Advertisement

Scanning Transmission Electron Microscopy

Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

The scanning transmission electron microscope () has become one of the preeminent instruments for high spatial resolution imaging and spectroscopy of materials, most notably at atomic resolution. The principle of STEM is quite straightforward. A beam of electrons is focused by electron optics to form a small illuminating probe that is raster-scanned across a sample. The sample is thinned such that the vast majority of electrons are transmitted, and the scattered electrons detected using some geometry of detector. The intensity as a function of probe position forms an image. It is the wide variety of possible detectors, and therefore imaging and spectroscopy modes, that gives STEM its strength. The purpose of this chapter is to describe what the STEM is, to highlight some of the types of experiment that can be performed using a STEM, to explain the principles behind the common modes of operation, to illustrate the features of typical STEM instrumentation, and to discuss some of the limiting factors in its performance.

scanning transmission electron microscope (STEM) STEM imaging STEM spectroscopy STEM optics 

References

  1. A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter: Electron gun using a field emission source, Rev. Sci. Instrum. 39, 576–583 (1968)Google Scholar
  2. A.V. Crewe, J. Wall, L.M. Welter: A high-resolution scanning transmission electron microscope, J. Appl. Phys. 39, 5861–5868 (1968)Google Scholar
  3. A.V. Crewe: The physics of the high-resolution scanning microscope, Rep. Prog. Phys. 43, 621–639 (1980)Google Scholar
  4. L.M. Brown: Scanning transmission electron microscopy: Microanalysis for the microelectronic age, J. Phys. F 11, 1–26 (1981)Google Scholar
  5. J.M. Cowley: Scanning transmission electron microscopy of thin specimens, Ultramicroscopy 2, 3–16 (1976)Google Scholar
  6. S.J. Pennycook, P.D. Nellist: Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York 2011)Google Scholar
  7. O. Scherzer: Über einige Fehler von Elektronenlinsen, Z. Phys. 101, 593–603 (1936)Google Scholar
  8. M. Born, E. Wolf: Principles of Optics (Cambridge Univ. Press, Cambridge 2000)Google Scholar
  9. C. Mory, C. Colliex, J.M. Cowley: Optimum defocus for STEM imaging and microanalysis, Ultramicroscopy 21, 171–178 (1987)Google Scholar
  10. O. Scherzer: Sphärische und chromatische Korrektur von Elektronen-Linsen, Optik 2, 114–132 (1947)Google Scholar
  11. J. Zach, M. Haider: Correction of spherical and chromatic aberration in a low-voltage SEM, Optik 98, 112–118 (1995)Google Scholar
  12. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)Google Scholar
  13. P.E. Batson, N. Dellby, O.L. Krivanek: Sub-ångstrom resolution using aberration corrected electron optics, Nature 418, 617–620 (2002)Google Scholar
  14. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z. Szilagyi, A.R. Lupini, A. Borisevich, W.H.J. Sides, S.J. Pennycook: Direct sub-angstrom imaging of a crystal lattice, Science 305, 1741 (2004)Google Scholar
  15. O.L. Krivanek, N. Dellby, A.R. Lupini: Towards sub-Å electron beams, Ultramicroscopy 78, 1–11 (1999)Google Scholar
  16. O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi: Towards sub-0.5 Å electron beams, Ultramicroscopy 96, 229–237 (2003)Google Scholar
  17. J. Verbeeck, H. Tian, P. Schattschneider: Production and application of electron vortex beams, Nature 467, 301–304 (2010)Google Scholar
  18. J. Rusz, J.-C. Idrobo, S. Bhowmick: Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe, Phys. Rev. Lett. 113, 145501 (2014)Google Scholar
  19. J.M. Cowley (Ed.): Electron Diffraction Techniques (Volume 1), IUCr Monographs on Crystallography, Vol. 3 (Oxford Univ. Press, Oxford 1992)Google Scholar
  20. J.M. Cowley: Diffraction Physics, 2nd edn. (North-Holland, Amsterdam 1990)Google Scholar
  21. P. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals, 2nd edn. (Krieger, Malabar 1977)Google Scholar
  22. J.C.H. Spence, J.M. Zuo: Electron Microdiffraction, 1st edn. (Plenum, New York 1992)Google Scholar
  23. J.M. Cowley: Electron microdiffraction, Adv. Electron. Electron Phys. 46, 1–53 (1978)Google Scholar
  24. J.M. Cowley: Coherent interference in convergent-beam electron diffraction & shadow imaging, Ultramicroscopy 4, 435–450 (1979)Google Scholar
  25. J.M. Cowley: Coherent interference effects in SIEM and CBED, Ultramicroscopy 7, 19–26 (1981)Google Scholar
  26. J.M. Cowley, M.M. Disko: Fresnel diffraction in a coherent convergent electron beam, Ultramicroscopy 5, 469–477 (1980)Google Scholar
  27. J.C.H. Spence: Convergent-beam nanodiffraction, in-line holography and coherent shadow imaging, Optik 92, 57–68 (1992)Google Scholar
  28. V. Ronchi: Forty years of history of a grating interferometer, Appl. Opt. 3, 437 (1964)Google Scholar
  29. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini: Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177–185 (2001)Google Scholar
  30. W. Hoppe: Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeugungsinterferenzen, Acta Crystallogr. A 25, 495–501 (1969)Google Scholar
  31. W. Hoppe: Beugung im inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei unperiodischen Objekten, Acta Crystallogr. A 25, 508–514 (1969)Google Scholar
  32. W. Hoppe: Trace structure analysis, ptychography, phase tomography, Ultramicroscopy 10, 187–198 (1982)Google Scholar
  33. P.D. Nellist, B.C. McCallum, J.M. Rodenburg: Resolution beyond the ‘information limit’ in transmission electron microscopy, Nature 374, 630–632 (1995)Google Scholar
  34. A.R. Lupini: Aberration Correction in STEM, PhD Thesis (Cavendish Laboratory, Cambridge 2001)Google Scholar
  35. J.M. Cowley: Electron-diffraction phenomena observed with a high-resolution STEM instrument, J. Electron Microsc. Tech. 3, 25–44 (1986)Google Scholar
  36. A.R. Lupini: The electron Ronchigram. In: Scanning Transmission Electron Microscopy: Imaging and Analysis, ed. by S.J. Pennycook, P.D. Nellist (Springer, New York 2010) pp. 117–161Google Scholar
  37. H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, K. Takayanagi: Measurement method of aberration from Ronchigram by autocorrelation function, Ultramicroscopy 108, 1467–1475 (2008)Google Scholar
  38. A.R. Lupini, P. Wang, P.D. Nellist, A.I. Kirkland, S.J. Pennycook: Aberration measurement using the Ronchigram contrast transfer function, Ultramicroscopy 110, 891–898 (2010)Google Scholar
  39. J.M. Cowley: Adjustment of a STEM instrument by use of shadow images, Ultramicroscopy 4, 413–418 (1979)Google Scholar
  40. J.A. Lin, J.M. Cowley: Reconstruction from in-line electron holograms by digital processing, Ultramicroscopy 19, 179–190 (1986)Google Scholar
  41. D. Gabor: A new microscope principle, Nature 161, 777–778 (1948)Google Scholar
  42. J.C.H. Spence, J.M. Cowley: Lattice imaging in STEM, Optik 50, 129–142 (1978)Google Scholar
  43. J.C.H. Spence: Experimental High-Resolution Electron Microscopy, 2nd edn. (Oxford Univ. Press, Oxford 1988)Google Scholar
  44. J.M. Cowley: Image contrast in a transmission scanning electron microscope, Appl. Phys. Lett. 15, 58–59 (1969)Google Scholar
  45. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy, Optik 31(3), 258–280 (1970)Google Scholar
  46. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. 2., Optik 31(4), 359–366 (1970)Google Scholar
  47. P.D. Nellist, J.M. Rodenburg: Beyond the conventional information limit: The relevant coherence function, Ultramicroscopy 54, 61–74 (1994)Google Scholar
  48. A.I. Kirkland, W.O. Saxton, K.L. Chau, K. Tsuno, M. Kawasaki: Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM, Ultramicroscopy 57, 355–374 (1995)Google Scholar
  49. P. Ercius, M. Weyland, D.A. Muller, L.M. Gignac: Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography, Appl. Phys. Lett. 88, 243116 (2006)Google Scholar
  50. P.D. Nellist, S.J. Pennycook: The principles and interpretation of annular dark-field Z-contrast imaging, Adv. Imaging Electron Phys. 113, 148–203 (2000)Google Scholar
  51. A.V. Crewe, J. Wall, J. Langmore: Visibility of single atoms, Science 168, 1338–1340 (1970)Google Scholar
  52. M.M.J. Treacy, A. Howie, C.J. Wilson: Z contrast imaging of platinum and palladium catalysts, Philos. Mag. A 38, 569–585 (1978)Google Scholar
  53. A. Howie: Image contrast and localised signal selection techniques, J. Microsc. 117, 11–23 (1979)Google Scholar
  54. A.M. Donald, A.J. Craven: A study of grain boundary segregation in Cu-Bi alloys using STEM, Philos. Mag. A 39, 1–11 (1979)Google Scholar
  55. R.F. Loane, P. Xu, J. Silcox: Incoherent imaging of zone axis crystals with ADF STEM, Ultramicroscopy 40, 121–138 (1992)Google Scholar
  56. D.E. Jesson, S.J. Pennycook: Incoherent imaging of thin specimens using coherently scattered electrons, Proc. Royal Soc. A 441, 261–281 (1993)Google Scholar
  57. P.D. Nellist, S.J. Pennycook: Accurate structure determination from image reconstruction in ADF STEM, J. Microsc. 190, 159–170 (1998)Google Scholar
  58. P. Hartel, H. Rose, C. Dinges: Conditions and reasons for incoherent imaging in STEM, Ultramicroscopy 63, 93–114 (1996)Google Scholar
  59. Lord Rayleigh: On the theory of optical images with special reference to the microscope, Philos. Mag. 5(42), 167–195 (1896)Google Scholar
  60. G. Black, E.H. Linfoot: Spherical aberration and the information limit of optical images, Proc. Royal Soc. A 239, 522–540 (1957)Google Scholar
  61. M.M. McGibbon, N.D. Browning, M.F. Chisholm, A.J. McGibbon, S.J. Pennycook, V. Ravikumar, V.P. Dravid: Direct determination of grain boundary atomic structure in SrTiO3, Science 266, 102–104 (1994)Google Scholar
  62. A.J. McGibbon, S.J. Pennycook, J.E. Angelo: Direct observation of dislocation core structures in CdTe/GaAs(001), Science 269, 519–521 (1995)Google Scholar
  63. I. Lazić, E.G.T. Bosch: Chapter three – Analytical review of direct stem imaging techniques for thin samples, Adv. Imaging Electron Phys. 199, 75–184 (2017)Google Scholar
  64. P.D. Nellist, S.J. Pennycook: Incoherent imaging using dynamically scattered coherent electrons, Ultramicroscopy 78, 111–124 (1999)Google Scholar
  65. B. Rafferty, P.D. Nellist, S.J. Pennycook: On the origin of transverse incoherence in Z-contrast STEM, J. Electron Microsc. 50, 227–233 (2001)Google Scholar
  66. S.J. Pennycook, D.E. Jesson: High-resolution incoherent imaging of crystals, Phys. Rev. Lett. 64, 938–941 (1990)Google Scholar
  67. S.J. Pennycook: Z-contrast STEM for materials science, Ultramicroscopy 30, 58–69 (1989)Google Scholar
  68. S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw: Lattice-resolution contrast from a focused coherent electron probe. Part II, Ultramicroscopy 96, 65–81 (2003)Google Scholar
  69. K. Mitsuishi, M. Takeguchi, H. Yasuda, K. Furuya: New scheme of calculation of annular dark-field STEM image including both elastically diffracted and TDS waves, J. Electron Microsc. 50, 157–162 (2001)Google Scholar
  70. A. Amali, P. Rez: Theory of lattice resolution in high-angle annular dark-field images, Microsc. Microanal. 3, 28–46 (1997)Google Scholar
  71. L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw: Lattice-resolution contrast from a focused coherent Electon probe. Part I, Ultramicroscopy 96, 47–63 (2003)Google Scholar
  72. C. Dinges, A. Berger, H. Rose: Simulation of TEM images considering phonon and electron excitations, Ultramicroscopy 60, 49–70 (1995)Google Scholar
  73. E.J. Kirkland, R.F. Loane, J. Silcox: Simulation of annular dark field STEM images using a modified multislice method, Ultramicroscopy 23, 77–96 (1987)Google Scholar
  74. R.F. Loane, P. Xu, J. Silcox: Thermal vibrations in convergent-beam electron diffraction, Acta Crystallogr. A 47, 267–278 (1991)Google Scholar
  75. S. Hillyard, R.F. Loane, J. Silcox: Annular dark-field imaging: Resolution and thickness effects, Ultramicroscopy 49, 14–25 (1993)Google Scholar
  76. S. Hillyard, J. Silcox: Thickness effects in ADF STEM zone axis images, Ultramicroscopy 52, 325–334 (1993)Google Scholar
  77. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer: Standardless atom counting in scanning transmission electron microscopy, Nano Lett. 10, 4405–4408 (2010)Google Scholar
  78. J. Aarons, L. Jones, A. Varambhia, K.E. MacArthur, D. Ozkaya, M. Sarwar, C.-K. Skylaris, P.D. Nellist: Predicting the oxygen-binding properties of platinum nanoparticle ensembles by combining high-precision electron microscopy and density functional theory, Nano Lett. 17, 4003–4012 (2017)Google Scholar
  79. D.E. Jesson, S.J. Pennycook: Incoherent imaging of crystals using thermally scattered electrons, Proc. Royal Soc. A 449, 273–293 (1995)Google Scholar
  80. D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox: Simulation of thermal diffuse scattering including a detailed phonon dispersion curve, Ultramicroscopy 86, 371–380 (2001)Google Scholar
  81. D.D. Perovic, C.J. Rossouw, A. Howie: Imaging elastic strain in high-angle annular dark-field scanning transmission electron microscopy, Ultramicroscopy 52, 353–359 (1993)Google Scholar
  82. J. Gonnissen, A. De Backer, A.J. den Dekker, G.T. Martinez, A. Rosenauer, J. Sijbers, S. Van Aert: Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images, Appl. Phys. Lett. 105, 063116 (2014)Google Scholar
  83. E. Abe, S.J. Pennycook, A.P. Tsai: Direct observation of a local thermal vibration anomaly in a quasicrystal, Nature 421, 347–350 (2003)Google Scholar
  84. J. Fertig, H. Rose: Resolution and contrast of crystalline objects in high-resolution scanning transmission electron microscopy, Optik 59, 407–429 (1981)Google Scholar
  85. C.J. Rossouw, L.J. Allen, S.D. Findlay, M.P. Oxley: Channelling effects in atomic resolution STEM, Ultramicroscopy 96, 299–312 (2003)Google Scholar
  86. C. Dwyer, J. Etheridge: Scattering of Å-scale electron probes in silicon, Ultramicroscopy 96, 343–360 (2003)Google Scholar
  87. S.J. Pennycook: The impact of STEM aberration correction on materials science, Ultramicroscopy 180, 22–33 (2017)Google Scholar
  88. P.D. Nellist, S.J. Pennycook: Direct imaging of the atomic configuration of ultradispersed catalysts, Science 274, 413–415 (1996)Google Scholar
  89. K. Sohlberg, S. Rashkeev, A.Y. Borisevich, S.J. Pennycook, S.T. Pantelides: Origin of anomalous Pt–Pt distances in the Pt/alumina catalytic system, ChemPhysChem 5, 1893–1897 (2004)Google Scholar
  90. T. Yamazaki, M. Kawasaki, K. Watanabe, I. Hashimoto, M. Shiojiri: Artificial bright spots in atomic-resolution high-angle annular dark-field STEM images, J. Electron Microsc. 50, 517–521 (2001)Google Scholar
  91. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 464, 571–574 (2010)Google Scholar
  92. S. Farokhipoor, C. Magén, S. Venkatesan, J. Íñiguez, C.J.M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. de Graaf, A. Müller, M. Döblinger, C. Scheu, B. Noheda: Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide, Nature 515, 379–383 (2014)Google Scholar
  93. P.L. Galindo, S. Kret, A.M. Sanchez, J.-Y. Laval, A. Yáñez, J. Pizarro, E. Guerrero, T. Ben, S.I. Molina: The peak pairs algorithm for strain mapping from HRTEM images, Ultramicroscopy 107, 1186–1193 (2007)Google Scholar
  94. N. Nakanishi, T. Yamazaki, A. Rečnik, M. Čeh, M. Kawasaki, K. Watanabe, M. Shiojiri: Retrieval process of high-resolution HAADF-STEM images, J. Electron Microsc. 51, 383–390 (2002)Google Scholar
  95. A.B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S.I. Sanchez, S.A. Bradley, A. Li, I. Szlufarska, P.M. Voyles: Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts, Nat. Commun. 5, 4155 (2014)Google Scholar
  96. L. Jones, H. Yang, T.J. Pennycook, M.S.J. Marshall, S. Van Aert, N.D. Browning, M.R. Castell, P.D. Nellist: Smart Align—a new tool for robust non-rigid registration of scanning microscope data, Adv. Struct. Chem. Imaging 1, 8 (2015)Google Scholar
  97. L. Jones, S. Wenner, M. Nord, P.H. Ninive, O.M. Løvvik, R. Holmestad, P.D. Nellist: Optimising multi-frame ADF-STEM for high-precision atomic-resolution strain mapping, Ultramicroscopy 179, 57–62 (2017)Google Scholar
  98. M. Retsky: Observed single atom elastic cross sections in a scanning electron microscope, Optik 41, 127–142 (1974)Google Scholar
  99. H. E, K.E. MacArthur, T.J. Pennycook, E. Okunishi, A.J. D'Alfonso, N.R. Lugg, L.J. Allen, P.D. Nellist: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images, Ultramicroscopy 133, 109–119 (2013)Google Scholar
  100. J.M. LeBeau, S. Stemmer: Experimental quantification of annular dark-field images in scanning transmission electron microscopy, Ultramicroscopy 108, 1653–1658 (2008)Google Scholar
  101. F.F. Krause, M. Schowalter, T. Grieb, K. Müller-Caspary, T. Mehrtens, A. Rosenauer: Effects of instrument imperfections on quantitative scanning transmission electron microscopy, Ultramicroscopy 161, 146–160 (2016)Google Scholar
  102. L. Jones, K.E. MacArthur, V.T. Fauske, A.T.J. van Helvoort, P.D. Nellist: Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy, Nano Lett. 14, 6336–6341 (2014)Google Scholar
  103. G.T. Martinez, A. De Backer, A. Rosenauer, J. Verbeeck, S. Van Aert: The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images, Micron 63, 57–63 (2014)Google Scholar
  104. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer: Quantitative atomic resolution scanning transmission electron microscopy, Phys. Rev. Lett. 100, 206101 (2008)Google Scholar
  105. S. Van Aert, A. De Backer, G.T. Martinez, B. Goris, S. Bals, G. Van Tendeloo, A. Rosenauer: Procedure to count atoms with trustworthy single-atom sensitivity, Phys. Rev. B 87, 064107 (2013)Google Scholar
  106. A. De Backer, G.T. Martinez, K.E. MacArthur, L. Jones, A. Béché, P.D. Nellist, S. Van Aert: Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting, Ultramicroscopy 151, 56–61 (2015)Google Scholar
  107. A. De wael, A. De Backer, L. Jones, P.D. Nellist, S. Van Aert: Hybrid statistics-simulations based method for atom-counting from ADF STEM images, Ultramicroscopy 177, 69–77 (2017)Google Scholar
  108. A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, P.V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, S. Lutgen: Composition mapping in InGaN by scanning transmission electron microscopy, Ultramicroscopy 111, 1316–1327 (2011)Google Scholar
  109. G.T. Martinez, A. Rosenauer, A. De Backer, J. Verbeeck, S. Van Aert: Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy, Ultramicroscopy 137, 12–19 (2014)Google Scholar
  110. A.R. Lupini, S.J. Pennycook: Localisation in elastic and inelastic scattering, Ultramicroscopy 96, 313–322 (2003)Google Scholar
  111. P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.J.L. Gossmann: Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si, Nature 416, 826–829 (2002)Google Scholar
  112. P.M. Voyles, D.A. Muller, E.J. Kirkland: Depth-dependent imaging of individual dopant atoms in silicon, Microsc. Microanal. 10, 291–300 (2004)Google Scholar
  113. R. Ishikawa, A.R. Lupini, S.D. Findlay, T. Taniguchi, S.J. Pennycook: Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy, Nano Lett. 14, 1903–1908 (2014)Google Scholar
  114. M.H. Gass, U. Bangert, A.L. Bleloch, P. Wang, R.R. Nair, A.K. Geim: Free-standing graphene at atomic resolution, Nat. Nanotechnol. 3, 676–681 (2008)Google Scholar
  115. E. Okunishi, I. Ishikawa, H. Sawada, F. Hosokawa, M. Hori, Y. Kondo: Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy, Microsc. Microanal. 15, 164–165 (2009)Google Scholar
  116. S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, Y. Ikuhara: Robust atomic resolution imaging of light elements using scanning transmission electron microscopy, Appl. Phys. Lett. 95, 191913 (2009)Google Scholar
  117. S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, Y. Ikuhara: Dynamics of annular bright field imaging in scanning transmission electron microscopy, Ultramicroscopy 110, 903–923 (2010)Google Scholar
  118. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe: Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy, Nat. Mater. 10, 278–281 (2011)Google Scholar
  119. C. Dinges, H. Kohl, H. Rose: High-resolution imaging of crystalline objects by hollow-cone illumination, Ultramicroscopy 55, 91–100 (1994)Google Scholar
  120. S. Lee, Y. Oshima, E. Hosono, H. Zhou, K. Takayanagi: Reversible contrast in focus series of annular bright field images of a crystalline LiMn2O4 nanowire, Ultramicroscopy 125, 43–48 (2013)Google Scholar
  121. S. Zheng, C. Fisher, T. Kato, Y. Nagao, H. Ohta, Y. Ikuhara: Domain formation in anatase TiO2 thin films on LaAlO3 substrates, Appl. Phys. Lett. 101, 191602–191601 (2012)Google Scholar
  122. T.J. Pennycook, A.R. Lupini, H. Yang, M.F. Murfitt, L. Jones, P.D. Nellist: Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution, Ultramicroscopy 151, 160–167 (2015)Google Scholar
  123. N.H. Dekkers, H. de Lang: Differential phase contrast in a STEM, Optik 41, 452–456 (1974)Google Scholar
  124. B.C. McCallum, M.N. Landauer, J.M. Rodenburg: Complex image reconstruction of weak specimens from a three-sector detector in the STEM, Optik 101, 53–62 (1995)Google Scholar
  125. J.N. Chapman, R. Ploessl, D.M. Donnet: Differential phase contrast microscopy of magnetic materials, Ultramicroscopy 47, 331–338 (1992)Google Scholar
  126. N. Shibata, S.D. Findlay, Y. Kohno, H. Sawada, Y. Kondo, Y. Ikuhara: Differential phase-contrast microscopy at atomic resolution, Nat. Phys. 8, 611–615 (2012)Google Scholar
  127. R. Close, Z. Chen, N. Shibata, S.D. Findlay: Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons, Ultramicroscopy 159(1), 124–137 (2015)Google Scholar
  128. I. Lazić, E.G.T. Bosch, S. Lazar: Phase contrast STEM for thin samples: Integrated differential phase contrast, Ultramicroscopy 160, 265–280 (2016)Google Scholar
  129. N. Shibata, S.D. Findlay, H. Sasaki, T. Matsumoto, H. Sawada, Y. Kohno, S. Otomo, R. Minato, Y. Ikuhara: Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy, Sci. Rep. 5, 10040 (2015)Google Scholar
  130. K. Müller-Caspary, O. Oppermann, T. Grieb, F.F. Krause, A. Rosenauer, M. Schowalter, T. Mehrtens, A. Beyer, K. Volz, P. Potapov: Materials characterisation by angle-resolved scanning transmission electron microscopy, Sci. Rep. 6, 37146 (2016)Google Scholar
  131. E.M. Waddell, J.N. Chapman: Linear imaging of strong phase objects using asymmetrical detectors in STEM, Optik 54, 83–96 (1979)Google Scholar
  132. K. Müller, F.F. Krause, A. Béché, M. Schowalter, V. Galioit, S. Löffler, J. Verbeeck, J. Zweck, P. Schattschneider, A. Rosenauer: Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction, Nat. Commun. 5, 5653 (2014)Google Scholar
  133. H. Yang, R.N. Rutte, L. Jones, M. Simson, R. Sagawa, H. Ryll, M. Huth, T.J. Pennycook, M.L.H. Green, H. Soltau, Y. Kondo, B.G. Davis, P.D. Nellist: Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures, Nat. Commun. 7, 12532 (2016)Google Scholar
  134. J.M. Rodenburg, R.H.T. Bates: The theory of super-resolution electron microscopy via Wigner-distribution deconvolution, Philos. Trans. Royal Soc. A 339, 521–553 (1992)Google Scholar
  135. J.M. Rodenburg, B.C. McCallum, P.D. Nellist: Experimental tests on double-resolution coherent imaging via STEM, Ultramicroscopy 48, 303–314 (1993)Google Scholar
  136. T.A. Caswell, P. Ercius, M.W. Tate, A. Ercan, S.M. Gruner, D.A. Muller: A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope, Ultramicroscopy 109, 304–311 (2009)Google Scholar
  137. H. Ryll, M. Simson, R. Hartmann, P. Holl, M. Huth, S. Ihle, Y. Kondo, P. Kotula, A. Liebel, K. Müller-Caspary, A. Rosenauer, R. Sagawa, J. Schmidt, H. Soltau, L. Strüder: A pnCCD-based, fast direct single electron imaging camera for TEM and STEM, J. Instrum. 11, P04006 (2016)Google Scholar
  138. D. McGrouther, M. Krajnak, I. MacLaren, D. Maneuski, V. O'Shea, P.D. Nellist: Use of a hybrid silicon pixel (Medipix) detector as a STEM detector, Microsc. Microanal. 21(S3), 1595–1596 (2015)Google Scholar
  139. M.J. Humphry, B. Kraus, A.C. Hurst, A.M. Maiden, J.M. Rodenburg: Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging, Nat. Commun. 3, 730 (2012)Google Scholar
  140. A.J. D'Alfonso, A.J. Morgan, A.W.C. Yan, P. Wang, H. Sawada, A.I. Kirkland, L.J. Allen: Deterministic electron ptychography at atomic resolution, Phys. Rev. B 89, 064101 (2014)Google Scholar
  141. J.C.H. Spence: Direct inversion of dynamical electron diffraction patterns to structure factors, Acta Crystallogr. A 54, 7–18 (1998)Google Scholar
  142. J.C.H. Spence: Crystal structure determination by direct inversion of dynamical microdiffraction patterns, J. Microsc. 190, 214–221 (1998)Google Scholar
  143. W. Van den Broek, C.T. Koch: General framework for quantitative three-dimensional reconstruction from arbitrary detection geometries in TEM, Phys. Rev. B 87, 184108 (2013)Google Scholar
  144. S. Gao, P. Wang, F. Zhang, G.T. Martinez, P.D. Nellist, X. Pan, A.I. Kirkland: Electron ptychographic microscopy for three-dimensional imaging, Nat. Commun. 8, 163 (2017)Google Scholar
  145. H. Yang, J.G. Lozano, T.J. Pennycook, L. Jones, P.B. Hirsch, P.D. Nellist: Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning, Nat. Commun. 6, 7266 (2015)Google Scholar
  146. E.C. Cosgriff, P.D. Nellist, A.J. D'Alfonso, S.D. Findlay, G. Behan, P. Wang, L.J. Allen, A.I. Kirkland: Image contrast in aberration-corrected scanning confocal electron microscopy, Adv. Imaging Electron Phys. 162, 45–76 (2010)Google Scholar
  147. K. Van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook: Three-dimensional imaging of individual hafnium atoms inside a semiconductor device, Appl. Phys. Lett. 87, 034104 (2005)Google Scholar
  148. A.Y. Borisevich, A.R. Lupini, S.J. Pennycook: Depth sectioning with the aberration-corrected scanning transmission electron microscope, Proc. Natl. Acad. Sci. U.S.A. 103, 3044–3048 (2006)Google Scholar
  149. G. Behan, E.C. Cosgriff, A.I. Kirkland, P.D. Nellist: Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope, Philos. Trans. Royal Soc. A 367, 3825–3844 (2009)Google Scholar
  150. B.R. Frieden: Optical transfer of the three-dimensional object, J. Opt. Soc. Am. 57, 36–41 (1967)Google Scholar
  151. P.D. Nellist: Electron-optical sectioning for three-dimensional imaging of crystal defect structures, Mater. Sci. Semicond. Process. 65, 18–23 (2017)Google Scholar
  152. P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Heth\hack{\-}erington: Confocal operation of a transmission electron microscope with two aberration correctors, Appl. Phys. Lett. 89, 124105 (2006)Google Scholar
  153. K. Mitsuishi, A. Hashimoto, M. Takeguchi, M. Shimojo, K. Ishizuka: Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy: II. Point spread function analysis, Ultramicroscopy 112, 53–60 (2012)Google Scholar
  154. P.D. Nellist, P. Wang: Optical sectioning and confocal imaging and analysis in the transmission electron microscope, Annu. Rev. Mater. Res. 42, 125–143 (2012)Google Scholar
  155. P. Wang, G. Behan, M. Takeguchi, A. Hashimoto, K. Mitsuishi, M. Shimojo, A.I. Kirkland, P.D. Nellist: Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope, Phys. Rev. Lett. 104, 200801 (2010)Google Scholar
  156. P. Wang, A. Hashimoto, M. Takeguchi, K. Mitsuishi, M. Shimojo, Y. Zhu, M. Okuda, A.I. Kirkland, P.D. Nellist: Three-dimensional elemental mapping of hollow Fe2O3@SiO2 mesoporous spheres using scanning confocal electron microscopy, Appl. Phys. Lett. 100, 213117 (2012)Google Scholar
  157. J.G. Lozano, H. Yang, M.P. Guerrero-Lebrero, A.J. D’Alfonso, A. Yasuhara, E. Okunishi, S. Zhang, C.J. Humphreys, L.J. Allen, P.L. Galindo, P.B. Hirsch, P.D. Nellist: Direct observation of depth-dependent atomic displacements associated with dislocations in gallium nitride, Phys. Rev. Lett. 113, 135503 (2014)Google Scholar
  158. A.M. Maiden, M.J. Humphry, J.M. Rodenburg: Ptychographic transmission microscopy in three dimensions using a multi-slice approach, J. Opt. Soc. Am. A 29, 1606–1614 (2012)Google Scholar
  159. R. Brydson: Electron Energy Loss Spectroscopy, 1st edn. (BIOS, Oxford 2001)Google Scholar
  160. R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum, New York 1996)Google Scholar
  161. H.A. Brink, M.M.G. Barfels, R.P. Burgner, B.N. Edwards: A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs, Ultramicroscopy 96, 367–384 (2003)Google Scholar
  162. A. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, N. Menon, B. Kraus, C. Mao, B. McGinn: The GIF Quantum, a next generation post-column imaging energy filter, Ultramicroscopy 110, 962–970 (2010)Google Scholar
  163. P.C. Tiemeijer: Operation modes of a TEM monochromator. In: Proc. EMAG99 (1999) pp. 191–194Google Scholar
  164. M. Mukai, J.S. Kim, K. Omoto, H. Sawada, A. Kimura, A. Ikeda, J. Zhou, T. Kaneyama, N.P. Young, J.H. Warner, P.D. Nellist, A.I. Kirkland: The development of a 200kV monochromated field emission electron source, Ultramicroscopy 140, 37–43 (2014)Google Scholar
  165. O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J. Zhu, P.E. Batson, M.J. Lagos, R.F. Egerton, P.A. Crozier: Vibrational spectroscopy in the electron microscope, Nature 514, 209–212 (2014)Google Scholar
  166. B. Rafferty, L.M. Brown: Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy, Phys. Rev. B 58, 10326 (1998)Google Scholar
  167. R. Senga, K. Suenaga: Single-atom electron energy loss spectroscopy of light elements, Nat. Commun. 6, 7943 (2015)Google Scholar
  168. N.D. Browning, M.F. Chisholm, S.J. Pennycook: Atomic-resolution chemical analysis using a scanning transmission electron microscope, Nature 366, 143–146 (1993)Google Scholar
  169. P.E. Batson: Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity, Nature 366, 727–728 (1993)Google Scholar
  170. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook: Spectroscopic imaging of single atoms within a bulk solid, Phys. Rev. Lett. 92, 095502 (2004)Google Scholar
  171. E.J. Monkman, C. Adamo, J.A. Mundy, D.E. Shai, J.W. Harter, D. Shen, B. Burganov, D.A. Muller, D.G. Schlom, K.M. Shen: Quantum many-body interactions in digital oxide superlattices, Nat. Mater. 11, 855–859 (2012)Google Scholar
  172. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G.A. Botton: Multipolar Plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe, Nano Lett. 11, 1499–1504 (2011)Google Scholar
  173. N. Bonnet, N. Brun, C. Colliex: Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis, Ultramicroscopy 77, 97–112 (1999)Google Scholar
  174. M. Varela, M.P. Oxley, W. Luo, J. Tao, M. Watanabe, A.R. Lupini, S.T. Pantelides, S.J. Pennycook: Atomic-resolution imaging of oxidation states in manganites, Phys. Rev. B 79, 085117 (2009)Google Scholar
  175. S.J.B. Reed: The single-scattering model and spatial-resolution in x-ray analysis of thin foils, Ultramicroscopy 7, 405–409 (1982)Google Scholar
  176. L.J. Allen, S.D. Findlay, A.R. Lupini, M.P. Oxley, S.J. Pennycook: Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy, Phys. Rev. Lett. 91, 105503 (2003)Google Scholar
  177. R.H. Ritchie, A. Howie: Inelastic scattering probabilities in scanning transmission electron microscopy, Philos. Mag. A 58, 753–767 (1988)Google Scholar
  178. H. Kohl, H. Rose: Theory of image formation by inelastically scattered electrons in the electron microscope, Adv. Electron. Electron Phys. 65, 173–227 (1985)Google Scholar
  179. D.A. Muller, J. Silcox: Delocalisation in inelastic imaging, Ultramicroscopy 59, 195–213 (1995)Google Scholar
  180. B. Rafferty, S.J. Pennycook: Towards atomic column-by-column spectroscopy, Ultramicroscopy 78, 141–151 (1999)Google Scholar
  181. E.C. Cosgriff, M.P. Oxley, L.J. Allen, S.J. Pennycook: The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope, Ultramicroscopy 102, 317–326 (2005)Google Scholar
  182. M.P. Oxley, E.C. Cosgriff, L.J. Allen: Nonlocality in imaging, Phys. Rev. Lett. 94, 203906 (2005)Google Scholar
  183. D.B. Williams, C.B. Carter: Transmission Electron Microscopy, 1st edn. (Plenum, New York 1996)Google Scholar
  184. M. Watanabe, D.B. Williams: Atomic-level detection by x-ray microanalysis in the analytical electron microscope, Ultramicroscopy 78, 89–101 (1999)Google Scholar
  185. H.S. von Harrach, P. Dona, B. Freitag, H. Soltau, A. Niculae, M. Rohde: An integrated multiple silicon drift detector system for transmission electron microscopes, J. Phys. Conf. Ser. 241(1), 012015 (2009)Google Scholar
  186. A.J. D’Alfonso, B. Freitag, D. Klenov, L.J. Allen: Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy, Phys. Rev. B 81, 100101 (2010)Google Scholar
  187. Y. Zhu, H. Inada, K. Nakamura, J. Wall: Imaging single atoms using secondary electrons with an aberration-corrected electron microscope, Nat. Mater. 8, 808–812 (2009)Google Scholar
  188. H. Mullejans, A.L. Bleloch, A. Howie, M. Tomita: Secondary-electron coincidence detection and time-of-flight spectroscopy, Ultramicroscopy 52, 360–368 (1993)Google Scholar
  189. M. Kociak, L.F. Zagonel: Cathodoluminescence in the scanning transmission electron microscope, Ultramicroscopy 176, 112–131 (2017)Google Scholar
  190. E.M. James, N.D. Browning: Practical aspects of atomic resolution imaging and analysis in STEM, Ultramicroscopy 78, 125–139 (1999)Google Scholar
  191. P.W. Hawkes, E. Kasper: Principles of Electron Optics, 2nd edn. (Academic Press, London 2017)Google Scholar
  192. L.W. Swanson, L.C. Crouser: Total energy distribution of field-emitted electrons and single-plane work functions for tungsten, Phys. Rev. 163, 622 (1967)Google Scholar
  193. C. Dwyer, R. Erni, J. Etheridge: Measurement of effective source distribution and its importance for quantitative interpretation of STEM images, Ultramicroscopy 110, 952–957 (2010)Google Scholar
  194. R.H. Wade: A brief look at imaging and contrast theory, Ultramicroscopy 46, 145–156 (1992)Google Scholar
  195. P.D. Nellist, S.J. Pennycook: Subangstrom resolution by underfocussed incoherent transmission electron microscopy, Phys. Rev. Lett. 81, 4156–4159 (1998)Google Scholar
  196. P.D. Nellist, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z. Szilagyi, A.R. Lupini, S.J. Pennycook: Towards sub-0.5 ångstrom beams through aberration corrected STEM. In: Proc. EMAG2003 (IOP, London 2003) pp. 159–164Google Scholar
  197. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban: A spherical-aberration-corrected 200 kV transmission electron microscope, Ultramicroscopy 75, 53–60 (1998)Google Scholar
  198. Z. Shao: On the fifth order aberration in a sextupole corrected probe forming system, Rev. Sci. Instrum. 59, 2429–2437 (1988)Google Scholar
  199. H. Rose: Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope, Optik 85, 19–24 (1990)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations