Microscopy of Nanoporous Crystals

Part of the Springer Handbooks book series (SHB)


Nanoporous crystals are widely studied and used for applications in \(\mathrm{H_{2}}\) storage, \(\mathrm{CO_{2}}\) capture, petrochemical catalysis and many other applications, yet the imaging of their atomic structure has proven difficult because of their radiation sensitivity and the small size of these microcrystals. This chapter describes the development of the new modes of electron microscopy needed to study them, and compares these with traditional methods such as x-ray diffraction. This class of materials has traditionally been dominated by the zeolites and zeotype materials, but has recently been expanded to include meso-/macroporous crystals and other new framework structures (MOFs, ZIFs COFs, etc.). Using different building blocks or units, versatile crystal structures have been synthesized for various applications. Their properties and functions are governed primarily by periodic arrangements of pores and/or cavities and their surroundings with various atomic moieties inside crystals. In this chapter, electron microscopy studies of nanoporous materials are discussed from different perspectives. Special attention is paid to the observation of fine defect structures, through careful analysis of electron diffraction, high-resolution images and spectroscopy data. The experimental conditions for imaging beam-sensitive materials, such as MOFs, are described. The contents have been divided into sections based on the types of materials and their geometric features. Examples of structure analysis of various nanoporous materials are given and discussed. New technical developments and existing challenges are described.

electron microscopy structure modulation zeolite silica mesoporous crystal MOF 



This work was supported by the Shanghai Pujiang Program (17PJ1406400), Shanghai Natural Science Fund (17ZR1418600), the Young Elite Scientist Sponsorship Program By CAST (2017QNRC001) (Y.M.), the National Natural Science Foundation of China 21571128, the National Excellent Doctoral Dissertation of China 201454, and the Shanghai Rising Star Program 17QA1401700 (L.H.), JST (Japan), VR and Wallenberg Foundation (Sweden) and Foreign Expert Recruiting Program (China) (O.T.). This work is partially supported by CℏEM, SPST, ShanghaiTech under the grant #EM02161943 (Y.M., A.M., P.O. and O.T.). O.T. acknowledges Sir John Meurig Thomas for introducing and guiding him to his fascinating field, the structural study of nanostructured materials by electron crystallography and imaging.


  1. O. Terasaki, T. Ohsuna, Z. Liu, Y. Sakamoto, A.E. Garcia-Bennett: Structural study of meso-porous materials by electron microscopy. In: Proc. Meet. Mesoporous Cryst. Relat. Nano-Struct. Mater (Elsevier, Amsterdam 2004) pp. 261–288Google Scholar
  2. C. Xiao, N. Fujita, K. Miyasaka, Y. Sakamoto, O. Terasaki: Dodecagonal tiling in mesoporous silica, Nature 487, 349–353 (2012)Google Scholar
  3. IZA-SC: Database of zeolite structures, (2017)
  4. M.W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. MacKay, A. Ferreira, J. Rocha, S. Lidin: Structure of the microporous titanosilicate ETS-10, Nature 367, 347–351 (1994)Google Scholar
  5. S. Nair, H.-K. Jeong, A. Chandrasekaran, C.M. Braunbarth, M. Tsapatsis, S.M. Kuznicki: Synthesis and structure determination of ETS-4 single crystals, Chem. Mater. 13, 4247–4254 (2001)Google Scholar
  6. J. Rocha, P. Brandao, Z. Lin, M.W. Anderson, V. Alfredsson, O. Terasaki: The first large-pore vanadosilicate framework containing hexacoordinated vanadium, Angew. Chem. Int. Ed. 36, 100–102 (1997)Google Scholar
  7. S.J. Datta, C. Khumnoon, Z.H. Lee, W.K. Moon, S. Docao, T.H. Nguyen, I.C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K.B. Yoon: CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate, Science 350, 302–306 (2015)Google Scholar
  8. Z. Zhang, M. Sadakane, S.-I. Noro, N. Hiyoshi, A. Yoshida, M. Hara, W. Ueda: The assembly of an all-inorganic porous soft framework from metal oxide molecular nanowires, Chem. Eur. J. 23, 1972–1980 (2017)Google Scholar
  9. C.T. Kresge, M. Leonowicz, W. Roth, J.C. Vartuli, J. Beck: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359, 710–712 (1992)Google Scholar
  10. Q. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, D.P. Siegel, A. Firouzi, B.F. Chmelka: Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays, Chem. Mater. 6, 1176–1191 (1994)Google Scholar
  11. Y. Wan, D. Zhao: On the controllable soft-templating approach to mesoporous silicates, Chem. Rev. 107, 2821–2860 (2007)Google Scholar
  12. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc. Faraday Trans. II 72, 1525–1568 (1976)Google Scholar
  13. H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi: Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402, 276–279 (1999)Google Scholar
  14. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M.A. O'Keeffe, O.M. Yaghi: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A. 103, 10186–10191 (2006)Google Scholar
  15. H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortes, A.P. Côté, R.E. Taylor, M.A. O'Keeffe, O.M. Yaghi: Designed synthesis of 3-D covalent organic frameworks, Science 316, 268–272 (2007)Google Scholar
  16. P.M. Arnal, M. Comotti, F. Schüth: High-temperature-stable catalysts by hollow sphere encapsulation, Angew. Chem. Int. Ed. 45, 8224–8227 (2006)Google Scholar
  17. C. Galeano, R. Güttel, M. Paul, P. Arnal, A.-H. Lu, F. Schüth: Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example, Chem. Eur. J. 17, 8434–8439 (2011)Google Scholar
  18. H.J. Shin, R. Ryoo, Z. Liu, O. Terasaki: Template synthesis of asymmetrically mesostructured platinum networks, J. Am. Chem. Soc. 123, 1246–1247 (2001)Google Scholar
  19. Z. Ma, T. Kyotani, Z. Liu, O. Terasaki, A. Tomita: Very high surface area microporous carbon with a three-dimensional nano-array structure: Synthesis and its molecular structure, Chem. Mater. 13, 4413–4415 (2001)Google Scholar
  20. K. Kim, T. Lee, Y. Kwon, Y. Seo, J. Song, J.K. Park, H. Lee, J.Y. Park, H. Ihee, S.J. Cho, R. Ryoo: Lanthanum-catalysed synthesis of microporous 3-D graphene-like carbons in a zeolite template, Nature 535, 131–135 (2016)Google Scholar
  21. J.W. Menter: The direct study by electron microscopy of crystal lattices and their imperfections, Proc. R. Soc. A 236, 119–135 (1956)Google Scholar
  22. J.W. Menter: The electron microscopy of crystal lattices, Adv. Phys. 7, 299–348 (1958)Google Scholar
  23. J.G. Allpress, J.V. Sanders: The direct observation of the structure of real crystals by lattice imaging, J. Appl. Crystallogr. 6, 165–190 (1973)Google Scholar
  24. M.A. O'Keeffe, J.V. Sanders: Phase-contrast component of lattice images of a zeolite crystal, Optik 46, 421–430 (1976)Google Scholar
  25. L.A. Bursill, E.A. Lodge, J.M. Thomas: Zeolitic structures as revealed by high-resolution electron microscopy, Nature 286, 111–113 (1980)Google Scholar
  26. L.A. Bursill, J.M. Thomas: High-resolution electron microscopy of microcrystalline partially crystalline and amorphous silicates, J. Phys. Chem. 85, 3007–3010 (1981)Google Scholar
  27. L.A. Bursill, J.M. Thomas, K.-J. Rao: Stability of zeolites under electron irradiation and imaging of heavy cations in silicates, Nature 289, 157–158 (1981)Google Scholar
  28. J.M. Thomas, G.R. Millward: Direct, real-space determination of intergrowths in ZSM-5/ZSM-11 catalysts, J. Chem. Soc. Chem. Commun. (1982), Scholar
  29. J.M. Thomas, G.R. Millward, L.A. Bursill: The ultrastructure of carbons, catalytically active graphitic compounds and zeolitic catalysts, Philos. Trans. R. Soc. A 300, 43–49 (1981)Google Scholar
  30. O. Terasaki, T. Ohsuna: TEM study on zeolite fine structures: Homework from Cambridge days, Top. Catal. 24, 13–18 (2003)Google Scholar
  31. O. Terasaki, J.M. Thomas: Imaging the structures of zeolite L and synthetic mazzite, Proc. R. Soc. A 395, 153–164 (1984)Google Scholar
  32. G.R. Millward, J.M. Thomas, O. Terasaki, D. Watanabe: Direct imaging and characterization of intergrowth-defects in erionite, Zeolites 6, 91–95 (1986)Google Scholar
  33. M.W. Anderson, K.S. Pachis, F.O. Prbin, S.W. Carr, O. Terasaki, T. Ohsuna, V. Alfreddson: Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites, J. Chem. Soc. Chem. Commun. (1991), Scholar
  34. T. Ohsuna, O. Terasaki, Y. Nakagawa, S.I. Zones, K. Hiraga: Electron microscopic study of intergrowth of MFI and MEL: Crystal faults in B-MEL, J. Phys. Chem. B 101, 9881–9885 (1997)Google Scholar
  35. O. Terasaki, K. Yamazaki, J.M. Thomas, T. Ohsuna, D. Watanabe, J.V. Sanders, J.C. Barry: Isolating individual chains of selenium by incorporation into the channels of a zeolite, Nature 330, 58–60 (1987)Google Scholar
  36. J.-O. Bovin, V. Alfredsson, G. Karlsson, A. Carlsson, Z. Blum, O. Terasaki: TEM-tomography of FAU-zeolite crystals containing Pt-clusters, Ultramicroscopy 62, 277–281 (1996)Google Scholar
  37. O. Terasaki, Z.K. Tang, Y. Nozue, T. Goto: PbI2 confined in the spaces of LTA zeolites, MRS Proceedings 233, 139 (1991)Google Scholar
  38. A. Carlsson, T. Oku, J.O. Bovin, G. Karlsson, Y. Okamoto, N. Ohnishi, O. Terasaki: The structure of iron oxide implanted zeolite Y, determined by high-resolution electron microscopy and refined with selected area electron diffraction amplitudes, Chem. Eur. J. 5, 244–249 (1999)Google Scholar
  39. Y. Sakamoto, N. Togashi, O. Terasaki, T. Ohsuna, Y. Okamoto, K. Hiraga: MoS2 clusters in the spaces of FAU zeolite, Mater. Sci. Eng. A 217/218, 147–150 (1996)Google Scholar
  40. P. Wagner, O. Terasaki, S. Ritsch, J.G. Nery, S.I. Zones, M.E. Davis, K. Hiraga: Electron diffraction structure solution of a nanocrystalline zeolite at atomic resolution, J. Phys. Chem. B 103, 8245–8250 (1999)Google Scholar
  41. Z. Liu, T. Ohsuna, O. Terasaki, M.A. Camblor, M.J. Diaz-Cabañas, K. Hiraga: The first zeolite with three-dimensional intersecting straight-channel system of 12-membered rings, J. Am. Chem. Soc. 123, 5370–5371 (2001)Google Scholar
  42. T. Ohsuna, Z. Liu, O. Terasaki, K. Hiraga, M. Camblor: Framework determination of a polytype of zeolite beta by using electron crystallography, J. Phys. Chem. B 106, 5673–5678 (2002)Google Scholar
  43. T. Ohsuna, O. Terasaki, D. Watanabe, M.W. Anderson, S.W. Carr: Dealumination of hexagonal (EMT)/cubic (FAU) zeolite intergrowth materials: A SEM and HRTEM study, Chem. Mater. 6, 2201–2204 (1994)Google Scholar
  44. S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki: An ordered mesoporous organosilica hybrid material with a crystal-like wall structure, Nature 416, 304–307 (2002)Google Scholar
  45. O. Terasaki: Electron microscopy studies in molecular sieve science. In: Structures and Structure Determination, ed. by H.G. Karge, J. Weitkamp (Springer, Berlin, Heidelberg 1999) pp. 71–112Google Scholar
  46. O. Terasaki, T. Ohsuna: Structural study of microporous and mesoporous materials by transmission electron microscopy. In: Handbook of Zeolite Science and Technology, ed. by S.M. Auerbach, K.A. Carrado, P.K. Dutta (CRC, Boca Raton 2003)Google Scholar
  47. O. Terasaki, T. Ohsuna: Is electron microscope an efficient magnifying glass for micro- and meso-porous materials? In: Proc. 13th Int. Zeolite Conf (Elsevier, Amsterdam 2001) pp. 61–71Google Scholar
  48. O. Terasaki, T. Ohsuna, Z. Liu, M. Kaneda, S. Kamiya, A. Carlsson, T. Tsubakiyama, Y. Sakamoto, S. Inagaki, S. Che, T. Tatsumi, M.A. Camblor, R. Ryoo, D. Zhao, G. Stucky, D. Shindo, K. Hiraga: Porous Materials: Looking Through the Electron Microscope (Elsevier, Amsterdam 2002)Google Scholar
  49. I. Díaz, A. Mayoral: TEM studies of zeolites and ordered mesoporous materials, Micron 42, 512–527 (2011)Google Scholar
  50. A. Mayoral, R. Arenal, V. Gascón, C. Márquez-Álvarez, R.M. Blanco, I. Díaz: Designing functionalized mesoporous materials for enzyme immobilization: Locating enzymes by using advanced TEM techniques, ChemCatChem 5, 903–909 (2013)Google Scholar
  51. D. Denysenko, M. Grzywa, M. Tonigold, B. Streppel, I. Krkljus, M. Hirscher, E. Mugnaioli, U. Kolb, J. Hanss, D. Volkmer: Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes, Chem. Eur. J. 17, 1837–1848 (2011)Google Scholar
  52. M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J.M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock: Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal-organic framework, Angew. Chem. Int. Ed. 51, 10373–10376 (2012)Google Scholar
  53. E. Mugnaioli, U. Kolb: Applications of automated diffraction tomography (ADT) on nanocrystalline porous materials, Microporous Mesoporous Mater. 166, 93–101 (2013)Google Scholar
  54. Y. Yun, W. Wan, F. Rabbani, J. Su, H. Xu, S. Hovmöller, M. Johnsson, X. Zou: Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction, J. Appl. Crystallogr. 47, 2048–2054 (2014)Google Scholar
  55. O.I. Lebedev, F. Millange, C. Serre, G. van Tendeloo, G. Férey: First direct imaging of giant pores of the metal-organic framework MIL-101, Chem. Mater. 17, 6525–6527 (2005)Google Scholar
  56. C. Wiktor, S. Turner, D. Zacher, R.A. Fischer, G. van Tendeloo: Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid nitrogen temperature, Microporous Mesoporous Mater. 162, 131–135 (2012)Google Scholar
  57. L. Zhu, D. Zhang, M. Xue, H. Li, S. Qiu: Direct observations of the MOF (UiO-66) structure by transmission electron microscopy, CrystEngComm 15, 9356–9359 (2013)Google Scholar
  58. J. Cravillon, S. Muenzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke: Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework, Chem. Mater. 21, 1410–1412 (2009)Google Scholar
  59. A. Mayoral: Atomic resolution analysis of porous solids: A detailed study of silver ion-exchanged zeolite A, Microporous Mesoporous Mater. 166, 117–122 (2013)Google Scholar
  60. A. Mayoral, J. Coronas, C. Casado, C. Tellez, I. Díaz: Atomic resolution analysis of microporous titanosilicate ETS-10 through aberration corrected STEM imaging, ChemCatChem 5, 2595–2598 (2013)Google Scholar
  61. A. Mayoral, P.A. Anderson, I. Díaz: Zeolites are no longer a challenge: Atomic resolution data by aberration-corrected STEM, Micron 68, 146–151 (2015)Google Scholar
  62. A. Mayoral, T. Carey, P.A. Anderson, A. Lubk, I. Díaz: Atomic resolution analysis of silver ion-exchanged zeolite A, Angew. Chem. Int. Ed. 50, 11230–11233 (2011)Google Scholar
  63. A. Mayoral, J.E. Readman, P.A. Anderson: Aberration-corrected STEM analysis of a cubic Cd array encapsulated in zeolite A, J. Phys. Chem. C 117, 24485–24489 (2013)Google Scholar
  64. A.E. Garcia-Bennett, N. Kupferschmidt, Y. Sakamoto, S. Che, O. Terasaki: Synthesis of mesocage structures by kinetic control of self-assembly in anionic surfactants, Angew. Chem. Int. Ed. 44, 5317–5322 (2005)Google Scholar
  65. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo: Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature 461, 246–249 (2009)Google Scholar
  66. K. Lund, N. Muroyama, O. Terasaki: Accidental extinction in powder XRD intensity of porous crystals: Mesoporous carbon crystal CMK-5 and layered zeolite-nanosheets, Microporous Mesoporous Mater. 128, 71–77 (2010)Google Scholar
  67. L. Han, K. Miyasaka, O. Terasaki: Electron crystallography. In: Structure from Diffraction Methods, ed. by D.W. Bruce, D. O'Hare, R.I. Walton (Wiley, Chichester 2014) pp. 201–258Google Scholar
  68. J.M. Zuo, J.C.H. Spence: Electron Microdiffraction (Springer, New York 2013)Google Scholar
  69. D. Watanabe, R. Uyeda, A. Fukuhara: Determination of the atom form factor by high-voltage electron diffraction, Acta Crystallogr. A 25, 138–140 (1969)Google Scholar
  70. M. Fujimoto, O. Terasaki, D. Watanabe: Determination of atomic scattering factors of vanadium and chromium by means of vanishing Kikuchi line method, Phys. Lett. A 41, 159–160 (1972)Google Scholar
  71. P.A. Doyle, P.S. Turner: Relativistic Hartree-Fock x-ray and electron scattering factors, Acta Crystallogr. A 24, 390–397 (1968)Google Scholar
  72. Z. Liu, N. Fujita, K. Miyasaka, L. Han, S.M. Stevens, M. Suga, S. Asahina, B. Slater, C. Xiao, Y. Sakamoto, M.W. Anderson, R. Ryoo, O. Terasaki: A review of fine structures of nanoporous materials as evidenced by microscopic methods, J. Electron Microsc. 62, 109–146 (2013)Google Scholar
  73. D. Watanabe, O. Terasaki: Experimental study on the ionicity in the TiO phase. An application of the new method of determining the structure factor by high voltage electron diffraction. In: Solid State Chemistry, NBS Special Publication, Vol. 364, ed. by R.S. Roth, S.J. Schneider (U.S. Govt. Printing Office, Washington D.C. 1972) pp. 155–164Google Scholar
  74. T. Arii, R. Uyeda, O. Terasaki, D. Watanabe: Accurate determination of atomic scattering factors of f.c.c. and h.c.p. metals by high-voltage electron diffraction, Acta Crystallogr. A 29, 295–298 (1973)Google Scholar
  75. O. Terasaki, T. Fukamachi, S. Hosoya, D. Watanabe: Anisotropy of Compton profile on vanadium single crystal, Phys. Lett. A 43, 123–124 (1973)Google Scholar
  76. S. Ohara, T. Fukamachi, S. Hosoya, T. Takeda, O. Terasaki: Anisotropy of Compton profile on chromium single crystal, Phys. Lett. A 49, 337–338 (1974)Google Scholar
  77. J.M. Zuo, M. Kim, M. O'Keeffe, J.C.H. Spence: Direct observation of d-orbital holes and Cu--Cu bonding in Cu2O, Nature 401, 49–52 (1999)Google Scholar
  78. K. Tsuda, Y. Ogata, K. Takagi, T. Hashimoto, M. Tanaka: Refinement of crystal structural parameters and charge density using convergent-beam electron diffraction---The rhombohedral phase of LaCrO3, Acta Crystallogr. A 58, 514–525 (2002)Google Scholar
  79. B.K. Vainshtein: Fundamentals of Crystals. Symmetry and Methods of Structural Crystallography, Modern Crystallography, Vol. 1 (Springer, Heidelberg 1994)Google Scholar
  80. L. Palatinus, P. Brázda, P. Boullay, O. Perez, M. Klementová, S. Petit, V. Eigner, M. Zaarour, S. Mintova: Hydrogen positions in single nanocrystals revealed by electron diffraction, Science 355, 166–169 (2017)Google Scholar
  81. R. Vincent, P.A. Midgley: Double conical beam-rocking system for measurement of integrated electron diffraction intensities, Ultramicroscopy 53, 271–282 (1994)Google Scholar
  82. U. Kolb, T. Gorelik, C. Kübel, M.T. Otten, D. Hubert: Towards automated diffraction tomography: Part I---Data acquisition, Ultramicroscopy 107, 507–513 (2007)Google Scholar
  83. U. Kolb, T. Gorelik, M.T. Otten: Towards automated diffraction tomography. Part II---Cell parameter determination, Ultramicroscopy 108, 763–772 (2008)Google Scholar
  84. D. Zhang, P. Oleynikov, S. Hovmöller, X. Zou: Collecting 3-D electron diffraction data by the rotation method, Z. Kristallogr. 225, 94–102 (2010)Google Scholar
  85. M. Gemmi, P. Oleynikov: Scanning reciprocal space for solving unknown structures: Energy filtered diffraction tomography and rotation diffraction tomography methods, Z. Kristallogr. 228, 51–58 (2013)Google Scholar
  86. X. Zou, S. Hovmöller, P. Oleynikov: Electron Crystallography: Electron Microscopy and Electron Diffraction (Oxford Univ. Press, Oxford 2011)Google Scholar
  87. T.E. Gorelik, A.A. Stewart, U. Kolb: Structure solution with automated electron diffraction tomography data: Different instrumental approaches, J. Microsc. 244, 325–331 (2011)Google Scholar
  88. EDT 3-D: AnaliteX,
  89. NanoMEGAS: DigiStar Precession Unit,
  90. M. Gemmi, M.G.I. La Placa, A.S. Galanis, E.F. Rauch, S. Nicolopoulos: Fast electron diffraction tomography, J. Appl. Crystallogr. 48, 718–727 (2015)Google Scholar
  91. D. Shi, B.L. Nannenga, M.G. Iadanza, T. Gonen: Three-dimensional electron crystallography of protein microcrystals, eLIFE 2, e01345 (2013)Google Scholar
  92. S. Schlitt, T.E. Gorelik, A.A. Stewart, E. Schömer, T. Raasch, U. Kolb: Application of clustering techniques to electron-diffraction data: Determination of unit-cell parameters, Acta Crystallogr. A 68, 536–546 (2012)Google Scholar
  93. T.E. Gorelik, J. van de Streek, A.F.M. Kilbinger, G. Brunklaus, U. Kolb: Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data, Acta Crystallogr. B 68, 171–181 (2012)Google Scholar
  94. I. Rozhdestvenskaya, E. Mugnaioli, M. Czank: The structure of charoite, (K,Sr,Ba,Mn)15--16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, solved by conventional and automated electron diffraction, Mineral. Mag. 74, 159–177 (2010)Google Scholar
  95. E. Mugnaioli, I. Andrusenko, T. Schüler, N. Loges, R.E. Dinnebier, M. Panthöfer, W. Tremel, U. Kolb: Ab initio structure determination of vaterite by automated electron diffraction, Angew. Chem. Int. Ed. 51, 7041–7045 (2012)Google Scholar
  96. J. Jiang, J.L. Jordá, J. Yu, L.A. Baumes, E. Mugnaioli, M.J. Díaz-Cabañas, U. Kolb, A. Corma: Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43, Science 333, 1131–1134 (2011)Google Scholar
  97. G. Bellussi, E. Montanari, E. Di Paola, R. Millini, A. Carati, C. Rizzo, W.O.J. Parker, M. Gemmi, E. Mugnaioli, U. Kolb, S. Zanardi: ECS-3: A crystalline hybrid organic-inorganic aluminosilicate with open porosity, Angew. Chem. Int. Ed. 51, 666–669 (2012)Google Scholar
  98. I. Andrusenko, E. Mugnaioli, T.E. Gorelik, D. Koll, M. Panthöfer, W. Tremel, U. Kolb: Structure analysis of titanate nanorods by automated electron diffraction tomography, Acta Crystallogr. B 67, 218–225 (2011)Google Scholar
  99. T. Willhammar, J. Sun, W. Wan, P. Oleynikov, D. Zhang, X. Zou, M. Moliner, J. Gonzalez, C. Martínez, F. Rey, A. Corma: Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography, Nat. Chem. 4, 188 (2012)Google Scholar
  100. Y. Li, L. Zhang, A. Torres-Pardo, J.M. Gonzalez-Calbet, Y. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima, D. Cha, L. Zhao, K. Takanabe, J. Kubota, K. Domen: Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency, Nat. Commun. 4, 2566 (2013)Google Scholar
  101. A. Mayence, J.R.G. Navarro, Y. Ma, O. Terasaki, L. Bergström, P. Oleynikov: Phase identification and structure solution by three-dimensional electron diffraction tomography: Gd-phosphate nanorods, Inorg. Chem. 53, 5067–5072 (2014)Google Scholar
  102. J.R.G. Navarro, A. Mayence, J. Andrade, F. Lerouge, F. Chaput, P. Oleynikov, L. Bergström, S. Parola, A. Pawlicka: WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions, Langmuir 30, 10487–10492 (2014)Google Scholar
  103. M. Zhong, Y. Ma, P. Oleynikov, K. Domen, J.-J. Delaunay: A conductive ZnO–ZnGaON nanowire-array-on-a-film photoanode for stable and efficient sunlight water splitting, Energy Environ. Sci. 7, 1693–1699 (2014)Google Scholar
  104. A. Mayence, D. Wang, G. Salazar-Alvarez, P. Oleynikov, L. Bergström: Probing planar defects in nanoparticle superlattices by 3-D small-angle electron diffraction tomography and real space imaging, Nanoscale 6, 13803–13808 (2014)Google Scholar
  105. Q. Sun, Y. Ma, N. Wang, X. Li, D. Xi, J. Xu, F. Deng, K.B. Yoon, P. Oleynikov, O. Terasaki, J. Yu: High performance nanosheet like silicoaluminophosphate molecular sieves: Synthesis, 3-D EDT structural analysis and MTO catalytic studies, J. Mater. Chem. A 2, 17828–17839 (2014)Google Scholar
  106. Y. Liu, Y. Ma, Y. Zhao, X. Sun, F. Gándara, H. Furukawa, Z. Liu, H. Zhu, C. Zhu, K. Suenaga, P. Oleynikov, A.S. Alshammari, X. Zhang, O. Terasaki, O.M. Yaghi: Weaving of organic threads into a crystalline covalent organic framework, Science 351, 365–369 (2016)Google Scholar
  107. Y. Ma, P. Oleynikov, O. Terasaki: Electron crystallography for determining the handedness of a chiral zeolite nanocrystal, Nat. Mater. 16, 755–759 (2017)Google Scholar
  108. P. Mooney: Optimization of image collection for cellular electron microscopy, Methods Cell Biol. 79, 661–719 (2007)Google Scholar
  109. M. Pan: Direct detection and electron counting—A beginning of a new era for electron microscopy. In: Proc. 16th Eur. Microsc. Congr., Lyon (2017)Google Scholar
  110. X. Li, S.Q. Zheng, K. Egami, D.A. Agard, Y. Cheng: Influence of electron dose rate on electron counting images recorded with the K2 camera, J. Structural Biol. 184, 251–260 (2013)Google Scholar
  111. M.W. Tate, P. Purohit, D. Chamberlain, K.X. Nguyen, R. Hovden, C.S. Chang, P. Deb, E. Turgut, J.T. Heron, D.G. Schlom, D.C. Ralph, G.D. Fuchs, K.S. Shanks, H.T. Philipp, D.A. Muller, S.M. Gruner: High dynamic range pixel array detector for scanning transmission electron microscopy, Microsc. Microanal. 22, 237–249 (2016)Google Scholar
  112. H. Ryll, M. Simson, R. Hartmann, P. Holl, M. Huth, S. Ihle, Y. Kondo, P. Kotula, A. Liebel, K. Müller-Caspary, A. Rosenauer, R. Sagawa, J. Schmidt, H. Soltau, L. Strüder: A pnCCD-based, fast direct single electron imaging camera for TEM and STEM, J. Instrum. 11, P04006 (2016)Google Scholar
  113. A. Mayoral, L.F. Allard, D. Ferrer, R. Esparza, M. Jose-Yacaman: On the behavior of Ag nanowires under high temperature: In situ characterization by aberration-corrected STEM, J. Mater. Chem. 21, 893–898 (2011)Google Scholar
  114. M.M. Mariscal, A. Mayoral, J.A. Olmos-Asar, C. Magen: Nanoalloying in real time. A high resolution STEM and computer simulation study, Nanoscale 3, 5013–5019 (2011)Google Scholar
  115. M. Adrian, J. Dubochet, J. Lepault, A.W. McDowall: Cryo-electron microscopy of viruses, Nature 308, 32–36 (1984)Google Scholar
  116. M. Hÿtch, F. Houdellier, F. Hüe, E. Snoeck: Nanoscale holographic interferometry for strain measurements in electronic devices, Nature 453, 1086–1089 (2008)Google Scholar
  117. N. De Jonge, F.M. Ross: Electron microscopy of specimens in liquid, Nat. Nanotechnol. 6, 695–704 (2011)Google Scholar
  118. H.-G. Liao, L. Cui, S. Whitelam, H. Zheng: Real-time imaging of Pt3Fe nanorod growth in solution, Science 336, 1011–1014 (2012)Google Scholar
  119. K.L. Jungjohann, S. Bliznakov, P.W. Sutter, E.A. Stach, E.A. Sutter: In situ liquid cell electron microscopy of the solution growth of Au--Pd core--shell nanostructures, Nano Lett. 13, 2964–2970 (2013)Google Scholar
  120. J.E. Evans, K.L. Jungjohann, N.D. Browning, I. Arslan: Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy, Nano Lett. 11, 2809–2813 (2011)Google Scholar
  121. T.J. Woehl, C. Park, J.E. Evans, I. Arslan, W.D. Ristenpart, N.D. Browning: Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate, Nano Lett. 14, 373–378 (2014)Google Scholar
  122. H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M.A. O'Keeffe, O. Terasaki, J.F. Stoddart, O.M. Yaghi: Large-pore apertures in a series of metal-organic frameworks, Science 336, 1018–1023 (2012)Google Scholar
  123. S. Ogawa, D. Watanabe: Crosses observed in the electron-diffraction pattern of an orientated CuAu film, Acta Crystallogr. 5, 848–849 (1952)Google Scholar
  124. S. Ogawa, D. Watanabe: On the structure of CuAu II revealed by electron diffraction, Acta Crystallogr. 7, 377–378 (1954)Google Scholar
  125. J.M. Cowley: Structure analysis of single crystals by electron diffraction. I. Techniques, Acta Crystallogr. 6, 516–521 (1953)Google Scholar
  126. S. Kuwabara: Accurate determination of hydrogen positions in NH4Cl by electron diffraction, J. Phys. Soc. Jpn. 14, 1205–1216 (1959)Google Scholar
  127. D.L. Dorset, H.A. Hauptman: Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals, Ultramicroscopy 1, 195–201 (1976)Google Scholar
  128. D.L. Dorset, C.J. Gilmore: Ab initio electron diffraction structure analysis of zeolites -- Direct methods determination of NaY, Z. Kristallogr. 226, 447–453 (2011)Google Scholar
  129. N. Ohnishi, T. Ohsuna, Y. Sakamoto, O. Terasaki, K. Hiraga: Quantitative HRTEM study of zeolite, Microporous Mesoporous Mater. 21, 581–588 (1998)Google Scholar
  130. C. Baerlocher, A. Hepp, W.M. Meier: DLS-76: Distance least-squares refinement program, ETH Zürich, (1977)
  131. D.L. Dorset, S.C. Weston, S.S. Dhingra: Crystal structure of zeolite MCM-68: A new three-dimensional framework with large pores, J. Phys. Chem. B 110, 2045–2050 (2006)Google Scholar
  132. D.L. Dorset: The crystal structure of ZSM-10, a powder x-ray and electron diffraction study, Z. Kristallogr. 221, 260–265 (2006)Google Scholar
  133. T. Conradsson, M.S. Dadachov, X.D. Zou: Synthesis and structure of (Me3N)6[Ge32O64]\(\cdot\)(H2O)4.5, a thermally stable novel zeotype with 3-D interconnected 12-ring channels, Microporous Mesoporous Mater. 41, 183–191 (2000)Google Scholar
  134. B. Slater, C.R.A. Catlow, Z. Liu, T. Ohsuna, O. Terasaki, M.A. Camblor: Surface structure and crystal growth of zeolite Beta C, Angew. Chem. Int. Ed. 41, 1235–1237 (2002)Google Scholar
  135. B. Slater, T. Ohsuna, Z. Liu, O. Terasaki: Insights into the crystal growth mechanisms of zeolites from combined experimental imaging and theoretical studies, Faraday Discuss. 136, 125–141 (2007)Google Scholar
  136. L. Han, T. Ohsuna, Z. Liu, V. Alfredsson, T. Kjellman, S. Asahina, M. Suga, Y. Ma, P. Oleynikov, K. Miyasaka, A. Mayoral, I. Díaz, Y. Sakamoto, S.M. Stevens, M.W. Anderson, C. Xiao, N. Fujita, A.E. Garcia-Bennett, K.B. Yoon, S. Che, O. Terasaki: Silica-based nanoporous materials, Z. Anorg. Allg. Chem. 640, 521–536 (2014)Google Scholar
  137. V. Alfredsson, T. Ohsuna, O. Terasaki, J.-O. Bovin: Investigation of the surface structure of the zeolites FAU and EMT by high-resolution transmission electron microscopy, Angew. Chem. Int. Ed. 32, 1210–1213 (1993)Google Scholar
  138. M. Taramasso, G. Perego, B. Notari: Preparation of porous crystalline synthetic materials comprised of silicon and titanium oxides, US Patent 4410501 (1983)Google Scholar
  139. X. Wang, A.J. Jacobson: Crystal structure of the microporous titanosilicate ETS-10 refined from single crystal x-ray diffraction data, Chem. Commun. (1999), Scholar
  140. M.W. Anderson, J.R. Agger, D.-P. Luigi, A.K. Baggaley, J. Rocha: Cation sites in ETS-10: 23Na 3Q MAS NMR and lattice energy minimisation calculations, Phys. Chem. Chem. Phys. 1, 2287–2292 (1999)Google Scholar
  141. M.E. Grillo, J. Carrazza: Computational modeling of the nonframework cation location and distribution in microporous titanosilicate ETS-10, J. Phys. Chem. 100, 12261–12264 (1996)Google Scholar
  142. A. Damin, F.X. Llabrés i Xamena, C. Lamberti, B. Civalleri, C.M. Zicovich-Wilson, A.A. Zecchina: Structural, electronic, and vibrational properties of the Ti–O–Ti quantum wires in the titanosilicate ETS-10, J. Phys. Chem. B 108, 1328–1336 (2003)Google Scholar
  143. M. Koç, S. Galioglu, D. Toffoli, H. Üstünel, B. Akata: Understanding the effects of ion-exchange in titanosilicate ETS-10: A joint theoretical and experimental study, J. Phys. Chem. C 118, 27281–27291 (2014)Google Scholar
  144. A. Mayoral, R.M. Hall, R. Jackowska, J.E. Readman: Imaging the atomic position of light cations in a porous network and the europium(III) ion exchange capability by aberration-corrected electron microscopy, Angew. Chem. Int. Ed. 55, 16127–16131 (2016)Google Scholar
  145. M.W. Anderson, O. Terasaki, T. Ohsuna, P.J.O. Malley, A. Philippou, S.P. Mackay, A. Ferreira, J. Rocha, S. Lidin: Microporous titanosilicate ETS-10: A structural survey, Philos. Mag. B 71, 813–841 (1995)Google Scholar
  146. C. Casado, Z. Amghouz, J.R. García, K. Boulahya, J.M. Gonzalez-Calbet, C. Tellez, J. Coronas: Synthesis and characterization of microporous titanosilicate ETS-10 obtained with different Ti sources, Mater. Res. Bull. 44, 1225–1231 (2009)Google Scholar
  147. W.Y. Ching, Y.N. Xu, Z.Q. Gu: Structure and properties of microporous titanosilicate determined by first-principles calculations, Phys. Rev. B 54, R15585–R15589 (1996)Google Scholar
  148. J. Rocha, A. Ferreira, Z. Lin, M.W. Anderson: Synthesis of microporous titanosilicate ETS-10 from TiCl3 and TiO2: A comprehensive study, Microporous Mesoporous Mater. 23, 253–263 (1998)Google Scholar
  149. P.A. Midgley, A.S. Eggeman: Precession electron diffraction—A topical review, IUCrJ. 2, 126–136 (2015)Google Scholar
  150. P. Oleynikov, S. Hovmöller, X.D. Zou: Precession electron diffraction: Observed and calculated intensities, Ultramicroscopy 107, 523–533 (2007)Google Scholar
  151. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279, 548 (1998)Google Scholar
  152. T. Kimura, T. Kamata, M. Fuziwara, Y. Takano: Formation of novel ordered mesoporous silicas with square channels and their direct observation by transmission electron microscopy, Angew. Chem. Int. Ed. 39, 3855–3859 (2000)Google Scholar
  153. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki: Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks, J. Am. Chem. Soc. 121, 9611–9614 (1999)Google Scholar
  154. Y. Sakamoto, L. Han, S. Che, O. Terasaki: Structural analyses of intergrowth and stacking fault in cage-type mesoporous crystals, Chem. Mater. 21, 223–229 (2009)Google Scholar
  155. K. Miyasaka, L. Han, S. Che, O. Terasaki: A lesson from the unusual morphology of silica mesoporous crystals: Growth and close packing of spherical micelles with multiple twinning, Angew. Chem. Int. Ed. 45, 6516–6519 (2006)Google Scholar
  156. L. Han, Y. Sakamoto, O. Terasaki, Y. Li, S. Che: Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures, J. Mater. Chem. 17, 1216–1221 (2007)Google Scholar
  157. Y. Ma, L. Han, K. Miyasaka, P. Oleynikov, S. Che, O. Terasaki: Structural study of hexagonal close-packed silica mesoporous crystal, Chem. Mater. 25, 2184–2191 (2013)Google Scholar
  158. K. Miyasaka, A.G. Bennett, L. Han, Y. Han, C. Xiao, N. Fujita, T. Castle, Y. Sakamoto, S. Che, O. Terasaki: The role of curvature in silica mesoporous crystals, Interface Focus 2, 634–644 (2012)Google Scholar
  159. L. Han, Y. Sakamoto, S. Che, O. Terasaki: Insight into the defects of cage-type silica mesoporous crystals with Fd3m symmetry: TEM observations and a new proposal of ‘‘polyhedron packing'' for the crystals, Chem. Eur. J. 15, 2818–2825 (2009)Google Scholar
  160. E. Matzke: The three-dimensional shape of bubbles in foam---An analysis of the role of surface forces in three-dimensional cell shape determination, Am. J. Biol. 33, 58–80 (1946)Google Scholar
  161. Y. Sakamoto, O. Terasaki: A layer stacking with large repeating unit in multi-modal cage-type anionic-surfactant-templated silica mesoporous crystal, Solid State Sci. 13, 762–767 (2011)Google Scholar
  162. T. Ohsuna, Y. Sakamoto, O. Terasaki, K. Kuroda: TEM image simulation of mesoporous crystals for structure type identification, Solid State Sci. 13, 736–744 (2011)Google Scholar
  163. T. Dotera: Toward the discovery of new soft quasicrystals: From a numerical study viewpoint, J. Polym. Sci. B 50, 155–167 (2011)Google Scholar
  164. J.-F. Sadoc, R. Mosseri: Quasiperiodic Frank–Kasper phases derived from the square–triangle dodecagonal tiling, Struct. Chem. 28, 63–73 (2016)Google Scholar
  165. C. Gao, Y. Sakamoto, O. Terasaki, S. Che: Formation of diverse mesophases templated by a diprotic anionic surfactant, Chem. Eur. J. 14, 11423–11428 (2008)Google Scholar
  166. S.J. Cox, F. Graner, R. Mosseri, J.F. Sadoc: Quasicrystalline three-dimensional foams, J. Phys. Condens. Matter 29, 114001 (2017)Google Scholar
  167. T. Ohsuna, Z. Liu, S. Che, O. Terasaki: Characterization of chiral mesoporous materials by transmission electron microscopy, Small 1, 233–237 (2005)Google Scholar
  168. S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi: Synthesis and characterization of chiral mesoporous silica, Nature 429, 281–284 (2004)Google Scholar
  169. K. Grosse-Brauckmann: Triply periodic minimal and constant mean curvature surfaces, Interface Focus 2, 582–588 (2012)Google Scholar
  170. S.T. Hyde, Z. Blum, T. Landh, S. Lidin, B.W. Ninham: The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology (Elsevier, Amsterdam 1996)Google Scholar
  171. L. Han, K. Miyasaka, O. Terasaki, S. Che: Evolution of packing parameters in the structural changes of silica mesoporous crystals: Cage-type, 2-D cylindrical, bicontinuous diamond and gyroid, and lamellar, J. Am. Chem. Soc. 133, 11524–11533 (2011)Google Scholar
  172. L. Han, P. Xiong, J. Bai, S. Che: Spontaneous formation and characterization of silica mesoporous crystal spheres with reverse multiply twinned polyhedral hollows, J. Am. Chem. Soc. 133, 6106–6109 (2011)Google Scholar
  173. S.T. Hyde: Handbook of Applied Surface and Colloidal Chemistry (Wiley, Hoboken 2001)Google Scholar
  174. L. Han, D. Xu, Y. Liu, T. Ohsuna, Y. Yao, C. Jiang, Y. Mai, Y. Cao, Y. Duan, S. Che: Synthesis and characterization of macroporous photonic structure that consists of azimuthally shifted double-diamond silica frameworks, Chem. Mater. 26, 7020–7028 (2014)Google Scholar
  175. X. Cao, D. Xu, Y. Yao, L. Han, O. Terasaki, S. Che: Interconversion of triply periodic constant mean curvature surface structures: From double diamond to single gyroid, Chem. Mater. 28, 3691–3702 (2016)Google Scholar
  176. Y. Sakamoto, S. Inagaki, T. Ohsuna, N. Ohnishi, Y. Fukushima, Y. Nozue, O. Terasaki: Structure analysis of mesoporous material ‘‘FSM-16'' studies by electron microscopy and x-ray diffraction, Microporous Mesoporous Mater. 21, 589–596 (1998)Google Scholar
  177. W.-X. Xu, J. Li, R.-P. Liu, W.-X. Zhou, W.-Y. Ma, F.-X. Zhang: A novel 1-D linear zinc(II) coordination polymer based 2,2′-bipyridine-4,4′-dicarboxylic acid: Synthesis, crystal structure and photoluminescence property, Inorg. Chem. Commun. 28, 12–15 (2013)Google Scholar
  178. A. Dhakshinamoorthy, M. Opanasenko, J. Čejka, H. Garcia: Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals, Catal. Sci. Technol. 3, 2509–2540 (2013)Google Scholar
  179. J.A. Mason, M. Veenstra, J.R. Long: Evaluating metal-organic frameworks for natural gas storage, Chem. Sci. 5, 32–51 (2014)Google Scholar
  180. S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long: Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5), J. Am. Chem. Soc. 129, 14176 (2007)Google Scholar
  181. S. Brunauer: Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60, 309–319 (1938)Google Scholar
  182. J. Hafizovic, M. Bjørgen, U. Olsbye, P.D.C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K.P. Lillerud: The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities, J. Am. Chem. Soc. 129, 3612–3620 (2007)Google Scholar
  183. M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O.M. Yaghi: New porous crystals of extended metal-catecholates, Chem. Mater. 24, 3511–3513 (2012)Google Scholar
  184. A. Mayoral, M. Sanchez-Sanchez, A. Alfayate, J. Perez-Pariente, I. Díaz: Atomic observations of microporous materials highly unstable under the electron beam: The cases of Ti-doped AlPO4-5 and Zn-MOF-74, ChemCatChem 7, 3719–3724 (2015)Google Scholar
  185. M. Sánchez-Sánchez, N. Getachew, K. Díaz, M. Díaz-García, Y. Chebude, I. Díaz: Synthesis of metal-organic frameworks in water at room temperature: Salts as linker sources, Green Chem. 17, 1500–1509 (2015)Google Scholar
  186. A.T. Bell: The impact of nanoscience on heterogeneous catalysis, Science 299, 1688–1691 (2003)Google Scholar
  187. K. Egeblad, C.H. Christensen, M. Kustova, C.H. Christensen: Templating mesoporous zeolites, Chem. Mater. 20, 946–960 (2008)Google Scholar
  188. P. Horcajada, C. Serre, D. Grosso, C. Boissiere, S. Perruchas, C. Sanchez, G. Férey: Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks, Adv. Mater. 21, 1931–1935 (2009)Google Scholar
  189. O. Shekhah, J. Liu, R.A. Fischer, C. Woell: MOF thin films: Existing and future applications, Chem. Soc. Rev. 40, 1081–1106 (2011)Google Scholar
  190. M. Ma, D. Zacher, X. Zhang, R.A. Fischer, N. Metzler-Nolte: A method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks, Cryst. Growth Des. 11, 185–189 (2011)Google Scholar
  191. M. Díaz-García, Á. Mayoral, I. Díaz, M. Sánchez-Sánchez: Nanoscaled M-MOF-74 materials prepared at room temperature, Cryst. Growth Des. 14, 2479–2487 (2014)Google Scholar
  192. C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G. Férey: Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2·{HO2C−C6H4−CO2Hx·H2Oy, J. Am. Chem. Soc. 124, 13519–13526 (2002)Google Scholar
  193. S. Bourrelly, P.L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Férey: Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47, J. Am. Chem. Soc. 127, 13519–13521 (2005)Google Scholar
  194. P.L. Llewellyn, S. Bourrelly, C. Serre, Y. Filinchuk, G. Férey: How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53, Angew. Chem. Int. Ed. 45, 7751–7754 (2006)Google Scholar
  195. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey: A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. Eur. J. 10, 1373–1382 (2004)Google Scholar
  196. Y. Liu, J.H. Her, A. Dailly, A.J. Ramirez-Cuesta, D.A. Neumann, C.M. Brown: Reversible structural transition in MIL-53 with large temperature hysteresis, J. Am. Chem. Soc. 130, 11813–11818 (2008)Google Scholar
  197. F. Millange, C. Serre, G. Férey: Synthesis, structure determination and properties of MIL-53as and MIL-53ht: The first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C–C6H4–CO2·{HO2C–C6H4–CO2Hx, Chem. Commun. (2002), Scholar
  198. B. Seoane, S. Sorribas, A. Mayoral, C. Tellez, J. Coronas: Real-time monitoring of breathing of MIL-53(Al) by environmental SEM, Microporous Mesoporous Mater. 203, 17–23 (2015)Google Scholar
  199. M. Maes, F. Vermoortele, L. Alaerts, S. Couck, C.E.A. Kirschhock, J.F.M. Denayer, D.E. De Vos: Separation of styrene and ethylbenzene on metal-organic frameworks: Analogous structures with different adsorption mechanisms, J. Am. Chem. Soc. 132, 15277–15285 (2010)Google Scholar
  200. V. Finsy, C.E.A. Kirschhock, G. Vedts, M. Maes, L. Alaerts, D.E. De Vos, G.V. Baron, J.F.M. Denayer: Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal-organic framework MIL-53, Chem. Eur. J. 15, 7724–7731 (2009)Google Scholar
  201. Y. Zhu, J. Ciston, B. Zheng, X. Miao, C. Czarnik, Y. Pan, R. Sougrat, Z. Lai, C.-E. Hsiung, K. Yao, I. Pinnau, M. Pan, Y. Han: Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy, Nat. Mater. 16, 532–536 (2017)Google Scholar
  202. D. Zhang, Y. Zhu, L. Liu, X. Ying, C.-E. Hsiung, R. Sougrat, K. Li, Y. Han: Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials, Science 359(6376), 675–679 (2018)Google Scholar
  203. K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J. Long, R. Luque, Y. Li, B. Chen: Ordered macro-microporous metal-organic framework single crystals, Science 359, 206–210 (2018)Google Scholar
  204. T.J. Woehl, K.L. Jungjohann, J.E. Evans, I. Arslan, W.D. Ristenpart, N.D. Browning: Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials, Ultramicroscopy 127, 53–63 (2013)Google Scholar
  205. J.P. Patterson, P. Abellan, M.S.J. Denny, C. Park, N.D. Browning, S.M. Cohen, J.F. Evans, N.C. Gianneschi: Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy, J. Am. Chem. Soc. 137, 7322–7328 (2015)Google Scholar
  206. S.R. Venna, J.B. Jasinski, M.A. Carreon: Structural evolution of zeolitic imidazolate framework-8, J. Am. Chem. Soc. 132, 18030–18033 (2010)Google Scholar
  207. K. Guesh, C.A.D. Caiuby, Á. Mayoral, M. Díaz-García, I. Díaz, M. Sanchez-Sanchez: Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water, Cryst. Growth Des. 17, 1806–1813 (2017)Google Scholar
  208. M. Sanchez-Sanchez, I. de Asua, D. Ruano, K. Diaz: Direct synthesis, structural features, and enhanced catalytic activity of the basolite F300-like semiamorphous Fe-BTC framework, Cryst. Growth Des. 15, 4498–4506 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  2. 2.Dept. of MathematicsTongji UniversityShanghaiChina
  3. 3.Inorganic Functional Materials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan
  4. 4.School of Science and TechnologyShanghaiTech UniversityShanghaiChina
  5. 5.Institute of Catalysis and Petroleum ChemistrySpanish National Research Council (CSIC)MadridSpain
  6. 6.Dept. of PhysicsShanghaiTech UniversityShanghaiChina
  7. 7.Dept. of Crystaline Materials ScienceNagoya UniversityNagoyaJapan
  8. 8.Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  9. 9.Gatan, Inc.Pleasanton, CAUSA
  10. 10.College of Chemical EngineeringZhejiang University of TechnologyHangzhouChina
  11. 11.Physical ScienceOsaka Prefecture UniversitySakaiJapan
  12. 12.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  13. 13.Centre for High-resolution Electron Microscopy, School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations