Advertisement

Atomic Force Microscopy in the Life Sciences

Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

The last decade have established AFM as a technique in life sciences applications ranging from single molecules to living cells and tissues. AFM still remains one of the few microscopy tools to offer premium resolution on bio-macromolecules at near physiological/native sample conditions. The demand for correlative immunochemical and ultrastructural characterization of macromolecular complexes and cells has made the combination of AFM and advanced optical microscopy techniques almost ubiquitous in every life sciences lab. This chapter gives an overview of the instrumentation and most common imaging modes used in AFM nowadays, as well as different preparation protocols for single molecule and cell applications. We finish with application examples that feature some recent developments in state-of-the-art AFMs as tools to study molecular and cellular dynamics with high spatial and temporal resolution.

Keywords

atomic force microscopy (AFM) high-resolution imaging correlative microscopy feedback loop tip-sample interaction sample preparation nanomechanical mapping force spectroscopy 

Notes

Acknowledgements

The authors would like to thank Oilibhe Pabsch and Detlef Knebel at JPK Instruments for inspiring discussions and critical reviews during the preparation of the manuscript.

References

  1. M. Amrein, R. Durr, A. Stasiak, H. Gross, G. Travaglini: Scanning tunneling microscopy of uncoated RecA–DNA complexes, Science 243(4899), 1708–1711 (1989)Google Scholar
  2. M. Amrein, H. Gross, R. Guckenberger: STM of proteins and membranes. In: STM and SFM in Biology, ed. by O. Marti, M. Amrein (Academic Press, Cambridge 1993) pp. 127–175Google Scholar
  3. P.G. Arscott, V.A. Bloomfield: STM of DNA and RNA. In: STM and SFM in Biology, ed. by O. Marti, M. Amrein (Academic Press, Cambridge 1993) pp. 259–272Google Scholar
  4. R. Guckenberger, W. Wiegräbe, A. Hillebrand, T. Hartmann, Z. Wang, W. Baumeister: Scanning tunneling microscopy of a hydrated bacterial surface protein, Ultramicroscopy 31(3), 327–331 (1989)Google Scholar
  5. S.M. Lindsay, N.J. Tao: Potentiostatic deposition of molecules for SXM. In: STM and SFM in Biology, ed. by O. Marti, M. Amrein (Academic Press, Cambridge 1993) pp. 229–257Google Scholar
  6. M.J. Miles, T.J. McMaster: Protein assemblies and single molecules imaged by STM. In: STM and SFM in Biology, ed. by O. Marti, M. Amrein (Academic Press, Cambridge 1993) pp. 177–204Google Scholar
  7. M.J. Miles, T. McMaster, H.J. Carr, A.S. Tatham, P.R. Shewry, J.M. Field, P.S. Belton, D. Jeenes, B. Hanley, M. Whittam, P. Cairns, V.J. Morris, N. Lambert: Scanning tunneling microscopy of biomolecules, J. Vac. Sci. Technol. A 8(1), 698–702 (1990)Google Scholar
  8. A. Stemmer, A. Hefti, U. Aebi, A. Engel: Scanning tunneling and transmission electron microscopy on identical areas of biological specimens, Ultramicroscopy 30(3), 263–280 (1989)Google Scholar
  9. M.A. Voelker, S.R. Hameroff, J.D. He, E.L. Dereniak, R.S. McCuskey, C.W. Schneiker, T.A. Chvapil, L.S. Bell, L.B. Weiss: STM imaging of molecular collagen and phospholipid membranes, J. Microsc. 152(2), 557–566 (1988)Google Scholar
  10. M.E. Welland, M.J. Miles, N. Lambert, V.J. Morris, J.H. Coombs, J.B. Pethica: Structure of the globular protein vicilin revealed by scanning tunnelling microscopy, Int. J. Biol. Macromol. 11(1), 29–32 (1989)Google Scholar
  11. M. Amrein, A. Stasiak, H. Gross, E. Stoll, G. Travaglini: Scanning tunneling microscopy of RecA-DNA complexes coated with a conducting film, Science 240(4851), 514–516 (1988)Google Scholar
  12. M. Amrein, R. Dürr, H. Winkler, G. Travaglini, R. Wepf, H. Gross: STM of freeze-dried and Pt-Ir-C-coated bacteriophage T4 polyheads, J. Ultrastruct. Mol. Struct. Res. 102(2), 170–177 (1989)Google Scholar
  13. B.L. Blackford: A metallic replica/anchoring technique for scanning tunneling microscope or atomic force microscope imaging of large biological structures, J. Vac. Sci. Technol. B 9(2), 1253 (1991)Google Scholar
  14. G. Travaglini, H. Rohrer, M. Amrein, H. Gross: Scanning tunneling microscopy on biological matter, Surf. Sci. 181(1/2), 380–390 (1987)Google Scholar
  15. J. Zasadzinski, J. Schneir, J. Gurley, V. Elings, P. Hansma: Scanning tunneling microscopy of freeze-fracture replicas of biomembranes, Science 239(4843), 1013–1015 (1988)Google Scholar
  16. H.-J. Butt, M. Jaschke, W. Ducker: Measuring surface forces in aqueous electrolyte solution with the atomic force microscope, Bioelectrochem. Bioenerg. 38(1), 191–201 (1995)Google Scholar
  17. M. Heuberger: Elastic deformations of tip and sample during atomic force microscope measurements, J. Vac. Sci. Technol. B 14(2), 1250 (1996)Google Scholar
  18. A.L. Weisenhorn, P. Maivald, H.-J. Butt, P.K. Hansma: Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope, Phys. Rev. B 45(19), 11226–11232 (1992)Google Scholar
  19. H. Seelert, A. Poetsch, N.A. Dencher, A. Engel, H. Stahlberg, D.J. Müller: Structural biology: proton-powered turbine of a plant motor, Nature 405(6785), 418–419 (2000)Google Scholar
  20. M. Amrein: Atomic force microscopy in the life sciences. In: Science of Microscopy, ed. by P.W. Hawkes, J.C.H. Spence (Springer, New York 2007) pp. 1025–1069Google Scholar
  21. C. Braunsmann, J. Seifert, J. Rheinlaender, T.E. Schäffer: High-speed force mapping on living cells with a small cantilever atomic force microscope, Rev. Sci. Instrum. 85(7), 073703 (2014)Google Scholar
  22. D.T. Edwards, J.K. Faulk, A.W. Sanders, M.S. Bull, R. Walder, M.-A. LeBlanc, M.C. Sousa, T.T. Perkins: Optimizing 1-\({\upmu}\)s-resolution single-molecule force spectroscopy on a commercial atomic force microscope, Nano Lett. 15(10), 7091–7098 (2015)Google Scholar
  23. D.T. Edwards, T.T. Perkins: Optimizing force spectroscopy by modifying commercial cantilevers: improved stability, precision, and temporal resolution, J. Struct. Biol. 197(1), 13–25 (2017)Google Scholar
  24. D.R. Stamov, S.B. Kaemmer, A. Hermsdörfer, J. Barner, T. Jähnke, H. Haschke: BioScience AFM—capturing dynamics from single molecules to living cells, Microsc. Today 23(06), 18–25 (2015)Google Scholar
  25. M. Tortonese, R.C. Barrett, C.F. Quate: Atomic resolution with an atomic force microscope using piezoresistive detection, Appl. Phys. Lett. 62(8), 834–836 (1993)Google Scholar
  26. M. Schenk, M. Amrein, P. Dietz, R. Reichelt: Simultaneous STM/ AFM imaging of biological macromolecular assemblies: experimental set-up and first results. In: 13th Int. Congr. Electron Microsc. Ed. Phys. Ulis Paris (Editions de Physique, Les Ulis 2999) pp. 755–756Google Scholar
  27. M. Schenk, M. Amrein, R. Reichelt: An electret microphone as a force sensor for combined scanning probe microscopy, Ultramicroscopy 65(1/2), 109–118 (1996)Google Scholar
  28. M. Amrein, A. von Nahmen, M. Sieber: A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant, Eur. Biophys. J. 26(5), 349–357 (1997)Google Scholar
  29. F.A. Schabert, A. Engel: Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy, Biophys. J. 67(6), 2394–2403 (1994)Google Scholar
  30. A. Engel, D.J. Müller: Observing single biomolecules at work with the atomic force microscope, Nat. Struct. Biol. 7(9), 715–718 (2000)Google Scholar
  31. D.J. Müller, G. Büldt, A. Engel: Force-induced conformational change of bacteriorhodopsin, J. Mol. Biol. 249(2), 239–243 (1995)Google Scholar
  32. J.H. Hoh, G.E. Sosinsky, J.P. Revel, P.K. Hansma: Structure of the extracellular surface of the gap junction by atomic force microscopy, Biophys. J. 65(1), 149–163 (1993)Google Scholar
  33. D.J. Müller, W. Baumeister, A. Engel: Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy, J. Bacteriol. 178(11), 3025–3030 (1996)Google Scholar
  34. J. Yang, J. Mou, J.-Y. Yuan, Z. Shao: The effect of deformation on the lateral resolution of atomic force microscopy, J. Microsc. 182(2), 106–113 (1996)Google Scholar
  35. J.H. Hoh, C.A. Schoenenberger: Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy, J. Cell Sci. 107(Pt 5), 1105–1114 (1994)Google Scholar
  36. L. Chang, T. Kious, M. Yorgancioglu, D. Keller, J. Pfeiffer: Cytoskeleton of living, unstained cells imaged by scanning force microscopy, Biophys. J. 64(4), 1282–1286 (1993)Google Scholar
  37. M. Fritz, M. Radmacher, H.E. Gaub: Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy, Biophys. J. 66(5), 1328–1334 (1994)Google Scholar
  38. J.N. Israelachvili: Intermolecular and Surface Forces, 12th edn. (Academic Press, London 2007)Google Scholar
  39. H.-J. Butt: Measuring local surface charge densities in electrolyte solutions with a scanning force microscope, Biophys. J. 63(2), 578–582 (1992)Google Scholar
  40. D.J. Müller, M. Amrein, A. Engel: Adsorption of biological molecules to a solid support for scanning probe microscopy, J. Struct. Biol. 119(2), 172–188 (1997)Google Scholar
  41. H.-J. Butt: Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope, Biophys. J. 60(6), 1438–1444 (1991)Google Scholar
  42. W.A. Ducker, T.J. Senden, R.M. Pashley: Direct measurement of colloidal forces using an atomic force microscope, Nature 353(6341), 239–241 (1991)Google Scholar
  43. H.F. Knapp, W. Wiegräbe, M. Heim, R. Eschrich, R. Guckenberger: Atomic force microscope measurements and manipulation of Langmuir–Blodgett films with modified tips, Biophys. J. 69(2), 708–715 (1995)Google Scholar
  44. R. Guckenberger, M. Heim, G. Cevc, H. Knapp, W. Wiegrabe, A. Hillebrand: Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films, Science 266(5190), 1538–1540 (1994)Google Scholar
  45. T. Ando, T. Uchihashi, N. Kodera, M. Shibata, D. Yamamoto, H. Yamashita: High-speed AFM for observing dynamic processes in liquid. In: Atomic Force Microscopy in Liquid: Biological Applications, ed. by A.M. Baró, R.G. Reifenberger (Wiley-VCH, Weinheim 2012) pp. 189–209Google Scholar
  46. T. Ando, T. Uchihashi, T. Fukuma: High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes, Prog. Surf. Sci. 83(7–9), 337–437 (2008)Google Scholar
  47. P. Rahe, J. Schütte, W. Schniederberend, M. Reichling, M. Abe, Y. Sugimoto, A. Kühnle: Flexible drift-compensation system for precise 3D force mapping in severe drift environments, Rev. Sci. Instrum. 82(6), 063704 (2011)Google Scholar
  48. C.A. Van Eysden, J.E. Sader: Resonant frequencies of a rectangular cantilever beam immersed in a fluid, J. Appl. Phys. 100(11), 114916 (2006)Google Scholar
  49. Á. Budó, C. Haltenberger: Theoretische Mechanik, 12th edn. (Deutscher Verlag der Wissenschaften, Berlin 1990)Google Scholar
  50. D. Sarid: Scanning Force Microscopy: with Applications to Electric, Magnetic, and Atomic Forces (Oxford Univ. Press, New York 1994)Google Scholar
  51. T.E. Schäffer, J.P. Cleveland, F. Ohnesorge, D.A. Walters, P.K. Hansma: Studies of vibrating atomic force microscope cantilevers in liquid, J. Appl. Phys. 80(7), 3622–3627 (1996)Google Scholar
  52. T. Ando, T. Uchihashi, N. Kodera: High-speed AFM and applications to biomolecular systems, Annu. Rev. Biophys. 42(1), 393–414 (2013)Google Scholar
  53. T. Ando, T. Uchihashi, S. Scheuring: Filming biomolecular processes by high-speed atomic force microscopy, Chem. Rev. 114(6), 3120–3188 (2014)Google Scholar
  54. D.R. Stamov, E. Stock, C.M. Franz, T. Jähnke, H. Haschke: Imaging collagen type I fibrillogenesis with high spatiotemporal resolution, Ultramicroscopy 149, 86–94 (2015)Google Scholar
  55. D.J. Müller, D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel: Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope, Biophys. J. 76(2), 1101–1111 (1999)Google Scholar
  56. P.K. Hansma, J.P. Cleveland, M. Radmacher, D.A. Walters, P.E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H.G. Hansma, C.B. Prater, J. Massie, L. Fukunaga, J. Gurley, V. Elings: Tapping mode atomic force microscopy in liquids, Appl. Phys. Lett. 64(13), 1738–1740 (1994)Google Scholar
  57. C.A.J. Putman, K.O. Van der Werf, B.G. De Grooth, N.F. Van Hulst, J. Greve: Tapping mode atomic force microscopy in liquid, Appl. Phys. Lett. 64(18), 2454–2456 (1994)Google Scholar
  58. M.A. Lantz, S.J. O'Shea, M.E. Welland: Force microscopy imaging in liquids using ac techniques, Appl. Phys. Lett. 65(4), 409–411 (1994)Google Scholar
  59. W. Han, S.M. Lindsay, T. Jing: A magnetically driven oscillating probe microscope for operation in liquids, Appl. Phys. Lett. 69(26), 4111–4113 (1996)Google Scholar
  60. D. Ramos, J. Tamayo, J. Mertens, M. Calleja: Photothermal excitation of microcantilevers in liquids, J. Appl. Phys. 99(12), 124904 (2006)Google Scholar
  61. R. García: Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47(6–8), 197–301 (2002)Google Scholar
  62. B. Voigtländer: Amplitude modulation (AM) mode in dynamic atomic force microscopy. In: Scanning Probe Microscopy, ed. by B. Voigtländer (Springer, Berlin, Heidelberg 2015) pp. 187–204Google Scholar
  63. U. Dürig: Conservative and dissipative interactions in dynamic force microscopy, Surf. Interface Anal. 27(5/6), 467–473 (1999)Google Scholar
  64. F.J. Giessibl: A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy, Appl. Phys. Lett. 78(1), 123–125 (2001)Google Scholar
  65. M. Jaafar, D. Martínez-Martín, M. Cuenca, J. Melcher, A. Raman, J. Gómez-Herrero: Drive-amplitude-modulation atomic force microscopy: from vacuum to liquids, Beilstein J. Nanotechnol. 3, 336–344 (2012)Google Scholar
  66. T. Fukuma, J.I. Kilpatrick, S.P. Jarvis: Phase modulation atomic force microscope with true atomic resolution, Rev. Sci. Instrum. 77(12), 123703 (2006)Google Scholar
  67. B. Gotsmann, C. Seidel, B. Anczykowski, H. Fuchs: Conservative and dissipative tip–sample interaction forces probed with dynamic AFM, Phys. Rev. B 60(15), 11051–11061 (1999)Google Scholar
  68. B. Gotsmann, H. Fuchs: Dynamic AFM using the FM technique with constant excitation amplitude, Appl. Surf. Sci. 188(3/4), 355–362 (2002)Google Scholar
  69. K. Schröter, A. Petzold, T. Henze, T. Thurn-Albrecht: Quantitative analysis of scanning force microscopy data using harmonic models, Macromolecules 42(4), 1114–1124 (2009)Google Scholar
  70. S.D. Solares, G. Chawla: Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy, Meas. Sci. Technol. 21(12), 125502 (2010)Google Scholar
  71. G. Chawla, S.D. Solares: Mapping of conservative and dissipative interactions in bimodal atomic force microscopy using open-loop and phase-locked-loop control of the higher eigenmode, Appl. Phys. Lett. 99(7), 074103 (2011)Google Scholar
  72. Y.J. Li, N. Kobayashi, Y. Naitoh, M. Kageshima, Y. Sugawara: Phase modulation atomic force microscopy in constant excitation mode capable of simultaneous imaging of topography and energy dissipation, Appl. Phys. Lett. 92(12), 121903 (2008)Google Scholar
  73. H. Yamada, K. Kobayashi, T. Fukuma, Y. Hirata, T. Kajita, K. Matsushige: Molecular resolution imaging of protein molecules in liquid using frequency modulation atomic force microscopy, Appl. Phys. Express 2(9), 095007 (2009)Google Scholar
  74. T. Fukuma: Advanced instrumentation of frequency modulation AFM for subnanometer-scale 2D/3D measurements at solid–liquid interfaces. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, F.J. Giessibl, E. Meyer, R. Wiesendanger (Springer, Cham 2015) pp. 435–460Google Scholar
  75. J. Melcher, D. Martínez-Martín, M. Jaafar, J. Gómez-Herrero, A. Raman: High-resolution dynamic atomic force microscopy in liquids with different feedback architectures, Beilstein J. Nanotechnol. 4, 153–163 (2013)Google Scholar
  76. L. Chopinet, C. Formosa, M.P. Rols, R.E. Duval, E. Dague: Imaging living cells surface and quantifying its properties at high resolution using AFM in QI\({}^{\mathrm{TM}}\) mode, Micron 48, 26–33 (2013)Google Scholar
  77. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, A. Toda: A high-speed atomic force microscope for studying biological macromolecules, Proc. Natl. Acad. Sci. 98(22), 12468–12472 (2001)Google Scholar
  78. L.M. Picco, L. Bozec, A. Ulcinas, D.J. Engledew, M. Antognozzi, M.A. Horton, M.J. Miles: Breaking the speed limit with atomic force microscopy, Nanotechnology 18(4), 044030 (2007)Google Scholar
  79. A. Monserrate, S. Casado, C. Flors: Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts, ChemPhysChem 15(4), 647–650 (2014)Google Scholar
  80. M. Cascione, V. de Matteis, R. Rinaldi, S. Leporatti: Atomic force microscopy combined with optical microscopy for cells investigation: AFM combined with optical microscopy, Microsc. Res. Tech. 80(1), 109–123 (2017)Google Scholar
  81. C. Löbbe, K. Poole: Two microscopes, one software: combining atomic force and optical microscopy, GIT Imaging Microsc. 8(4), 43–44 (2006)Google Scholar
  82. B. Städler, T.M. Blättler, A. Franco-Obregón: Time-lapse imaging of in vitro myogenesis using atomic force microscopy, J. Microsc. 237(1), 63–69 (2010)Google Scholar
  83. A. Mescola, S. Vella, M. Scotto, P. Gavazzo, C. Canale, A. Diaspro, A. Pagano, M. Vassalli: Probing cytoskeleton organisation of neuroblastoma cells with single-cell force spectroscopy, J. Mol. Recognit. 25(5), 270–277 (2012)Google Scholar
  84. W. Christenson, I. Yermolenko, B. Plochberger, F. Camacho-Alanis, A. Ros, T.P. Ugarova, R. Ros: Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices, Ultramicroscopy 136, 211–215 (2014)Google Scholar
  85. J. te Riet, J. Helenius, N. Strohmeyer, A. Cambi, C.G. Figdor, D.J. Müller: Dynamic coupling of ALCAM to the actin cortex strengthens cell adhesion to CD6, J. Cell Sci. 127(7), 1595–1606 (2014)Google Scholar
  86. M. Hilsch, B. Goldenbogen, C. Sieben, C.T. Höfer, J.P. Rabe, E. Klipp, A. Herrmann, S. Chiantia: Influenza A matrix protein M1 multimerizes upon binding to lipid membranes, Biophys. J. 107(4), 912–923 (2014)Google Scholar
  87. L.L.G. Schwenen, R. Hubrich, D. Milovanovic, B. Geil, J. Yang, A. Kros, R. Jahn, C. Steinem: Resolving single membrane fusion events on planar pore-spanning membranes, Sci. Rep. 5(1), 1–15 (2015)Google Scholar
  88. T. Kihara, C. Nakamura, M. Suzuki, S.-W. Han, K. Fukazawa, K. Ishihara, J. Miyake: Development of a method to evaluate caspase-3 activity in a single cell using a nanoneedle and a fluorescent probe, Biosens. Bioelectron. 25(1), 22–27 (2009)Google Scholar
  89. B. Harke, J.V. Chacko, H. Haschke, C. Canale, A. Diaspro: A novel nanoscopic tool by combining AFM with STED microscopy, Opt. Nanoscopy 1(1), 3 (2012)Google Scholar
  90. J.V. Chacko, F.C. Zanacchi, A. Diaspro: Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach, Cytoskeleton 70(11), 729–740 (2013)Google Scholar
  91. T. Jähnke, M. Haggerty: Method for the operation of a measurement system with a scanning probe microscope and a measurement system,  US Patent 8368017 B2 (2013)Google Scholar
  92. O. Sünwoldt, D. Knebel: Device for receiving a test sample, US Patent 8506909 B2 (2013)Google Scholar
  93. D. Knebel, T. Jähnke, O. Sünwoldt: Apparatus and method for a scanning probe microscope, US Patent 7473894 B2 (2009)Google Scholar
  94. A. Engel, A. Hoenger, A. Hefti, C. Henn, R.C. Ford, J. Kistler, M. Zulauf: Assembly of 2-D membrane protein crystals: Dynamics, crystal order, and fidelity of structure analysis by electron microscopy, J. Struct. Biol. 109(3), 219–234 (1992)Google Scholar
  95. B.K. Jap, M. Zulauf, T. Scheybani, A. Hefti, W. Baumeister, U. Aebi, A. Engel: 2D crystallization: From art to science, Ultramicroscopy 46(1), 45–84 (1992)Google Scholar
  96. T. Haltia, E. Freire: Forces and factors that contribute to the structural stability of membrane proteins, Biochim. Biophys. Acta Bioenerg. 1228(1), 1–27 (1995)Google Scholar
  97. E. Kellenberger, J. Kistler: The physics of specimen preparation. In: Unconventional Electron Microscopy for Molecular Structure Determination, ed. by W. Hoppe, R. Mason (Vieweg+Teubner, Wiesbaden 1979) pp. 49–79Google Scholar
  98. E. Kellenberger, M. Häner, M. Wurtz: The wrapping phenomenon in air-dried and negatively stained preparations, Ultramicroscopy 9(1/2), 139–150 (1982)Google Scholar
  99. I. Wildhaber, H. Gross, A. Engel, W. Baumeister: The effects of air-drying and freeze-drying on the structure of a regular protein layer, Ultramicroscopy 16(3/4), 411–422 (1985)Google Scholar
  100. W. Baumeister, M. Barth, R. Hegerl, R. Guckenberger, M. Hahn, W.O. Saxton: Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans, J. Mol. Biol. 187(2), 241–250 (1986)Google Scholar
  101. Z.H. Wang, T. Hartmann, W. Baumeister, R. Guckenberger: Thickness determination of biological samples with a zeta-calibrated scanning tunneling microscope, Proc. Natl. Acad. Sci. 87(23), 9343–9347 (1990)Google Scholar
  102. K.A. Fisher: Oriented adsorption of purple membrane to cationic surfaces, J. Cell Biol. 77(2), 611–621 (1978)Google Scholar
  103. S.B. Hayward, D.A. Grano, R.M. Glaeser, K.A. Fisher: Molecular orientation of bacteriorhodopsin within the purple membrane of Halobacterium halobium, Proc. Natl. Acad. Sci. 75(9), 4320–4324 (1978)Google Scholar
  104. S. Karrasch, M. Dolder, F. Schabert, J. Ramsden, A. Engel: Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution, Biophys. J. 65(6), 2437–2446 (1993)Google Scholar
  105. M. Hegner, P. Wagner, G. Semenza: Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions, FEBS Letters 336(3), 452–456 (1993)Google Scholar
  106. D. Knebel, M. Amrein, K. Voigt, R. Reichelt: A fast and versatile scan unit for scanning probe microscopy, Scanning 19(4), 264–268 (1997)Google Scholar
  107. L.S. Shlyakhtenko, A.A. Gall, A. Filonov, Z. Cerovac, A. Lushnikov, Y.L. Lyubchenko: Silatrane-based surface chemistry for immobilization of DNA, protein–DNA complexes and other biological materials, Ultramicroscopy 97(1–4), 279–287 (2003)Google Scholar
  108. D. Mazia: Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy, J. Cell Biol. 66(1), 198–200 (1975)Google Scholar
  109. B. Jacobson, D. Branton: Plasma membrane: Rapid isolation and exposure of the cytoplasmic surface by use of positively charged beads, Science 195(4275), 302–304 (1977)Google Scholar
  110. H. Sellers, A. Ulman, Y. Shnidman, J.E. Eilers: Structure and binding of alkanethiolates on gold and silver surfaces: Implications for self-assembled monolayers, J. Am. Chem. Soc. 115(21), 9389–9401 (1993)Google Scholar
  111. H. Wolf, H. Ringsdorf, E. Delamarche, T. Takami, H. Kang, B. Michel, C. Gerber, M. Jaschke, H.-J. Butt, E. Bamberg: End-group-dominated molecular order in self-assembled monolayers, J. Phys. Chem. 99(18), 7102–7107 (1995)Google Scholar
  112. D.P. Allison, T. Thundat, K.B. Jacobson, L.A. Bottomley, R.J. Warmack: Imaging entire genetically functional DNA molecules with the scanning tunneling microscope, J. Vac. Sci. Technol. A 11(4), 816–819 (1993)Google Scholar
  113. M. Hegner: Modified DNA immobilized on bioreactive self-assembled monolayer on gold for dynamic force microscopy imaging in aqueous buffer solution, J. Vac. Sci. Technol. B 14(2), 1418 (1996)Google Scholar
  114. P. Wagner, M. Hegner, H.-J. Guentherodt, G. Semenza: Formation and in situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces, Langmuir 11(10), 3867–3875 (1995)Google Scholar
  115. P. Wagner, M. Hegner, P. Kernen, F. Zaugg, G. Semenza: Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy, Biophys. J. 70(5), 2052–2066 (1996)Google Scholar
  116. H. Bader, K. Dorn, B. Hupfer, H. Ringsdorf: Polymeric monolayers and liposomes as models for biomembranes. In: Polymer Membranes, ed. by M. Gordon (Springer, Berlin, Heidelberg 1985) pp. 1–62Google Scholar
  117. A. Brisson, A. Olofsson, P. Ringler: Two-dimensional crystallization of proteins on planar lipid films and structure determination by electron crystallography, Biol. Cell 80, 221–228 (1994)Google Scholar
  118. K.B. Blodgett, I. Langmuir: Built-up films of barium stearate and their optical properties, Phys. Rev. 51(11), 964–982 (1937)Google Scholar
  119. D. Knebel, M. Sieber, R. Reichelt, H.-J. Galla, M. Amrein: Scanning force microscopy at the air–water interface of an air bubble coated with pulmonary surfactant, Biophys. J. 82(1), 474–480 (2002)Google Scholar
  120. E. Henderson, P. Haydon, D. Sakaguchi: Actin filament dynamics in living glial cells imaged by atomic force microscopy, Science 257(5078), 1944–1946 (1992)Google Scholar
  121. J.K. Hörber, W. Häberle, F. Ohnesorge, G. Binnig, H.G. Liebich, C.P. Czerny, H. Mahnel, A. Mayr: Investigation of living cells in the nanometer regime with the scanning force microscope, Scanning Microsc. 6(4), 919–929 (1992), discussion 929–930Google Scholar
  122. S. Kasas, A. Ikai: A method for anchoring round shaped cells for atomic force microscope imaging, Biophys. J. 68(5), 1678–1680 (1995)Google Scholar
  123. C.M. Franz, A. Taubenberger, P.-H. Puech, D.J. Muller: Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy, Science's STKE 2007(406), pl5 (2007)Google Scholar
  124. J. Kashef, C.M. Franz: Quantitative methods for analyzing cell–cell adhesion in development, Dev. Biol. 401(1), 165–174 (2015)Google Scholar
  125. L. Dao, U. Weiland, M. Hauser, I. Nazarenko, H. Kalt, M. Bastmeyer, C.M. Franz: Revealing non-genetic adhesive variations in clonal populations by comparative single-cell force spectroscopy, Exp. Cell Res. 318(17), 2155–2167 (2012)Google Scholar
  126. E. Potthoff, O. Guillaume-Gentil, D. Ossola, J. Polesel-Maris, S. LeibundGut-Landmann, T. Zambelli, J.A. Vorholt: Rapid and serial quantification of adhesion forces of yeast and mammalian cells, PLoS ONE 7(12), e52712 (2012)Google Scholar
  127. A. Sancho, I. Vandersmissen, S. Craps, A. Luttun, J. Groll: A new strategy to measure intercellular adhesion forces in mature cell–cell contacts, Sci. Rep. 7, 46152 (2017)Google Scholar
  128. D.J. Müller, F.A. Schabert, G. Büldt, A. Engel: Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy, Biophys. J. 68(5), 1681–1686 (1995)Google Scholar
  129. A. Pyne, R. Thompson, C. Leung, D. Roy, B.W. Hoogenboom: Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy, Small 10(16), 3257–3261 (2014)Google Scholar
  130. F. Jiang, H. Hörber, J. Howard, D.J. Müller: Assembly of collagen into microribbons: effects of pH and electrolytes, J. Struct. Biol. 148(3), 268–278 (2004)Google Scholar
  131. D.J.S. Hulmes, A. Miller, D.A.D. Parry, K.A. Piez, J. Woodhead-Galloway: Analysis of the primary structure of collagen for the origins of molecular packing, J. Mol. Biol. 79(1), 137–148 (1973)Google Scholar
  132. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3(1), 47–57 (1965)Google Scholar
  133. J.J. Roa, G. Oncins, J. Diaz, F. Sanz, M. Segarra: Calculation of Young's modulus value by means of AFM, Recent Pat. Nanotechnol. 5(1), 27–36 (2011)Google Scholar
  134. D. Alsteens, H.E. Gaub, R. Newton, M. Pfreundschuh, C. Gerber, D.J. Müller: Atomic force microscopy-based characterization and design of biointerfaces, Nat. Rev. Mater 2, 17008 (2017)Google Scholar
  135. P.-H. Puech, D. Nevoltris, P. Robert, L. Limozin, C. Boyer, P. Bongrand: Force measurements of TCR/pMHC recognition at T cell surface, PLoS ONE 6(7), e22344 (2011)Google Scholar
  136. Y. Lee, Y. Kim, D. Lee, D. Roy, J.W. Park: Quantification of fewer than ten copies of a DNA biomarker without amplification or labeling, J. Am. Chem. Soc. 138(22), 7075–7081 (2016)Google Scholar
  137. G.U. Lee, D.A. Kidwell, R.J. Colton: Sensing discrete streptavidin–biotin interactions with atomic force microscopy, Langmuir 10(2), 354–357 (1994)Google Scholar
  138. V. Moy, E. Florin, H. Gaub: Intermolecular forces and energies between ligands and receptors, Science 266(5183), 257–259 (1994)Google Scholar
  139. M. Rief: Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276(5315), 1109–1112 (1997)Google Scholar
  140. J. Yu, J. Warnke, Y.L. Lyubchenko: Nanoprobing of $${\upalpha}$$-synuclein misfolding and aggregation with atomic force microscopy, Nanomed. Nanotechnol. Biol. Med. 7(2), 146–152 (2011)Google Scholar
  141. C. Gonnermann, C. Huang, S.F. Becker, D.R. Stamov, D. Wedlich, J. Kashef, C.M. Franz: Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup, Integr. Biol. 7(3), 356–363 (2015)Google Scholar
  142. A. von Nahmen, M. Schenk, M. Sieber, M. Amrein: The structure of a model pulmonary surfactant as revealed by scanning force microscopy, Biophys. J. 72(1), 463–469 (1997)Google Scholar
  143. G. Karagiorga, G. Nakos, E. Galiatsou, M.E. Lekka: Biochemical parameters of bronchoalveolar lavage fluid in fat embolism, Intensive Care Med. 32(1), 116–123 (2006)Google Scholar
  144. L. Gunasekara, S. Schürch, W.M. Schoel, K. Nag, Z. Leonenko, M. Haufs, M. Amrein: Pulmonary surfactant function is abolished by an elevated proportion of cholesterol, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1737(1), 27–35 (2005)Google Scholar
  145. O. Marti, B. Drake, P.K. Hansma: Atomic force microscopy of liquid-covered surfaces: Atomic resolution images, Appl. Phys. Lett. 51(7), 484–486 (1987)Google Scholar
  146. B. Drake, C. Prater, A. Weisenhorn, S. Gould, T. Albrecht, C. Quate, D. Cannell, H. Hansma, P. Hansma: Imaging crystals, polymers, and processes in water with the atomic force microscope, Science 243(4898), 1586–1589 (1989)Google Scholar
  147. R.C. Barrett: High-speed, large-scale imaging with the atomic force microscope, J. Vac. Sci. Technol. B 9(2), 302 (1991)Google Scholar
  148. S. Karrasch, R. Hegerl, J.H. Hoh, W. Baumeister, A. Engel: Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment, Proc. Natl. Acad. Sci. 91(3), 836–838 (1994)Google Scholar
  149. M. Benoit, D. Gabriel, G. Gerisch, H.E. Gaub: Discrete interactions in cell adhesion measured by single-molecule force spectroscopy, Nat. Cell Biol. 2(6), 313–317 (2000)Google Scholar
  150. P. Parot, Y.F. Dufrêne, P. Hinterdorfer, C. Le Grimellec, D. Navajas, J.-L. Pellequer, S. Scheuring: Past, present and future of atomic force microscopy in life sciences and medicine, J. Mol. Recognit. 20(6), 418–431 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Cell Biology & AnatomyUniversity of CalgaryCalgaryCanada
  2. 2.Bruker Nano GmbHBerlinGermany

Personalised recommendations