Scanning Probe Microscopy in Materials Science

  • Bryan D. HueyEmail author
  • Justin Luria
  • Dawn A. Bonnell
Part of the Springer Handbooks book series (SHB)


The advent of scanning probe microscopy () revolutionized surface science in the 1980s and facilitated the nanotechnology revolution in the ensuing decades. First scanning tunneling microscopy, then atomic force microscopy () and near-field optical methods, were developed and employed for fundamental and applied research in many disciplines including physics, biology, chemistry, and a wide range of engineering fields. But SPM, especially AFM, has in particular contributed to materials science due to the fact that atomic to nanoscale resolution of materials properties can be achieved. Routine and specialized SPM approaches now provide measurements and maps not just of the topography, but also of local mechanical, electronic, magnetic, optical, thermal, chemical, and coupled properties. Important recent developments include increases in imaging speed, in situ and in operando studies, advanced probes, and even tomographic AFM. This chapter describes the concepts and implementation of these various SPM methods focused on new discoveries in materials science.

Scanning tunneling microscopy Atomic force microscopy Tip–surface interactions Kelvin probe force microscopy Scanning spreading resistance microscopy Scanning capacitance microscopy Near-field scanning optical microscopy Scanning impedance microscopy Nano-impedance microscopy and spectroscopy Piezoelectric force microscopy Dielectrics Piezoelectrics 



BDH and JL acknowledge support from the DoE Sunshot program. DAB acknowledges financial support from NSF and DoE. Dr. Sergei Kalinin and Dr. James Steffes are each gratefully acknowledged for helpful and informative discussions. The authors are also grateful to Nikhila Balasubramanya and Luis Ortiz for assistance with manuscript details, and to Maxim Nikiforov for his considerable input on a previous edition of this chapter.


  1. D. Bonnell: Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications (Wiley, Weinheim 2001)Google Scholar
  2. G. Friedbacher, H. Fuchs: Classification of scanning probe microscopies, Pure Appl. Chem. 71, 1337–1357 (1999)Google Scholar
  3. E. Meyer, H.J. Hug, R. Bennewitz: Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin 2013)Google Scholar
  4. S.V. Kalinin, A. Gruverman: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Vol. 1 (Springer, New York 2007)Google Scholar
  5. R. García, R. Perez: Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47, 197–301 (2002)Google Scholar
  6. F.J. Giessibl: Advances in atomic force microscopy, Rev. Mod. Phys. 75, 949 (2003)Google Scholar
  7. W.A. Hofer, A.S. Foster, A.L. Shluger: Theories of scanning probe microscopes at the atomic scale, Rev. Mod. Phys. 75, 1287 (2003)Google Scholar
  8. F.J. Giessibl, M. Reichling: Investigating atomic details of the CaF2(111) surface with a Qplus sensor, Nanotechnology 16, S118 (2005)Google Scholar
  9. A. San Paulo, R. García: Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy, Phys. Rev. B 64, 193411 (2001)Google Scholar
  10. C. Möller, M. Allen, V. Elings, A. Engel, D.J. Müller: Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces, Biophys. J. 77, 1150–1158 (1999)Google Scholar
  11. F. Ohnesorge: Towards atomic resolution non-contact dynamic force microscopy in a liquid, Surf. Interface Anal. 27, 379–385 (1999)Google Scholar
  12. F.J. Giessibl: Forces and frequency shifts in atomic-resolution dynamic-force microscopy, Phys. Rev. B 56, 16010 (1997)Google Scholar
  13. F.J. Giessibl, H. Bielefeldt: Physical interpretation of frequency-modulation atomic force microscopy, Phys. Rev. B 61, 9968 (2000)Google Scholar
  14. P.V. Sushko, A.S. Foster, L.N. Kantorovich, A.L. Shluger: Investigating the effects of silicon tip contamination in noncontact scanning force microscopy (Sfm), Appl. Surf. Sci. 144, 608–612 (1999)Google Scholar
  15. M. Guggisberg, M. Bammerlin, C. Loppacher, O. Pfeiffer, A. Abdurixit, V. Barwich, R. Bennewitz, A. Baratoff, E. Meyer, H.-J. Güntherodt: Separation of interactions by noncontact force microscopy, Phys. Rev. B 61, 11151 (2000)Google Scholar
  16. S. Sounilhac, E. Barthel, F. Creuzet: The electrostatic contribution to the long-range interactions between tungsten and oxide surfaces under ultrahigh vacuum, Appl. Surf. Sci. 140, 411–414 (1999)Google Scholar
  17. R. Bennewitz, A.S. Foster, L.N. Kantorovich, M. Bammerlin, C. Loppacher, S. Schär, M. Guggisberg, E. Meyer, A.L. Shluger: Atomically resolved edges and kinks of NaCl islands on Cu(111): Experiment and theory, Phys. Rev. B 62, 2074 (2000)Google Scholar
  18. R. Pérez, I. Štich, M.C. Payne, K. Terakura: Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111), Phys. Rev. B 58, 10835 (1998)Google Scholar
  19. A. Shluger, A. Livshits, A. Foster, C. Catlow: Models of image contrast in scanning force microscopy on insulators, J. Phys. Condens. Matter 11, R295 (1999)Google Scholar
  20. A.L. Shluger, A.L. Rohl: A model of the interaction of ionic tips with ionic surfaces for interpretation of scanning force microscope images, Top. Catal. 3, 221–247 (1996)Google Scholar
  21. M. Zaibi, J. Lacharme, C. Sebenne: Water vapour adsorption on the Si(111)-(7×7) surface, Surf. Sci. 377, 639–643 (1997)Google Scholar
  22. T. Kubo, H. Nozoye: Surface structure of SrTiO3(100)-($$\sqrt5 \times \sqrt5$$)-R26.6°, Phys. Rev. Lett. 86, 1801 (2001)Google Scholar
  23. S. Hembacher, F.J. Giessibl, J. Mannhart, C.F. Quate: Revealing the hidden atom in graphite by low-temperature atomic force microscopy, Proc. Natl. Acad. Sci. 100(22), 12539–12542 (2003)Google Scholar
  24. H. Hosoi, K. Sueoka, K. Hayakawa, K. Mukasa: Atomic resolved imaging of cleaved NiO(100) surfaces by NC-AFM, Appl. Surf. Sci. 157, 218–221 (2000)Google Scholar
  25. K.-I. Fukui, Y. Namai, Y. Iwasawa: Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy, Appl. Surf. Sci. 188, 252–256 (2002)Google Scholar
  26. R. Coleman, Q. Xue, Y. Gong, P. Price: Atomic force microscope study of etched tracks of low-energy heavy ions in mica, Surf. Sci. 297, 359–370 (1993)Google Scholar
  27. S. Suzuki, Y. Ohminami, T. Tsutsumi, M. Shoaib, M. Ichikawa, K. Asakura: The first observation of an atomic scale noncontact AFM image of MoO3(010), Chem. Lett. 32, 1098–1099 (2003)Google Scholar
  28. Y. Seo, H. Choe, W. Jhe: Atomic-resolution noncontact atomic force microscopy in air, Appl. Phys. Lett. 83, 1860–1862 (2003)Google Scholar
  29. S. Hembacher, F.J. Giessibl, J. Mannhart: Force microscopy with light-atom probes, Science 305, 380–383 (2004)Google Scholar
  30. K. Takayanagi, Y. Tanishiro, M. Takahashi, S. Takahashi: Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy, J. Vac. Sci. Technol. A 3, 1502–1506 (1985)Google Scholar
  31. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: 7×7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett. 50, 120 (1983)Google Scholar
  32. S.-I. Kitamura, M. Iwatsuki: Observation of 7×7 reconstructed structure on the silicon (111) surface using ultrahigh vacuum noncontact atomic force microscopy, Jpn. J. Appl. Phys. 34, L145 (1995)Google Scholar
  33. F.J. Giessibl: Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy, Science 267, 68–71 (1995)Google Scholar
  34. A. Schwarz, W. Allers, U. Schwarz, R. Wiesendanger: Simultaneous imaging of the in and as sublattice on InAs(110)-(1×1) with dynamic scanning force microscopy, Appl. Surf. Sci. 140, 293–297 (1999)Google Scholar
  35. K. Yokoyama, T. Ochi, A. Yoshimoto, Y. Sugawara, S. Morita: Atomic resolution imaging on Si(100)2×1 and Si(100)2×1:H surfaces with noncontact atomic force microscopy, Jpn. J. Appl. Phys. 39, L113 (2000)Google Scholar
  36. N. Uehara, H. Hosoi, K. Sueoka, K. Mukasa: Non-contact atomic force microscopy observation on GaAs(110) surface with tip-induced relaxation, Jpn. J. Appl. Phys. 43, 4676 (2004)Google Scholar
  37. J. Weaver, D.W. Abraham: High resolution atomic force microscopy potentiometry, J. Vac. Sci. Technol. B 9, 1559–1561 (1991)Google Scholar
  38. M. Nonnenmacher, M. O'Boyle, H.K. Wickramasinghe: Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923 (1991)Google Scholar
  39. A. Henning, T. Hochwitz: Scanning probe microscopy for 2-D semiconductor dopant profiling and device failure analysis, Mater. Sci. Eng. B 42, 88–98 (1996)Google Scholar
  40. H. Jacobs, P. Leuchtmann, O. Homan, A. Stemmer: Resolution and contrast in Kelvin probe force microscopy, J. Appl. Phys. 84, 1168–1173 (1998)Google Scholar
  41. S.V. Kalinin, D.A. Bonnell: Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63, 125411 (2001)Google Scholar
  42. S. Cunningham, I.A. Larkin, J.H. Davis: Noncontact scanning probe microscope potentiometry of surface charge patches: Origin and interpretation of time-dependent signals, Appl. Phys. Lett. 73, 123–125 (1998)Google Scholar
  43. S.V. Kalinin, C. Johnson, D.A. Bonnell: Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface, J. Appl. Phys. 91, 3816–3823 (2002)Google Scholar
  44. K. Franke, H. Huelz, M. Weihnacht: How to extract spontaneous polarization information from experimental data in electric force microscopy, Surf. Sci. 415, 178–182 (1998)Google Scholar
  45. C. Donolato: Electrostatic tip–sample interaction in immersion force microscopy of semiconductors, Phys. Rev. B 54, 1478 (1996)Google Scholar
  46. Y. Leng, C.C. Williams, L. Su, G. Stringfellow: Atomic ordering of gainp studied by Kelvin probe force microscopy, Appl. Phys. Lett. 66, 1264–1266 (1995)Google Scholar
  47. M. Tanimoto, O. Vatel: Kelvin probe force microscopy for characterization of semiconductor devices and processes, J. Vac. Sci. Technol. B 14, 1547–1551 (1996)Google Scholar
  48. T. Hochwitz, A.K. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Never, P. Kaszuba, R. Gluck, R. Wells, J. Pekarik: Imaging integrated circuit dopant profiles with the force-based scanning Kelvin probe microscope, J. Vac. Sci. Technol. B 14, 440–446 (1996)Google Scholar
  49. M. Fujihira: Kelvin probe force microscopy of molecular surfaces, Annu. Rev. Mater. Sci. 29, 353–380 (1999)Google Scholar
  50. X. Chen, H. Yamada, T. Horiuchi, K. Matsushige, S. Watanabe, M. Kawai, P. Weiss: Surface potential of ferroelectric thin films investigated by scanning probe microscopy, J. Vac. Sci. Technol. B 17, 1930–1934 (1999)Google Scholar
  51. T. Tybell, C. Ahn, J.-M. Triscone: Ferroelectricity in thin perovskite films, Appl. Phys. Lett. 75, 856–858 (1999)Google Scholar
  52. P. Bridger, Z. Bandić, E. Piquette, T. McGill: Measurement of induced surface charges, contact potentials, and surface states in GaN by electric force microscopy, Appl. Phys. Lett. 74, 3522–3524 (1999)Google Scholar
  53. Q. Xu, J. Hsu: Electrostatic force microscopy studies of surface defects on GaAs/Ge Films, J. Appl. Phys. 85, 2465–2472 (1999)Google Scholar
  54. A. Chavez-Pirson, O. Vatel, M. Tanimoto, H. Ando, H. Iwamura, H. Kanbe: Nanometer-scale imaging of potential profiles in optically excited n-i-p-i heterostructure using Kelvin probe force microscopy, Appl. Phys. Lett. 67, 3069–3071 (1995)Google Scholar
  55. T. Meoded, R. Shikler, N. Fried, Y. Rosenwaks: Direct measurement of minority carriers diffusion length using Kelvin probe force microscopy, Appl. Phys. Lett. 75, 2435–2437 (1999)Google Scholar
  56. S. Kalinin, D. Bonnell: Dynamic behavior of domain-related topography and surface potential on the BaTiO3(100) surface by variable temperature scanning surface potential microscopy, Z. Metallkd. 90, 983–989 (1999)Google Scholar
  57. J. Lü, E. Delamarche, L. Eng, R. Bennewitz, E. Meyer, H.-J. Güntherodt: Kelvin probe force microscopy on surfaces: Investigation of the surface potential of self-assembled monolayers on gold, Langmuir 15, 8184–8188 (1999)Google Scholar
  58. H. Sugimura, K. Hayashi, N. Saito, N. Nakagiri, O. Takai: Surface potential microscopy for organized molecular systems, Appl. Surf. Sci. 188, 403–410 (2002)Google Scholar
  59. D.A. Bonnell, R.A. Alvarez, S.V. Kalinin: Directed assembly of nanometer-scale molecular devices, US Patent 6982174 (2006)Google Scholar
  60. M. Abplanalp, L. Eng, P. Günter: Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy, Appl. Phys. A 66, S231–S234 (1998)Google Scholar
  61. R. Shao, M.F. Chisholm, G. Duscher, D.A. Bonnell: Low-temperature resistance anomaly at SrTiO3 grain boundaries: Evidence for an interface-induced phase transition, Phys. Rev. Lett. 95, 197601 (2005)Google Scholar
  62. P. De Wolf, T. Clarysse, W. Vandervorst, L. Hellemans: Low weight spreading resistance profiling of ultrashallow dopant profiles, J. Vac. Sci. Technol. B 16, 401–405 (1998)Google Scholar
  63. P. De Wolf, R. Stephenson, T. Trenkler, T. Clarysse, T. Hantschel, W. Vandervorst: Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, J. Vac. Sci. Technol. B 18, 361–368 (2000)Google Scholar
  64. P. De Wolf, J. Snauwaert, L. Hellemans, T. Clarysse, W. Vandervorst, M. D'Olieslaeger, D. Quaeyhaegens: Lateral and vertical dopant profiling in semiconductors by atomic force microscopy using conducting tips, J. Vac. Sci. Technol. A 13, 1699–1704 (1995)Google Scholar
  65. J. Matey, J. Blanc: Scanning capacitance microscopy, J. Appl. Phys. 57, 1437–1444 (1985)Google Scholar
  66. R. Barrett, C. Quate: Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy, J. Appl. Phys. 70, 2725–2733 (1991)Google Scholar
  67. Y. Huang, C.C. Williams, M. Wendman: Quantitative two-dimensional dopant profiling of abrupt dopant profiles by cross-sectional scanning capacitance microscopy, J. Vac. Sci. Technol. A 14, 1168–1171 (1996)Google Scholar
  68. T. Hantschel, P. Niedermann, T. Trenkler, W. Vandervorst: Highly conductive diamond probes for scanning spreading resistance microscopy, Appl. Phys. Lett. 76, 1603–1605 (2000)Google Scholar
  69. P. De Wolf, E. Brazel, A. Erickson: Electrical characterization of semiconductor materials and devices using scanning probe microscopy, Mater. Sci. Semicond. Process. 4, 71–76 (2001)Google Scholar
  70. J. Marchiando, J. Kopanski: Regression procedure for determining the dopant profile in semiconductors from scanning capacitance microscopy data, J. Appl. Phys. 92, 5798–5809 (2002)Google Scholar
  71. J. Yang, F.C.J. Kong: Simulation of interface states effect on the scanning capacitance microscopy measurement of p-n junctions, Appl. Phys. Lett. 81, 4973–4975 (2002)Google Scholar
  72. Š. Lányi, J. Török, P. Řehůřek: Imaging conducting surfaces and dielectric films by a scanning capacitance microscope, J. Vac. Sci. Technol. B 14, 892–896 (1996)Google Scholar
  73. S. Belaidi, P. Girard, G. Leveque: Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions, J. Appl. Phys. 81, 1023–1030 (1997)Google Scholar
  74. S.J. Tans, C. Dekker: Molecular transistors: Potential modulations along carbon nanotubes, Nature 404, 834–835 (2000)Google Scholar
  75. T.W. Tombler, C. Zhou, J. Kong, H. Dai: Gating individual nanotubes and crosses with scanning probes, Appl. Phys. Lett. 76, 2412–2414 (2000)Google Scholar
  76. A. Bachtold, M. Fuhrer, S. Plyasunov, M. Forero, E.H. Anderson, A. Zettl, P.L. McEuen: Scanned probe microscopy of electronic transport in carbon nanotubes, Phys. Rev. Lett. 84, 6082 (2000)Google Scholar
  77. S.V. Kalinin, D.A. Bonnell, M. Freitag, A. Johnson: Tip-gating effect in scanning impedance microscopy of nanoelectronic devices, Appl. Phys. Lett. 81, 5219–5221 (2002)Google Scholar
  78. Z. Fan, J.G. Lu: Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes, Appl. Phys. Lett. 86, 032111 (2005)Google Scholar
  79. R.M. Westervelt, M.A. Topinka, B.J. LeRoy, A.C. Bleszynski, K. Aidala, S.E.J. Shaw, E.J. Heller, K.D. Maranowski, A.C. Gossard: Imaging electron waves, Physica E Low Dimens. Syst. Nanostruct. 24, 63–69 (2004)Google Scholar
  80. S. Rathi, I. Lee, D. Lim, J. Wang, Y. Ochiai, N. Aoki, K. Watanabe, T. Taniguchi, G.-H. Lee, Y.-J. Yu, P. Kim, G.-H. Kim: Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices, Nano Lett. 15, 5017–5024 (2015)Google Scholar
  81. R. Giridharagopal, G. Rayermann, D. Ginger: Electrical scanning probe microscopy on solar cell materials, Scanning Probe Microsc. Energy Res. 7, 28 (2013)Google Scholar
  82. X.-D. Dang, M. Guide, T.-Q. Nguyen: Organic solar cell materials and devices characterized by conductive and photoconductive atomic force microscopy, Scanning Probe Microsc. Energy Res. 7, 62 (2013)Google Scholar
  83. D.A. Bonnell, S.V. Kalinin: Scanning Probe Microscopy for Energy Research, Vol. 7 (World Scientific, Singapore 2013)Google Scholar
  84. L. Bürgi, T. Richards, M. Chiesa, R.H. Friend, H. Sirringhaus: A microscopic view of charge transport in polymer transistors, Synth. Metals 146, 297–309 (2004)Google Scholar
  85. L. Bürgi, H. Sirringhaus, R. Friend: Noncontact potentiometry of polymer field-effect transistors, Appl. Phys. Lett. 80, 2913–2915 (2002)Google Scholar
  86. J.J. Choi, J. Luria, B.-R. Hyun, A.C. Bartnik, L. Sun, Y.-F. Lim, J.A. Marohn, F.W. Wise, T. Hanrath: Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies, Nano Lett. 10, 1805 (2010)Google Scholar
  87. J.L. Luria, N. Hoepker, R. Bruce, A.R. Jacobs, C. Groves, J.A. Marohn: Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film, ACS Nano 6, 9392–9401 (2012)Google Scholar
  88. D.C. Coffey, D.S. Ginger: Time-resolved electrostatic force microscopy of polymer solar cells, Nat. Mater. 5, 735–740 (2006)Google Scholar
  89. R. Sinton, A. Cuevas: A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proc. 16th Eur. Photovolt. Sol. Energy Conf. (2000) pp. 1152–1155Google Scholar
  90. J.L. Luria, K.A. Schwarz, M.J. Jaquith, R.G. Hennig, J.A. Marohn: Spectroscopic characterization of charged defects in polycrystalline pentacene by time- and wavelength-resolved electric force microscopy, Adv. Mater. 23, 624–628 (2011)Google Scholar
  91. P.F. Barbara, A.J. Gesquiere, S.-J. Park, Y.J. Lee: Single-molecule spectroscopy of conjugated polymers, Acc. Chem. Res. 38, 602–610 (2005)Google Scholar
  92. A. Arias, J. MacKenzie, R. Stevenson, J. Halls, M. Inbasekaran, E. Woo, D. Richards, R. Friend: Photovoltaic performance and morphology of polyfluorene blends: A combined microscopic and photovoltaic investigation, Macromolecules 34, 6005–6013 (2001)Google Scholar
  93. A. Cadby, G. Khalil, A. Fox, D. Lidzey: Mapping exciton quenching in photovoltaic-applicable polymer blends using time-resolved scanning near-field optical microscopy, J. Appl. Phys. 103, 093715 (2008)Google Scholar
  94. Y. Kutes, Y. Zhou, J.L. Bosse, J. Steffes, N.P. Padture, B.D. Huey: Mapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscale, Nano Lett. 16, 3434–3441 (2016)Google Scholar
  95. Y. Kutes, B.A. Aguirre, J.L. Bosse, J.L. Cruz-Campa, D. Zubia, B.D. Huey: Mapping photovoltaic performance with nanoscale resolution, Prog. Photovolt. Res. Appl. 24, 315–325 (2016)Google Scholar
  96. B.H. Hamadani, S. Jung, P.M. Haney, L.J. Richter, N.B. Zhitenev: Origin of nanoscale variations in photoresponse of an organic solar cell, Nano Lett. 10, 1611–1617 (2010)Google Scholar
  97. J. Luria, Y. Kutes, A. Moore, L. Zhang, E.A. Stach, B.D. Huey: Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy, Nat. Energy 1, 16150 (2016)Google Scholar
  98. D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger: Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy, Nano Lett. 7, 738–744 (2007)Google Scholar
  99. M. Tuteja, P. Koirala, V. Palekis, S. MacLaren, C.S. Ferekides, R.W. Collins, A.A. Rockett: Direct observation of CdCl2 treatment induced grain boundary carrier depletion in CdTe solar cells using scanning probe microwave reflectivity based capacitance measurements, J. Phys. Chem. C 120, 7020–7024 (2016)Google Scholar
  100. C. Gao, T. Wei, F. Duewer, Y. Lu, X.-D. Xiang: High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope, Appl. Phys. Lett. 71, 1872–1874 (1997)Google Scholar
  101. J.R. O'Dea, L.M. Brown, N. Hoepker, J.A. Marohn, S. Sadewasser: Scanning probe microscopy of solar cells: From inorganic thin films to organic photovoltaics, MRS Bulletin 37, 642–650 (2012)Google Scholar
  102. R. Giridharagopal, G. Shao, C. Groves, D.S. Ginger: New SPM techniques for analyzing OPV materials, Mater. Today 13, 50–56 (2010)Google Scholar
  103. R. O'Hayre, M. Lee, F.B. Prinz: Ionic and electronic impedance imaging using atomic force microscopy, J. Appl. Phys. 95, 8382–8392 (2004)Google Scholar
  104. B.J. Rodriguez, C. Callahan, S.V. Kalinin, R. Proksch: Dual-frequency resonance-tracking atomic force microscopy, Nanotechnology 18, 475504 (2007)Google Scholar
  105. A. Kos, D. Hurley: Nanomechanical mapping with resonance tracking scanned probe microscope, Meas. Sci. Technol. 19, 015504 (2007)Google Scholar
  106. D. Platz, E.A. Tholén, D. Pesen, D.B. Haviland: Intermodulation atomic force microscopy, Appl. Phys. Lett. 92, 153106 (2008)Google Scholar
  107. S. Jesse, S.V. Kalinin, R. Proksch, A. Baddorf, B. Rodriguez: The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale, Nanotechnology 18, 435503 (2007)Google Scholar
  108. A. Kumar, F. Ciucci, A.N. Morozovska, S.V. Kalinin, S. Jesse: Measuring oxygen reduction/evolution reactions on the nanoscale, Nat. Chem. 3, 707 (2011)Google Scholar
  109. D. McLachlan, J.-H. Hwang, T. Mason: Evaluating dielectric impedance spectra using effective media theories, J. Electroceram. 5, 37–51 (2000)Google Scholar
  110. S.V. Kalinin, D.A. Bonnell: Scanning impedance microscopy of electroactive interfaces, Appl. Phys. Lett. 78, 1306–1308 (2001)Google Scholar
  111. R. Shao, S.V. Kalinin, D.A. Bonnell: Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy, Appl. Phys. Lett. 82, 1869–1871 (2003)Google Scholar
  112. R. O'Hayre, G. Feng, W.D. Nix, F.B. Prinz: Quantitative impedance measurement using atomic force microscopy, J. Appl. Phys. 96, 3540–3549 (2004)Google Scholar
  113. L. Pingree, M.C. Hersam: Bridge-enhanced nanoscale impedance microscopy, Appl. Phys. Lett. 87, 233117 (2005)Google Scholar
  114. K. Kathan-Galipeau, X. Chen, B. Discher, D.A. Bonnell: Mapping dielectric properties with torsionally stabilized nano impedance microscopy: Hard materials to biomolecules, Microsc. Today 19, 16–20 (2011)Google Scholar
  115. L. Fumagalli, G. Ferrari, M. Sampietro, G. Gomila: Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes, Nano Lett. 9, 1604–1608 (2009)Google Scholar
  116. C. Gao, X.-D. Xiang: Quantitative microwave near-field microscopy of dielectric properties, Rev. Sci. Instrum. 69, 3846–3851 (1998)Google Scholar
  117. Y. Cho, A. Kirihara, T. Saeki: Scanning nonlinear dielectric microscope, Rev. Sci. Instrum. 67, 2297–2303 (1996)Google Scholar
  118. D. Steinhauer, C. Vlahacos, S. Dutta, F. Wellstood, S.M. Anlage: Surface resistance imaging with a scanning near-field microwave microscope, Appl. Phys. Lett. 71, 1736–1738 (1997)Google Scholar
  119. D. Steinhauer, C. Vlahacos, F. Wellstood, S.M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky, J. Melngailis: Imaging of microwave permittivity, tunability, and damage recovery in (Ba,Sr)TiO3 thin films, Appl. Phys. Lett. 75, 3180–3182 (1999)Google Scholar
  120. Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. Schultz, X.-D. Xiang: Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope, Science 276, 2004–2006 (1997)Google Scholar
  121. S.-C. Lee, S.M. Anlage: Spatially-resolved nonlinearity measurements of YBa2Cu3O7−δ bicrystal grain boundaries, Appl. Phys. Lett. 82, 1893–1895 (2003)Google Scholar
  122. C. Durkan, M. Welland: Investigations into local ferroelectric properties by atomic force microscopy, Ultramicroscopy 82, 141–148 (2000)Google Scholar
  123. A. Gruverman, O. Kolosov, J. Hatano, K. Takahashi, H. Tokumoto: Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy, J. Vac. Sci. Technol. B 13, 1095–1099 (1995)Google Scholar
  124. S.V. Kalinin, E. Karapetian, M. Kachanov: Nanoelectromechanics of piezoresponse force microscopy, Phys. Rev. B 70, 184101 (2004)Google Scholar
  125. L. Eng, H.-J. Güntherodt, G. Schneider, U. Köpke, J. Muñoz Saldaña: Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics, Appl. Phys. Lett. 74, 233–235 (1999)Google Scholar
  126. A. Roelofs, U. Böttger, R. Waser, F. Schlaphof, S. Trogisch, L. Eng: Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy, Appl. Phys. Lett. 77, 3444–3446 (2000)Google Scholar
  127. M. Alexe, A. Gruverman, C. Harnagea, N. Zakharov, A. Pignolet, D. Hesse, J. Scott: Switching properties of self-assembled ferroelectric memory cells, Appl. Phys. Lett. 75, 1158–1160 (1999)Google Scholar
  128. B.J. Rodriguez, A. Gruverman, A. Kingon, R. Nemanich, J. Cross: Three-dimensional high-resolution reconstruction of polarization in ferroelectric capacitors by piezoresponse force microscopy, J. Appl. Phys. 95, 1958–1962 (2004)Google Scholar
  129. S.V. Kalinin, B.J. Rodriguez, S. Jesse, J. Shin, A.P. Baddorf, P. Gupta, H. Jain, D.B. Williams, A. Gruverman: Vector piezoresponse force microscopy, Microsc. Microanal. 12, 206–220 (2006)Google Scholar
  130. J.F. Ihlefeld, B.M. Foley, D.A. Scrymgeour, J.R. Michael, B.B. McKenzie, D.L. Medlin, M. Wallace, S. Trolier-McKinstry, P.E. Hopkins: Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films, Nano Lett. 15, 1791–1795 (2015)Google Scholar
  131. J. Desmarais, J.F. Ihlefeld, T. Heeg, J. Schubert, D.G. Schlom, B.D. Huey: Mapping and statistics of ferroelectric domain boundary angles and types, Appl. Phys. Lett. 99, 162902 (2011)Google Scholar
  132. P.E. Hopkins, C. Adamo, L. Ye, B.D. Huey, S.R. Lee, D.G. Schlom, J.F. Ihlefeld: Effects of coherent ferroelastic domain walls on the thermal conductivity and kapitza conductance in bismuth ferrite, Appl. Phys. Lett. 102, 121903 (2013)Google Scholar
  133. J.R. Whyte, R.G.P. McQuaid, P. Sharma, C. Canalias, J.F. Scott, A. Gruverman, J.M. Gregg: Ferroelectric domain wall injection, Adv. Mater. 26, 293–298 (2014)Google Scholar
  134. P. Sharma, Q. Zhang, D. Sando, C.H. Lei, Y. Liu, J. Li, V. Nagarajan, J. Seidel: Nonvolatile ferroelectric domain wall memory, Sci. Adv. 3, e1700512 (2017)Google Scholar
  135. G. Catalan, J. Seidel, R. Ramesh, J.F. Scott: Domain wall nanoelectronics, Rev. Mod. Phys. 84, 119–156 (2012)Google Scholar
  136. A. Gruverman, B.J. Rodriguez, R. Nemanich, A. Kingon: Nanoscale observation of photoinduced domain pinning and investigation of imprint behavior in ferroelectric thin films, J. Appl. Phys. 92, 2734–2739 (2002)Google Scholar
  137. S.V. Kalinin, A. Gruverman, D.A. Bonnell: Quantitative analysis of nanoscale switching in SrBi2Ta2O9 thin films by piezoresponse force microscopy, Appl. Phys. Lett. 85, 795–797 (2004)Google Scholar
  138. L.M. Eng, M. Bammerlin, C. Loppacher, M. Guggisberg, R. Bennewitz, R. Lüthi, E. Meyer, T. Huser, H. Heinzelmann, H.-J. Güntherodt: Ferroelectric domain characterisation and manipulation: A challenge for scanning probe microscopy, Ferroelectrics 222, 153–162 (1999)Google Scholar
  139. X. Lu, F. Schlaphof, S. Grafström, C. Loppacher, L. Eng, G. Suchaneck, G. Gerlach: Scanning force microscopy investigation of the Pb(Zr0.25Ti0.75)O3/Pt Interface, Appl. Phys. Lett. 81, 3215–3217 (2002)Google Scholar
  140. A. Kholkin, V. Shvartsman, A.Y. Emelyanov, R. Poyato, M. Calzada, L. Pardo: Stress-induced suppression of piezoelectric properties in PbTiO3: La thin films via scanning force microscopy, Appl. Phys. Lett. 82, 2127–2129 (2003)Google Scholar
  141. M. Abplanalp, J. Fousek, P. Günter: Higher order ferroic switching induced by scanning force microscopy, Phys. Rev. Lett. 86, 5799 (2001)Google Scholar
  142. M. Labardi, C. Polop, V. Likodimos, L. Pardi, M. Allegrini, E. Vasco, C. Zaldo: Surface deformation and ferroelectric domain switching induced by a force microscope tip on a La-Modified PbTiO3 thin film, Appl. Phys. Lett. 83, 2028–2030 (2003)Google Scholar
  143. A. Roytburd, S. Alpay, V. Nagarajan, C. Ganpule, S. Aggarwal, E. Williams, R. Ramesh: Measurement of internal stresses via the polarization in epitaxial ferroelectric films, Phys. Rev. Lett. 85, 190 (2000)Google Scholar
  144. C. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, V. Joshi, C. Paz de Araujo: Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films, Appl. Phys. Lett. 75, 3874–3876 (1999)Google Scholar
  145. M. Alexe, C. Harnagea, D. Hesse, U. Gösele: Patterning and switching of nanosize ferroelectric memory cells, Appl. Phys. Lett. 75, 1793–1795 (1999)Google Scholar
  146. J.J. Urban, J.E. Spanier, L. Ouyang, W.S. Yun, H. Park: Single-crystalline barium titanate nanowires, Adv. Mater. 15, 423–426 (2003)Google Scholar
  147. W.S. Yun, J.J. Urban, Q. Gu, H. Park: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy, Nano Lett. 2, 447–450 (2002)Google Scholar
  148. S. Hong, J. Woo, H. Shin, J.U. Jeon, Y.E. Pak, E.L. Colla, N. Setter, E. Kim, K. No: Principle of ferroelectric domain imaging using atomic force microscope, J. Appl. Phys. 89, 1377–1386 (2001)Google Scholar
  149. S.V. Kalinin, D.A. Bonnell: Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys. Rev. B 65, 125408 (2002)Google Scholar
  150. C.S. Ganpule: Nanoscale Phenomena in Ferroelectric Thin Films, Ph.D. Thesis (Univ. of Maryland, College Park 2001)Google Scholar
  151. C. Harnagea: Local Piezoelectric Response and Domain Structures in Ferroelectric Thin Films Investigated by Voltage-Modulated Force Microscopy, Ph.D. Thesis (Martin Luther Universität, Halle, Wittenberg 2001)Google Scholar
  152. R. Shao, D.A. Bonnell: Scanning probes of nonlinear properties in complex materials, Jpn. J. Appl. Phys. 43, 4471 (2004)Google Scholar
  153. R. Nath, Y.-H. Chu, N.A. Polomoff, R. Ramesh, B.D. Huey: High speed piezoresponse force microscopy: <1 frame per second nanoscale imaging, Appl. Phys. Lett. 93, 072905 (2008)Google Scholar
  154. B.D. Huey, R. Nath Premnath, S. Lee, N.A. Polomoff: High speed spm applied for direct nanoscale mapping of the influence of defects on ferroelectric switching dynamics, J. Am. Ceram. Soc. 95, 1147–1162 (2012)Google Scholar
  155. N. Kodera, D. Yamamoto, R. Ishikawa, T. Ando: Video imaging of walking myosin V by high-speed atomic force microscopy, Nature 468, 72–76 (2010)Google Scholar
  156. J.T. Heron, J.L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J.D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D.C. Ralph, D.G. Schlom, J. Íñiguez, B.D. Huey, R. Ramesh: Deterministic switching of ferromagnetism at room temperature using an electric field, Nature 516, 370 (2014)Google Scholar
  157. M. Kalyan Phani, A. Kumar, W. Arnold, K. Samwer: Elastic stiffness and damping measurements in titanium alloys using atomic force acoustic microscopy, J. Alloys Compd. 676, 397–406 (2016)Google Scholar
  158. L.R. Merte, G. Peng, R. Bechstein, F. Rieboldt, C.A. Farberow, L.C. Grabow, W. Kudernatsch, S. Wendt, E. Laegsgaard, M. Mavrikakis, F. Besenbacher: Water-mediated proton hopping on an iron oxide surface, Science 336, 889–893 (2012)Google Scholar
  159. M.J. Rost, L. Crama, P. Schakel, E.V. Tol, G.B.E.M. van Velzen-Williams, C.F. Overgauw, H. ter Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A.J. Katan, K. Schoots, R. Schumm, W. van Loo, T.H. Oosterkamp, J.W.M. Frenken: Scanning probe microscopes go video rate and beyond, Rev. Sci. Instrum. 76, 053710 (2005)Google Scholar
  160. P.M. Hoffmann, S. Jeffery, J.B. Pethica, H. Özgür Özer, A. Oral: Energy dissipation in atomic force microscopy and atomic loss processes, Phys. Rev. Lett. 87, 265502 (2001)Google Scholar
  161. B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman, U.D. Schwarz: Three-dimensional imaging of short-range chemical forces with picometre resolution, Nat. Nanotechnol. 4, 307 (2009)Google Scholar
  162. T. Fukuma, M.J. Higgins, S.P. Jarvis: Direct imaging of individual intrinsic hydration layers on lipid bilayers at ångstrom resolution, Biophys. J. 92, 3603–3609 (2007)Google Scholar
  163. D.J. Müller, W. Baumeister, A. Engel: Controlled unzipping of a bacterial surface layer with atomic force microscopy, Proc. Natl. Acad. Sci. 96, 13170–13174 (1999)Google Scholar
  164. H.G. Hansma, K.J. Kim, D.E. Laney, R.A. Garcia, M. Argaman, M.J. Allen, S.M. Parsons: Properties of biomolecules measured from atomic force microscope images: A review, J. Struct. Biol. 119, 99–108 (1997)Google Scholar
  165. H. Lee, N.F. Scherer, P.B. Messersmith: Single-molecule mechanics of mussel adhesion, Proc. Natl. Acad. Sci. 103, 12999–13003 (2006)Google Scholar
  166. D.J. Müller, Y.F. Dufrêne: Atomic force microscopy: A nanoscopic window on the cell surface, Trends Cell Biol. 21, 461–469 (2011)Google Scholar
  167. M. Radmacher, R.W. Tillmann, M. Fritz, H.E. Gaub: From molecules to cells: Imaging soft samples with the atomic force microscope, Science 257, 1900–1905 (1992)Google Scholar
  168. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer: Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction, Phys. Rev. Lett. 92, 134301–134301 (2004)Google Scholar
  169. T.D.B. Jacobs, R.W. Carpick: Nanoscale wear as a stress-assisted chemical reaction, Nat. Nanotechnol. 8, 108 (2013)Google Scholar
  170. Z. Burton, B. Bhushan: Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems, Nano Lett. 5, 1607–1613 (2005)Google Scholar
  171. U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture, Science 248, 454–461 (1990)Google Scholar
  172. C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton, C.M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)Google Scholar
  173. T. Boland, B.D. Ratner: Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy, Proc. Natl. Acad. Sci. USA 92, 5297–5301 (1995)Google Scholar
  174. R. García, R. Magerle, R. Perez: Nanoscale compositional mapping with gentle forces, Nat. Mater. 6, 405 (2007)Google Scholar
  175. N.A. Burnham, O.P. Behrend, F. Oulevey, G. Gremaud, P.J. Gallo, D. Gourdon, E. Dupas, A.J. Kulik, H.M. Pollock, G.A.D. Briggs: How does a tip tap?, Nanotechnology 8, 67 (1997)Google Scholar
  176. K. Sweers, K. van der Werf, M. Bennink, V. Subramaniam: Nanomechanical properties of α-synuclein amyloid fibrils: A comparative study by nanoindentation, harmonic force microscopy, and peakforce QNM, Nanoscale Res. Lett. 6, 270 (2011)Google Scholar
  177. R. Szoszkiewicz, B. Bhushan, B.D. Huey, A.J. Kulik, G. Gremaud: Correlations between adhesion hysteresis and friction at molecular scales, J. Chem. Phys. 122, 144708 (2005)Google Scholar
  178. A. Dazzi, C.B. Prater: AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging, Chem. Rev. 117, 5146–5173 (2017)Google Scholar
  179. R.K. Vasudevan, H. Khassaf, Y. Cao, S. Zhang, A. Tselev, B. Carmichael, M.B. Okatan, S. Jesse, L.-Q. Chen, S.P. Alpay, S.V. Kalinin, N. Bassiri-Gharb: Acoustic detection of phase transitions at the nanoscale, Adv. Funct. Mater. 26, 478–486 (2016)Google Scholar
  180. J. Hidalgo, C. Montero-Ocampo, M. Cuberes: Nanoscale visualization of elastic inhomogeneities at TiN coatings using ultrasonic force microscopy, Nanoscale Res. Lett. 4, 1493 (2009)Google Scholar
  181. K. Yamanaka, H. Ogiso, O. Kolosov: Ultrasonic force microscopy for nanometer resolution subsurface imaging, Appl. Phys. Lett. 64, 178–180 (1994)Google Scholar
  182. B.D. Huey: AFM and acoustics: Fast, quantitative nanomechanical mapping, Annu. Rev. Mater. Res. 37, 351–385 (2007)Google Scholar
  183. U. Rabe, W. Arnold: Acoustic microscopy by atomic force microscopy, Appl. Phys. Lett. 64, 1493–1495 (1994)Google Scholar
  184. J.P. Killgore, D.G. Yablon, A.H. Tsou, A. Gannepalli, P.A. Yuya, J.A. Turner, R. Proksch, D.C. Hurley: Viscoelastic property mapping with contact resonance force microscopy, Langmuir 27, 13983–13987 (2011)Google Scholar
  185. I. Sokolov: Toward the nanoscale study of insect physiology using an atomic force microscopy-based nanostethoscope, MRS Bulletin 37, 522–527 (2012)Google Scholar
  186. N.V. Guz, M.E. Dokukin, I. Sokolov: Atomic force microscopy study of nano-physiological response of ladybird beetles to photostimuli, PLOS ONE 5, e12834 (2010)Google Scholar
  187. M. Kocun, A. Labuda, A. Gannepalli, R. Proksch: Contact resonance atomic force microscopy imaging in air and water using photothermal excitation, Rev. Sci. Instrum. 86,(2015)Google Scholar
  188. W.I. Gruszecki, A.J. Kulik, E. Janik, J. Bednarska, R. Luchowski, W. Grudzinski, G. Dietler: Nanoscale resolution in infrared imaging of protein-containing lipid membranes, Nanoscale 7, 14659–14662 (2015)Google Scholar
  189. B. Lahiri, G. Holland, V. Aksyuk, A. Centrone: Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique, Nano Lett. 13, 3218–3224 (2013)Google Scholar
  190. S. Lee, O. Kwon, M. Jeon, J. Song, S. Shin, H. Kim, M. Jo, T. Rim, J. Doh, S. Kim, J. Son, Y. Kim, C. Kim: Super-resolution visible photoactivated atomic force microscopy, Light Sci. Appl. 6, e17080 (2017)Google Scholar
  191. L. Zhou, M. Cai, T. Tong, H. Wang: Progress in the correlative atomic force microscopy and optical microscopy, Sensors 17, 938 (2017)Google Scholar
  192. F. Keilmann, R. Hillenbrand: Near-field microscopy by elastic light scattering from a tip, Philos. Trans. Royal Soc. A 362, 787–805 (2004)Google Scholar
  193. B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl: Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy, Phys. Rev. Lett. 92, 096101 (2004)Google Scholar
  194. E. Bailo, V. Deckert: Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method, Angew. Chem. Int. Ed. 47, 1658–1661 (2008)Google Scholar
  195. E.A. Muller, B. Pollard, H.A. Bechtel, P. van Blerkom, M.B. Raschke: Infrared vibrational nanocrystallography and nanoimaging, Sci. Adv. 2, e1601006 (2016)Google Scholar
  196. A.B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M.A. Belkin, G. Shvets: Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials, Nat. Commun. 7, 12045 (2016)Google Scholar
  197. F. Lu, M. Jin, M.A. Belkin: Tip-enhanced infrared nanospectroscopy via molecular expansion force detection, Nat. Photonics 8, 307–312 (2014)Google Scholar
  198. R. Giridharagopal, P.A. Cox, D.S. Ginger: Functional scanning probe imaging of nanostructured solar energy materials, Acc. Chem. Res. 49, 1769–1776 (2016)Google Scholar
  199. R. Price, P.M. Young: Visualization of the crystallization of lactose from the amorphous state, J. Pharm. Sci. 93, 155–164 (2004)Google Scholar
  200. S.S. Nonnenmann, R. Kungas, J. Vohs, D.A. Bonnell: Direct in situ probe of electrochemical processes in operating fuel cells, ACS Nano 7, 6330–6336 (2013)Google Scholar
  201. C.C. Williams, H.K. Wickramasinghe: Scanning thermal profiler, Appl. Phys. Lett. 49, 1587–1589 (1986)Google Scholar
  202. J. Lee, T. Beechem, T.L. Wright, B.A. Nelson, S. Graham, W.P. King: Electrical, thermal, and mechanical characterization of silicon microcantilever heaters, J. Microelectromech. Syst. 15, 1644–1655 (2006)Google Scholar
  203. H.M. Pollock, A. Hammiche: Micro-thermal analysis: Techniques and applications, J. Phys. D 34, R23 (2001)Google Scholar
  204. P.D. Tovee, O.V. Kolosov: Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy, Nanotechnology 24, 465706 (2013)Google Scholar
  205. B. Drake, C. Prater, A. Weisenhorn, S. Gould, T. Albrecht, C. Quate, D. Cannell, H. Hansma, P. Hansma: Imaging crystals, polymers, and processes in water with the atomic force microscope, Science 243, 1586–1589 (1989)Google Scholar
  206. I. Reviakine, W. Bergsma-Schutter, A. Brisson: Growth of protein 2-D crystals on supported planar lipid bilayers imagedin situby AFM, J. Struct. Biol. 121, 356–362 (1998)Google Scholar
  207. W. Hoyer, D. Cherny, V. Subramaniam, T.M. Jovin: Rapid self-assembly of a-synuclein observed by in situ atomic force microscopy, J. Mol. Biol. 340, 127–139 (2004)Google Scholar
  208. Y.L. Lyubchenko, L.S. Shlyakhtenko: Visualization of supercoiled DNA with atomic force microscopy in situ, Proc. Natl. Acad. Sci. 94, 496–501 (1997)Google Scholar
  209. M. Li, H.X. Tang, M.L. Roukes: Ultra-sensitive nems-based cantilevers for sensing, scanned probe and very high-frequency applications, Nat. Nanotechnol. 2, 114–120 (2007)Google Scholar
  210. M. Rivas, V. Vyas, A. Carter, J. Veronick, Y. Khan, O.V. Kolosov, R.G. Polcawich, B.D. Huey: Nanoscale mapping of in situ actuating microelectromechanical systems with AFM, J. Mater. Res. 30, 429–441 (2015)Google Scholar
  211. S. Sharma, J.K. Gimzewski: Application of AFM to the nanomechanics of cancer, MRS Advances 1, 1817–1827 (2016)Google Scholar
  212. D. Martínez-Martín, G. Fläschner, B. Gaub, S. Martin, R. Newton, C. Beerli, J. Mercer, C. Gerber, D.J. Müller: Inertial picobalance reveals fast mass fluctuations in mammalian cells, Nature 550, 500 (2017)Google Scholar
  213. J. Liu, N. Sun, M.A. Bruce, J.C. Wu, M.J. Butte: Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes, PLOS ONE 7, e37559 (2012)Google Scholar
  214. N. Neerajha, V. Varun, D.H. Bryan, Z. Pinar: Modulation of the contractility of micropatterned myocardial cells with nanoscale forces using atomic force microscopy, Nanobiomedicine 3 (2016), Scholar
  215. S. Amemiya, A.J. Bard, F.-R.F. Fan, M.V. Mirkin, P.R. Unwin: Scanning electrochemical microscopy, Annu. Rev. Anal. Chem. 1, 95–131 (2008)Google Scholar
  216. R. Kumar, A. Tokranov, B.W. Sheldon, X. Xiao, Z. Huang, C. Li, T. Mueller: In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes, ACS Energy Lett. 1, 689–697 (2016)Google Scholar
  217. B. Breitung, P. Baumann, H. Sommer, J. Janek, T. Brezesinski: In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries, Nanoscale 8, 14048–14056 (2016)Google Scholar
  218. S. Wang, W. Zhang, Y. Chen, Z. Dai, C. Zhao, D. Wang, C. Shen: Operando study of Fe3O4 anodes by electrochemical atomic force microscopy, Appl. Surf. Sci. 426, 217–223 (2017)Google Scholar
  219. N. Balke, S. Jesse, A.N. Morozovska, E. Eliseev, D.W. Chung, Y. Kim, L. Adamczyk, R.E. García, N. Dudney, S.V. Kalinin: Nanoscale mapping of ion diffusion in a lithium-ion battery cathode, Nat. Nanotechnol. 5, 749 (2010)Google Scholar
  220. S. Sundararajan, B. Bhushan, T. Namazu, Y. Isono: Mechanical property measurements of nanoscale structures using an atomic force microscope, Ultramicroscopy 91, 111–118 (2002)Google Scholar
  221. Z.J. Davis, G. Abadal, O. Hansen, X. Borise, N. Barniol, F. Perez-Murano, A. Boisen: AFM lithography of aluminum for fabrication of nanomechanical systems, Ultramicroscopy 97, 467–472 (2003)Google Scholar
  222. H. Sugimura, T. Hanji, K. Hayashi, O. Takai: Surface modification of an organosilane self-assembled monolayer on silicon substrates using atomic force microscopy: Scanning probe electrochemistry toward nanolithography, Ultramicroscopy 91, 221–226 (2002)Google Scholar
  223. W.-K. Lee, K.C. Caster, J. Kim, S. Zauscher: Nanopatterned polymer brushes by combining AFM anodization lithography with ring-opening metathesis polymerization in the liquid and vapor phase, Small 2, 848–853 (2006)Google Scholar
  224. Z. Li, M. Wu, T. Liu, C. Wu, Z. Jiao, B. Zhao: Preparation of TiO2 nanowire gas nanosensor by AFM anode oxidation, Ultramicroscopy 108, 1334–1337 (2008)Google Scholar
  225. L. Nuri, J. William, L. Chunli, M. Christian: Size dependent bipolar resistance switching of NiO nanodots for low-power and multi-state operation, Nanotechnology 25, 415302 (2014)Google Scholar
  226. M.R. Nellist, F.A.L. Laskowski, J. Qiu, H. Hajibabaei, K. Sivula, T.W. Hamann, S.W. Boettcher: Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces, Nat. Energy 3, 46–52 (2017)Google Scholar
  227. J. Lazar, P. Klapetek, M. Valtr, J. Hrabina, Z. Buchta, O. Cip, M. Cizek, J. Oulehla, M. Sery: Short-range six-axis interferometer controlled positioning for scanning probe microscopy, Sensors 14, 877–886 (2014)Google Scholar
  228. J.-O. Jung, S. Choi, Y. Lee, J. Kim, D. Son, J. Lee: Versatile variable temperature and magnetic field scanning probe microscope for advanced material research, Rev. Sci. Instrum. 88, 103702 (2017)Google Scholar
  229. Y. Nahas, F. Berneau, J. Bonneville, C. Coupeau, M. Drouet, B. Lamongie, M. Marteau, J. Michel, P. Tanguy, C. Tromas: An experimental UHV AFM-STM device for characterizing surface nanostructures under stress/strain at variable temperature, Rev. Sci. Instrum. 84, 105117 (2013)Google Scholar
  230. J.A. Galvis, E. Herrera, I. Guillamon, J. Azpeitia, R.F. Luccas, C. Munuera, M. Cuenca, J.A. Higuera, N. Diaz, M. Pazos, M. Garcia-Hernandez, A. Buendia, S. Vieira, H. Suderow: Three axis vector magnet set-up for cryogenic scanning probe microscopy, Rev. Sci. Instrum. 86, 013706 (2015)Google Scholar
  231. K.V. Hansen, Y. Wu, T. Jacobsen, M.B. Mogensen, L. Theil Kuhn: Improved controlled atmosphere high temperature scanning probe microscope, Rev. Sci. Instrum. 84, 073701 (2013)Google Scholar
  232. W.G. Bessler, S. Gewies, M. Vogler: A new framework for physically based modeling of solid oxide fuel cells, Electrochim. Acta 53, 1782–1800 (2007)Google Scholar
  233. T. Eguchi, Y. Fujikawa, K. Akiyama, T. An, M. Ono, T. Hashimoto, Y. Morikawa, K. Terakura, T. Sakurai, M. Lagally: Imaging of all dangling bonds and their potential on the Ge/Si(105) surface by noncontact atomic force microscopy, Phys. Rev. Lett. 93, 266102 (2004)Google Scholar
  234. D. Rugar, R. Budakian, H. Mamin, B. Chui: Single spin detection by magnetic resonance force microscopy, Nature 430, 329–332 (2004)Google Scholar
  235. C.A. Amo, A.P. Perrino, A.F. Payam, R. Garcia: Mapping elastic properties of heterogeneous materials in liquid with angstrom-scale resolution, ACS Nano 11, 8650–8659 (2017)Google Scholar
  236. K. Salaita, Y. Wang, C.A. Mirkin: Applications of dip-pen nanolithography, Nat. Nanotechnol. 2,(2007)Google Scholar
  237. D. Ziegler, A. Klaassen, D. Bahri, D. Chmielewski, A. Nievergelt, F. Mugele, J.E. Sader, P.D. Ashby: Encased cantilevers for low-noise force and mass sensing in liquids. In: Proc. 2014 IEEE 27th Int. Conf. Micro Electro Mech. Syst. MEMS (2014) pp. 128–131, Scholar
  238. S.C. Minne, G. Yaralioglu, S.R. Manalis, J.D. Adams, J. Zesch, A. Atalar, C.F. Quate: Automated parallel high-speed atomic force microscopy, Appl. Phys. Lett. 72, 2340–2342 (1998)Google Scholar
  239. A.D.L. Humphris, M.J. Miles, J.K. Hobbs: A mechanical microscope: High-speed atomic force microscopy, Appl. Phys. Lett. 86, 034106 (2005)Google Scholar
  240. G. Schitter, M.J. Rost: Scanning probe microscopy at video-rate, Mater. Today 11, 40–48 (2008)Google Scholar
  241. M.B. Viani, T.E. Schäffer, G.T. Paloczi, L.I. Pietrasanta, B.L. Smith, J.B. Thompson, M. Richter, M. Rief, H.E. Gaub, K.W. Plaxco, A.N. Cleland, H.G. Hansma, P.K. Hansma: Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers, Rev. Sci. Instrum. 70, 4300–4303 (1999)Google Scholar
  242. J.L. Bosse, B.D. Huey: Error-corrected AFM: A simple and broadly applicable approach for substantially improving AFM image accuracy, Nanotechnology 25, 155704 (2014)Google Scholar
  243. I.A. Mahmood, S.O. Reza Moheimani: Fast spiral-scan atomic force microscopy, Nanotechnology 20, 365503 (2009)Google Scholar
  244. D. Ziegler, T.R. Meyer, A. Amrein, A.L. Bertozzi, P.D. Ashby: Ideal scan path for high-speed atomic force microscopy, IEEE ASME Trans. Mechatron. 22, 381–391 (2017)Google Scholar
  245. Z. Dominik, R.M. Travis, F. Rodrigo, B. Christoph, L.B. Andrea, D.A. Paul: Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data, Nanotechnology 24, 335703 (2013)Google Scholar
  246. E.T. Herruzo, A.P. Perrino, R. Garcia: Fast nanomechanical spectroscopy of soft matter, Nat. Commun. 5, 3126 (2014)Google Scholar
  247. C. Marutschke, D. Walters, D. Walters, I. Hermes, R. Bechstein, A. Kuhnle: Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy, Nanotechnology 25, 335703 (2014)Google Scholar
  248. S.V. Kalinin, E. Strelcov, A. Belianinov, S. Somnath, R.K. Vasudevan, E.J. Lingerfelt, R.K. Archibald, C. Chen, R. Proksch, N. Laanait, S. Jesse: Big, deep, and smart data in scanning probe microscopy, ACS Nano 10, 9068–9086 (2016)Google Scholar
  249. A. Hammiche, H.M. Pollock, M. Song, D.J. Hourston: Sub-surface imaging by scanning thermal microscopy, Meas. Sci. Technol. 7, 142 (1996)Google Scholar
  250. M.J. Pereira, J.S. Amaral, N.J.O. Silva, V.S. Amaral: Nano-localized thermal analysis and mapping of surface and sub-surface thermal properties using scanning thermal microscopy (SThM), Microsc. Microanal. 22, 1270–1280 (2016)Google Scholar
  251. O.A. Castaneda-Uribe, R. Reifenberger, A. Raman, A. Avila: Depth-sensitive subsurface imaging of polymer nanocomposites using second harmonic Kelvin probe force microscopy, ACS Nano 9, 2938–2947 (2015)Google Scholar
  252. E.M. Tennyson, J.A. Frantz, J.M. Howard, W.B. Gunnarsson, J.D. Myers, R.Y. Bekele, J.S. Sanghera, S.-M. Na, M.S. Leite: Photovoltage tomography in polycrystalline solar cells, ACS Energy Lett. 1, 899–905 (2016)Google Scholar
  253. K. Radotic, C. Roduit, J. Simonovic, P. Hornitschek, C. Fankhauser, D. Mutavdzic, G. Steinbach, G. Dietler, S. Kasas: Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth, Biophys. J. 103, 386–394 (2012)Google Scholar
  254. J.D. Beard, R.H. Guy, S.N. Gordeev: Mechanical tomography of human corneocytes with a nanoneedle, J. Investig. Dermatol. 133, 1565–1571 (2013)Google Scholar
  255. C. Roduit, S. Sekatski, G. Dietler, S. Catsicas, F. Lafont, S. Kasas: Stiffness tomography by atomic force microscopy, Biophys. J. 97, 674–677 (2009)Google Scholar
  256. D. Ebeling, B. Eslami, S.D.J. Solares: Visualizing the subsurface of soft matter: Simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy, ACS Nano 7, 10387–10396 (2013)Google Scholar
  257. A.P. McGuigan, B.D. Huey, G.A.D. Briggs, O.V. Kolosov, Y. Tsukahara, M. Yanaka: Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy, Appl. Phys. Lett. 80, 1180–1182 (2002)Google Scholar
  258. G.S. Shekhawat, V.P. Dravid: Nanoscale imaging of buried structures via scanning near-field ultrasound holography, Science 310, 89 (2005)Google Scholar
  259. F. Dinelli, P. Pingue, N.D. Kay, O.V. Kolosov: Subsurface imaging of two-dimensional materials at the nanoscale, Nanotechnology 28, 085706 (2017)Google Scholar
  260. G. Stan, E. Mays, H.J. Yoo, S.W. King: Nanoscale tomographic reconstruction of the subsurface mechanical properties of low-k high-aspect ratio patterns, Nanotechnology 27, 485706–485706 (2016)Google Scholar
  261. A.P. Perrino, Y.K. Ryu, C.A. Amo, M.P. Morales, R. Garcia: Subsurface imaging of silicon nanowire circuits and iron oxide nanoparticles with sub-10 nm spatial resolution, Nanotechnology 27, 275703 (2016)Google Scholar
  262. C. Ma, Y. Chen, W. Arnold, J. Chu: Detection of subsurface cavity structures using contact-resonance atomic force microscopy, J. Appl. Phys. 121, 154301 (2017)Google Scholar
  263. O.V. Kolosov, I. Grishin, R. Jones: Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing, Nanotechnology 22, 185702 (2011)Google Scholar
  264. J.L. Bosse, I. Grishin, B.D. Huey, O.V. Kolosov: Nanomechanical morphology of amorphous, transition, and crystalline domains in phase change memory thin films, Appl. Surf. Sci. 314, 151–157 (2014)Google Scholar
  265. S.T. Ho, D.W. Hutmacher: A comparison of micro CT with other techniques used in the characterization of scaffolds, Biomaterials 27, 1362–1376 (2006)Google Scholar
  266. D.J. Brenner, E.J. Hall: Computed tomography—An increasing source of radiation exposure, N. Engl. J. Med. 357, 2277–2284 (2007)Google Scholar
  267. S.M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E.J. Behrens, H. Johansen-Berg, P.R. Bannister, M. De Luca, I. Drobnjak, D.E. Flitney, R.K. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J.M. Brady, P.M. Matthews: Advances in functional and structural MR image analysis and implementation as FSL, NeuroImage 23(Suppl 1), S208–S219 (2004)Google Scholar
  268. K. Carlsson, N. Aslund: Confocal imaging for 3-D digital microscopy, Appl. Opt. 26, 3232–3238 (1987)Google Scholar
  269. K. Lange, R. Carson: EM reconstruction algorithms for emission and transmission tomography, J. Comput. Assist. Tomogr. 8, 306–316 (1984)Google Scholar
  270. X. Zhong, D.J. Rowenhorst, H. Beladi, G.S. Rohrer: The five-parameter grain boundary curvature distribution in an austenitic and ferritic steel, Acta Mater. 123, 136–145 (2017)Google Scholar
  271. A. Sperschneider, M. Hund, H.G. Schoberth, F.H. Schacher, L. Tsarkova, A.H.E. Müller, A. Böker: Going beyond the surface: Revealing complex block copolymer morphologies with 3D scanning force microscopy, ACS Nano 4, 5609–5616 (2010)Google Scholar
  272. Y. Chen, J. Cai, T. Zhao, C. Wang, S. Dong, S. Luo, Z.W. Chen: Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures, Ultramicroscopy 103, 173–182 (2005)Google Scholar
  273. A.E. Efimov, A.G. Tonevitsky, M. Dittrich, N.B. Matsko: Atomic force microscope (AFM) combined with the ultramicrotome: A novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples, J. Microsc. 226, 207–217 (2007)Google Scholar
  274. A.E. Efimov, H. Gnaegi, R. Schaller, W. Grogger, F. Hofer, N.B. Matsko: Analysis of native structures of soft materials by cryo scanning probe tomography, Soft Matter 8, 9756–9760 (2012)Google Scholar
  275. S. Scheuring, J. Seguin, S. Marco, D. Lévy, B. Robert, J.-L. Rigaud: Nanodissection and high-resolution imaging of the rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM, Proc. Natl. Acad. Sci. 100, 1690–1693 (2003)Google Scholar
  276. D. Pires, J.L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A.W. Knoll: Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science 328, 732–735 (2010)Google Scholar
  277. A.W. Knoll, D. Pires, O. Coulembier, P. Dubois, J.L. Hedrick, J. Frommer, U. Duerig: Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater. 22, 3361–3365 (2010)Google Scholar
  278. A. Schulze, T. Hantschel, A. Dathe, P. Eyben, X. Ke, W. Vandervorst: Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects, Nanotechnology 23, 305707 (2012)Google Scholar
  279. U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, W. Vandervorst: Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory, Nano Lett. 15, 7970–7975 (2015)Google Scholar
  280. U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst: Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices, Nano Lett. 14, 2401–2406 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science & EngineeringUniversity of ConnecticutStorrs, CTUSA
  2. 2.Microelectronics Engineering and TechnologyRaytheonAndover, MAUSA
  3. 3.Dept. of Materials Science & EngineeringUniversity of PennsylvaniaPhiladelphia, PAUSA

Personalised recommendations