Scholar
  82. S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W.M. Heckl, A.G. Nerlich, S. Thalhammer: Age determination of blood spots in forensic medicine by force spectroscopy, Forensic Sci. Int. 170(1), 8–14 (2007)Google Scholar
  83. S. Bleay, V. Sears, R. Downham, H. Bandey, A. Gibson, V. Bowman, L. Fitzgerald, T. Ciuksza, J. Ramadani, C. Selway: Fingerprint Source Book v2.0, CAST publication 081 17, (2017)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Science, Engineering & TechnologyAbertay UniversityDundeeUK

Personalised recommendations