Fluorescence Microscopy

Part of the Springer Handbooks book series (SHB)


In this two-part chapter, the background to confocal microscopy and two-photon fluorescence microscopy is first presented, with a detailed description of the optical setup. This is followed by a critical account of the many super-resolution techniques: coordinated stochastic fluorescence microscopy (photoactivation localization microscopy (), stochastic optical reconstruction microscopy (), point accumulation for imaging in nanoscale topography (), coordinate targeted fluorescence microscopy (STED, reversible saturable optical fluorescence transition ()), structured illumination microscopy, expansion microscopy (), and liquid tunable microscopy ().



The first Italian TPE architecture realized at LAMBS was supported by INFM grants. LAMBS-MicroScoBio is currently funded by IFOM (Istituto FIRC di Oncologia Molecolare, FIRC Institute of Molecular Oncology, Milano). This chapter is dedicated to the memory of Osamu Nakamura, who passed away January 23, 2005 at Handai Hospital.


  1. W. Denk, J.H. Strickler, W.W. Webb: Two-photon laser scanning fluorescence microscopy, Science 248, 73–76 (1990)Google Scholar
  2. E. Pennisi: Biochemistry: Photons add up to better microscopy, Science 275, 480–481 (1997)Google Scholar
  3. A. Esposito, F. Federici, C. Usai, F. Cannone, G. Chirico, M. Collini, A. Diaspro: Notes on theory and experimental conditions behind two-photon excitation microscopy, Microsc. Res. Tech. 63, 12–17 (2004)Google Scholar
  4. A. Diaspro: New world microscopy, IEEE Eng. Med. Biol. Mag. 15(1), 29–100 (1996)Google Scholar
  5. A.J. Koster, J. Klumperman: Electron microscopy in cell biology: integrating structure and function, Nat. Rev. Mol. Cell. Biol. 4(9, Suppl.), SS6–SS9 (2003)Google Scholar
  6. U. Dürig, D.W. Pohl: Near-field optical-scanning microscopy, J. Appl. Phys. 59(10), 3318–3327 (1986)Google Scholar
  7. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56(9), 930–933 (1986)Google Scholar
  8. E. Ruska, M. Knoll: Die magnetische Sammelspule fuer schnelle Elektronenstrahlen, Z. Tech. Phys. 12(488), 389–400 (1931)Google Scholar
  9. J.B. Pawley (Ed.): Handbook of Biological Confocal Microscopy (Plenum, New York 1995)Google Scholar
  10. A. Periasamy (Ed.): Methods in Cellular Imaging (Oxford Univ. Press, New York 2001)Google Scholar
  11. A. Diaspro (Ed.): Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley, New York 2002)Google Scholar
  12. D.J. Arndt-Jovin, R.M. Nicoud, J. Kaufmann, T.M. Jovin: Fluorescence digital-imaging microscopy in cell biology, Science 230, 1333–1335 (1985)Google Scholar
  13. F. Beltrame, B. Bianco, G. Castellaro, A. Diaspro: Fluorescence, absorption, phase-contrast, holographic and acoustical cytometries of living cells. In: Interactions Between Electromagnetic Fields and Cells, NATO ASI, Vol. 97, ed. by A. Chiabrera, H.P. Schwan (Plenum, New York 1985) pp. 483–498Google Scholar
  14. X.F. Wang, B. Herman: Fluorescence Imaging Spectroscopy and Microscopy (Wiley, New York 1996)Google Scholar
  15. B. Herman, H.J. Tanke: Fluorescence Microscopy (Springer, New York 1998)Google Scholar
  16. J.K. Jaiswal, E.R. Goldman, H. Mattoussi, S.M. Simon: Use of quantum dots for live cell imaging, Nat. Methods 1(1), 73–78 (2004)Google Scholar
  17. G.H. Patterson, J.A. Lippincott-Schwarz: Photoactivatable GFP for selective photolabeling of proteins and cells, Science 297, 1873 (2002)Google Scholar
  18. J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Rocker, A. Salih, K.-D. Spindler, G.U. Nienhaus: EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion, Proc. Natl. Acad. Sci. U.S.A. 101(45), 15905–15910 (2004)Google Scholar
  19. A. Egner, V. Andresen, S.W. Hell: Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment, J. Microsc. 206(1), 24–32 (2002)Google Scholar
  20. H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, S.W. Hell: Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy, Biophys. J. 87(6), 4146–4152 (2004)Google Scholar
  21. S.W. Hell: Toward fluorescence nanoscopy, Nat. Biotechnol. 21, 1347–1355 (2003)Google Scholar
  22. P.I. Bastiaens, S.W. Hell: Recent advances in light microscopy, J. Struct. Biol. 147, 1–89 (2004)Google Scholar
  23. G. McConnell, E. Riis: Two-photon laser scanning fluorescence microscopy using photonic crystal fiber, J. Biomed. Opt. 9(5), 922–927 (2004)Google Scholar
  24. J.C. Jung, A.D. Mehta, E. Aksay, R. Stepnoski, M.J. Schnitzer: In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy, J. Neurophysiol. 92(5), 3121–3133 (2004)Google Scholar
  25. C. Kappel, A. Selle, T. Fricke-Begemann, M.A. Bader, G. Marowsky: Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures, Appl. Phys. B Lasers Opt. 79(5), 531–534 (2004)Google Scholar
  26. S. Basu, P.J. Campagnola: Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation, J. Biomed. Mat. Res. Part A 71(A2), 359–368 (2004)Google Scholar
  27. D.K. Bird, K.W. Eliceiri, C.H. Fan, J.G. White: Simultaneous two-photon spectral and lifetime fluorescence microscopy, Appl. Opt. 43(27), 5173–5182 (2004)Google Scholar
  28. B.A. Nemet, V. Nikolenko, R. Yuste: Second harmonic imaging of membrane potential of neurons with retinal, J. Biomed. Opt. 9(5), 873–881 (2004)Google Scholar
  29. A. Periasamy, A. Diaspro: Multiphoton microscopy, J. Biomed. Opt. 8(3), 327–328 (2003)Google Scholar
  30. M. Weinstein, K.R. Castleman: Reconstructing 3-D specimens from 2-D section images, Proc. SPIE 26, 131–138 (1971)Google Scholar
  31. D.A. Agard, Y. Hiraoka, P.J. Shaw, J.W. Sedat: Fluorescence microscopy in three dimensions, Methods Cell. Biol. 30, 353–378 (1989)Google Scholar
  32. B. Bianco, A. Diaspro: Analysis of the three dimensional cell imaging obtained with optical microscopy techniques based on defocusing, Cell Biophys. 15(3), 189–200 (1989)Google Scholar
  33. A. Diaspro, M. Sartore, C. Nicolini: Three-dimensional representation of biostructures imaged with an optical microscope: I. Digital optical sectioning, Image Vis. Comp. 8, 130–141 (1990)Google Scholar
  34. G.J. Brakenhoff, P. Blom, P. Barends: Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117, 219–232 (1979)Google Scholar
  35. C.J.R. Sheppard, T. Wilson: Image formation in confocal scanning microscopes, Optik 55, 331–342 (1980)Google Scholar
  36. T. Wilson, C.J.R. Sheppard: Theory and Practice of Scanning Optical Microscopy (Academic Press, London 1984)Google Scholar
  37. K. Carlsson, P.E. Danielsson, R. Lenz, A. Liljeborg, L. Majlof, N. Aslund: Three-dimensional microscopy using a confocal laser scanning microscope, Opt. Lett. 10, 53–55 (1985)Google Scholar
  38. D.M. Shotton (Ed.): Electronic Light Microscopy: Techniques in Modern Biomedical Microscopy, Vol. 1 (Wiley, New York 1993)Google Scholar
  39. P.C. Cheng (Ed.): Computer Assisted Multidimensional Microscopies (Springer, New York 1994)Google Scholar
  40. B.R. Masters: Selected Papers on Confocal Microscopy, SPIE Milestone Series (SPIE, Bellingham 1996)Google Scholar
  41. C.J.R. Sheppard, D.M. Shotton: Confocal Laser Scanning Microscopy (BIOS, Oxford 1997)Google Scholar
  42. A. Diaspro: Two-photon microscopy, Microsc. Res. Tech. 47, 163–212 (1999)Google Scholar
  43. A. Diaspro: Two-photon excitation microscopy, IEEE Eng. Med. Biol. Mag. 18(5), 16–99 (1999)Google Scholar
  44. A. Diaspro: Two-photon excitation of fluorescence in three-dimensional microscopy, Eur. J. Histochem. 43, 169–178 (1999)Google Scholar
  45. K. König: Multiphoton microscopy in life sciences, J. Microsc. 200, 83–104 (2000)Google Scholar
  46. E. Gratton, N.P. Barry, S. Beretta, A. Celli: Multiphoton fluorescence microscopy, Methods 25, 103–110 (2001)Google Scholar
  47. J.G. White, W.B. Amos, M. Fordham: An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105, 41–48 (1987)Google Scholar
  48. R.H. Webb: Confocal optical microscopy, Rep. Prog. Phys. 59, 427–471 (1996)Google Scholar
  49. B. Amos: Lessons from the history of light microscopy, Nat. Cell Biol. 2, E151–E152 (2000)Google Scholar
  50. S.W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J.R. Lakowicz: Three-photon excitation in fluorescence microscopy, J. Biomed. Opt. 1, 71–74 (1996)Google Scholar
  51. S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, W.W. Webb: Measuring serotonin distribution in live cells with three-photon excitation, Science 275, 530–532 (1997)Google Scholar
  52. J.N. Gannaway, C.J.R. Sheppard: Second harmonic imaging in the scanning optical microscope, Opt. Quantum Electron. 10, 435–439 (1978)Google Scholar
  53. R. Gauderon, R.B. Lukins, C.J.R. Sheppard: Effects of a confocal pinhole in two-photon microscopy, Microsc. Res. Tech. 47, 210–214 (1999)Google Scholar
  54. P. Campagnola, M. Wei, A. Lewis, L. Loew: High-resolution nonlinear optical imaging of live cells by second harmonic generation, Biophys. J. 77, 3341–3351 (1999)Google Scholar
  55. A. Zoumi, A. Yeh, B.J. Tromberg: Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence, Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002)Google Scholar
  56. M. Mueller, J. Squier, K.R. Wilson, G.J. Brakenhoff: 3-D microscopy of transparent objects using third-harmonic generation, J. Microsc. 191, 266–274 (1998)Google Scholar
  57. J.A. Squier, M. Muller, G.J. Brakenhoff, K.R. Wilson: Third harmonic generation microscopy, Opt. Express 3, 315–324 (1998)Google Scholar
  58. K.M. Berland, P.T.C. So, E. Gratton: Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment, Biophys. J. 68, 694–701 (1995)Google Scholar
  59. P. Schwille: Fluorescence correlation spectroscopy and its potential for intracellular applications, Cell Biochem. Biophys. 34, 383–405 (2001)Google Scholar
  60. P. Schwille, U. Haupts, S. Maiti, W.W. Webb: Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation, Biophys. J. 77, 2251–2265 (1999)Google Scholar
  61. P. Schwille, S. Kummer, A.A. Heikal, W.E. Moerner, W.W. Webb: Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins, Proc. Natl. Acad. Sci. U.S.A. 97, 151–156 (2000)Google Scholar
  62. K.G. Heinze, M. Jahnz, P. Schwille: Triple-color coincidence analysis: one step further in following higher order molecular complex formation, Biophys. J. 86(1), 506–516 (2004)Google Scholar
  63. Q. Ruan, M.A. Cheng, M. Levi, E. Gratton, W.W. Mantulin: Spatial-temporal studies of membrane dynamics: Scanning fluorescence correlation spectroscopy (SFCS), Biophys. J. 87(2), 1260–1267 (2004)Google Scholar
  64. P.W. Wiseman, J.A. Squier, M.H. Ellisman, K.R. Wilson: Two-photon image correlation spectroscopy and image cross-correlation spectroscopy, J. Microsc. 200, 14–25 (2000)Google Scholar
  65. P.W. Wiseman, F. Capani, J.A. Squier, M.E. Martone: Counting dendritic spines in brain tissue slices by image correlation spectroscopy analysis, J. Microsc. 205, 177–186 (2002)Google Scholar
  66. K. König, T. Krasieva, E. Bauer, U. Fiedler, M.W. Berns, B.J. Tromberg, K.O. Greulich: Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay, J. Biomed. Opt. 1, 217–222 (1996)Google Scholar
  67. K. König, P.T.C. So, W.W. Mantulin, B.J. Tromberg, E. Gratton: Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress, J. Microsc. 183, 197–204 (1996)Google Scholar
  68. T. French, P.T.C. So, D.J. Weaver, T. Coelho-Sampaio, E. Gratton: Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing, J. Microsc. 185, 339–353 (1997)Google Scholar
  69. J. Sytsma, J.M. Vroom, C.J. De Grauw, H.C. Gerritsen: Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation, J. Microsc. 191, 39–51 (1998)Google Scholar
  70. M. Straub, S.W. Hell: Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope, App. Phys. Lett. 73, 1769–1771 (1998)Google Scholar
  71. J. Mertz, C. Xu, W.W. Webb: Single molecule detection by two-photon excited fluorescence, Opt. Lett. 20, 2532–2534 (1995)Google Scholar
  72. X.S. Xie, H.P. Lu: Single molecule enzymology, J. Biol. Chem. 274, 15967–15970 (1999)Google Scholar
  73. M. Sonnleitner, G.J. Schutz, T. Schmidt: Imaging individual molecules by two-photon excitation, Chem. Phys. Lett. 300, 221–226 (1999)Google Scholar
  74. M. Sonnleitner, G. Schutz, G. Kada, H. Schindler: Imaging single lipid molecules in living cells using two-photon excitation, Single Mol. 1, 182–183 (2000)Google Scholar
  75. F. Cannone, G. Chirico, A. Diaspro: Two-photon interactions at single fluorescent molecule level, J. Biomed. Opt. 8(3), 391–395 (2003)Google Scholar
  76. G. Chirico, F. Cannone, S. Beretta, G. Baldini, A. Diaspro: Single molecule studies by means of the two-photon fluorescence distribution, Microsc. Res. Tech. 55, 359–364 (2001)Google Scholar
  77. G. Chirico, F. Cannone, A. Diaspro: Single molecule photodynamics by means of one- and two-photon approach, J. Phys. D: Appl. Phys. 36, 1–7 (2003)Google Scholar
  78. J.D. Bhawalkar, N.D. Kumar, C.F. Zhao, P.N. Prasad: Two-photon photodynamic therapy, J. Clin. Laser Med. Surg. 15, 201–204 (1997)Google Scholar
  79. G. Chirico, F. Cannone, A. Diaspro, S. Bologna, V. Pellegrini, R. Nifosì, F. Beltram: Multiphoton switching dynamics of single green fluorescent proteins, Phys. Rev. E 70, 030901 (2004)Google Scholar
  80. G. Chirico, A. Diaspro, F. Cannone, M. Collini, S. Bologna, V. Pellegrini, F. Beltram: Selective fluorescence recovery after bleaching of single E2gfp proteins induced by two-photon excitation, Chem. Phys. Chem. 6(2), 328–335 (2005)Google Scholar
  81. J.N. Post, K.A. Lidke, B. Rieger, D.J. Arndt-Jovin: One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos, FEBS Letters 579(2), 325–330 (2005)Google Scholar
  82. M. Schneider, S. Barozzi, I. Testa, M. Faretta, A. Diaspro: Two-photon activation and excitation properties of Pa-Gfp in the 720–920 nm region, Biophys. J. 89(2), 1346–1352 (2005)Google Scholar
  83. N.S. White, R.J. Errington: Improved laser scanning fluorescence microscopy by multiphoton excitation, Adv. Imaging Elect. Phys. 113, 249–277 (2000)Google Scholar
  84. B.R. Masters: Selected Papers on Multi-Photon Excitation Microscopy, SPIE Milestone Series (SPIE, Bellingham 2002)Google Scholar
  85. M.D. Cahalan, I. Parker, S.H. Wei, M.J. Miller: Two-photon tissue imaging: Seeing the immune system in a fresh light, Nat. Rev. Immunol. 2(11), 872–880 (2002)Google Scholar
  86. M.J. Miller, S.H. Wei, M.D. Cahalan, I. Parker: Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy, Proc. Natl. Acad. Sci. U.S.A. 100(5), 2604–2609 (2003)Google Scholar
  87. A. Diaspro: Two-photon fluorescence excitation. A new potential perspective in flow cytometry, Minerva Biotechnol. 11(2), 87–92 (1998)Google Scholar
  88. A. Diaspro: Rapid dissemination of two-photon excitation microscopy prompts new applications, Microsc. Res. Tech. 63(1), 1–2 (2004)Google Scholar
  89. D.W. Piston: When two is better than one: elements of intravital microscopy, PLoS Biol. 3(6), e207 (2005)Google Scholar
  90. H.G. Cruz, C. Luscher: Applications of two-photon microscopy in the neurosciences, Front. Biosci. 10, 2263–2278 (2005)Google Scholar
  91. P.D. Davidovits, M.D. Egger: Scanning laser microscope, Nature 223, 831 (1969)Google Scholar
  92. P.D. Davidovits, M.D. Egger: Scanning laser microscope for biological investigations, Appl. Opt. 10, 1615–1619 (1971)Google Scholar
  93. C.J.R. Sheppard, A. Choudhury: Image formation in the scanning microscope, Opt. Acta 24, 1051–1073 (1977)Google Scholar
  94. G.J. Brakenhoff, E.A. van Spronsen, H.T. van der Voort, N. Nanninga: Three-dimensional confocal fluorescence microscopy, Method Cell Biol. 30, 379–398 (1989)Google Scholar
  95. M. Minsky: Memoir of inventing the confocal scanning microscope, Scanning 10, 128–138 (1988)Google Scholar
  96. C.J.R. Sheppard, R. Kompfner: Resonant scanning optical microscope, Appl. Opt. 17, 2879–2882 (1978)Google Scholar
  97. M. Göppert-Mayer: Über Elementarakte mit zwei Quantensprüngen, Ann. Phys. 9, 273–295 (1931)Google Scholar
  98. M. Minsky: Microscopy apparatus, U.S. Patent (Application) 3013467 (1957), filed 7 NovemberGoogle Scholar
  99. W. Denk, K. Svoboda: Photon upmanship: Why multiphoton imaging is more than a gimmick, Neuron 18, 351–357 (1997)Google Scholar
  100. O. Svelto: Principles of Lasers, 4th edn. (Plenum, New York 1998)Google Scholar
  101. F. Wise: Lasers for two-photon microscopy. In: Imaging: A Laboratory Manual, ed. by R. Yuste, F. Lanni, A. Konnerth (Cold Spring Harbor, Cold Spring Harbor 1999) pp. 18.1–18.9Google Scholar
  102. W. Kaiser, C.G.B. Garrett: Two-photon excitation in CaF2:Eu2+, Phys. Rev. Lett. 7, 229–231 (1961)Google Scholar
  103. S. Singh, L.T. Bradley: Three-photon absorption in naphthalene crystals by laser excitation, Phys. Rev. Lett. 12, 162–164 (1964)Google Scholar
  104. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich: Generation of optical harmonics, Phys. Rev. Lett. 7, 118–119 (1961)Google Scholar
  105. P.M. Rentzepis, C.J. Mitschele, A.C. Saxman: Measurement of ultrashort laser pulses by three-photon fluorescence, Appl. Phys. Lett. 17, 122–124 (1970)Google Scholar
  106. R. Hellwarth, P. Chistensen: Nonlinear optical microscopic examination of structures in polycrystalline ZnSe, Opt. Commun. 12, 318–322 (1974)Google Scholar
  107. K. König, I. Riemann, P. Fischer, K.J. Halbhuber: Intracellular nanosurgery with near infrared femtosecond laser pulses, Cell. Mol. Biol. 45, 195–201 (1999)Google Scholar
  108. D.M. Friedrich, W.M. McClain: Two-photon molecular electronic spectroscopy, Annu. Rev. Phys. Chem. 31, 559–577 (1980)Google Scholar
  109. D.M. Friedrich: Two-photon molecular spectroscopy, J. Chem. Educ. 59, 472–483 (1982)Google Scholar
  110. R.R. Birge: Two-photon spectroscopy of protein-bound fluorophores, Acc. Chem. Res. 19, 138–146 (1986)Google Scholar
  111. P.R. Callis: Two-photon-induced fluorescence, Annu. Rev. Phys. Chem. 48, 271–297 (1997)Google Scholar
  112. D.J. Arndt-Jovin, M. Robert-Nicoud, S.J. Kaufman, T.M. Jovin: Fluorescence digital imaging microscopy in cell biology, Science 230(4723), 247–256 (1985)Google Scholar
  113. B. Chance: Cell Structure and Function by Microspectrofluorometry (Academic, New York 1989)Google Scholar
  114. R.Y. Tsien: The green fluorescent protein, Annu. Rev. Biochem. 67, 509–544 (1998)Google Scholar
  115. J.P. Robinson: Current Protocols in Cytometry (Wiley, New York 2001)Google Scholar
  116. J.B. Birks: Photophysics of Aromatic Molecules (Wiley, London 1970)Google Scholar
  117. W. Denk, D. Piston, W.W. Webb: Two-photon molecular excitation in laser scanning microscopy. In: Handbook of Confocal Microscopy, ed. by J.B. Pawley (Plenum, New York 1995) pp. 445–457Google Scholar
  118. C.R. Cantor, P.R. Schimmel: Biophysical Chemistry. Part II: Techniques for the Study of Biological Structure and Function (Freeman, New York 1980)Google Scholar
  119. A. Kriete (Ed.): Visualization in Biomedical Microscopies (VCH, Weinheim 1992)Google Scholar
  120. D.A. Agard: Optical sectioning microscopy: Cellular architecture in three dimensions, Annu. Rev. Biophys. 13, 191–219 (1984)Google Scholar
  121. M. Minsky: Microscopy apparatus, U.S. Patent, 3013467 (1961)Google Scholar
  122. M. Petran, M. Hadravsky, M.D. Egger, R. Galambos: Tandem-scanning reflected-light microscope, J. Opt. Soc. Am. 58, 661–664 (1968)Google Scholar
  123. G.S. Kino, T.R. Corle: Confocal scanning optical microscopy, Phys. Today 42, 55–62 (1989)Google Scholar
  124. A. Diaspro, S. Annunziata, M. Raimondo, M. Robello: Three-nation dimensional optical behaviour of a confocal microscope with single illumi-and detection pinhole through imaging of subresolution beads, Microsc. Res. Tech. 45(2), 130–131 (1999)Google Scholar
  125. J. Jonkman, E. Stelzer: Resolution and contrast in confocal and two-photon microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 101–126Google Scholar
  126. P. Torok, C.J.R. Sheppard: The role of pinhole size in high aperture two and three-photon microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 127–152Google Scholar
  127. A. Diaspro, F. Federici, M. Robello: Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy, Appl. Opt. 41(4), 685–690 (2002)Google Scholar
  128. A. Diaspro, P. Scelza, C. Nicolini: MUCIDS: An operative C environment for acquisition and processing of polarized-light scattered from biological specimens, Comput. Appl. Biosci. 6(3), 229–236 (1990)Google Scholar
  129. M. Bertero, P. Boccacci: Introduction to Inverse Problems in Imaging (IOP, Bristol 1998)Google Scholar
  130. P. Boccacci, M. Bertero: Image restoration methods: Basics and algorithms. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 253–270Google Scholar
  131. P. Bonetto, P. Boccacci, M. Scarito, M. Davolio, M. Epifani, G. Vicidomini, C. Tacchetti, P. Ramoino, C. Usai, A. Diaspro: Three-dimensional microscopy migrates to the web with ‘‘powerup your microscope'', Microsc. Res. Tech. 64(2), 196–203 (2004)Google Scholar
  132. E.H.K. Stelzer, S. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, N. Salmon: Non-linear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104, 223–228 (1994)Google Scholar
  133. W. Denk: Two-photon excitation in functional biological imaging, J. Biomed. Opt. 1, 296–304 (1996)Google Scholar
  134. S.M. Potter: Vital imaging: two-photons are better than one, Curr. Biol. 6, 1596–1598 (1996)Google Scholar
  135. V.E. Centonze, J.G. White: Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging, Biophys. J. 75, 2015–2024 (1998)Google Scholar
  136. M. Gu, C.J.R. Sheppard: Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy, J. Microsc. 177, 128–137 (1995)Google Scholar
  137. D.W. Piston: Imaging living cells and tissues by two-photon excitation microscopy, Trends Cell Biol. 9, 66–69 (1999)Google Scholar
  138. J.M. Squirrel, D.L. Wokosin, J.G. White, B.D. Barister: Long-term two-photon fluorescence imaging of mammalian embryos without compromising variability, Nat. Biotechnol. 17, 763–767 (1999)Google Scholar
  139. A. Diaspro, M. Robello: Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures, J. Photochem. Photobiol. B 55, 1–8 (2000)Google Scholar
  140. P.T.C. So, C.Y. Dong, B.R. Masters, K.M. Berland: Two-photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng. 2, 399–429 (2000)Google Scholar
  141. T. Wilson: Confocal microscopy: Basic principles and architectures. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 19–38Google Scholar
  142. G.J. Brakenhoff, M. Muller, R.I. Ghauharali: Analysis of efficiency of two-photon versus single-photon absorption for fluorescence generation in biological objects, J. Microsc. 183, 140–144 (1996)Google Scholar
  143. G.H. Patterson, D.W. Piston: Photobleaching in two-photon excitation microscopy, Biophys. J. 78, 2159–2162 (2000)Google Scholar
  144. A. Hopt, E. Neher: Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J. 80, 2029–2036 (2001)Google Scholar
  145. G. Chirico, F. Cannone, G. Baldini, A. Diaspro: Two-photon thermal bleaching of single fluorescent molecules, Biophys. J. 84, 588–598 (2003)Google Scholar
  146. W.H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York 1973)Google Scholar
  147. A. Diaspro: Building a two-photon microscope using a laser scanning confocal architecture. In: Methods in Cellular Imaging, ed. by A. Periasamy (Oxford Univ. Press, New York 2001) pp. 162–179Google Scholar
  148. J. Girkin, D. Wokosin: Practical multiphoton microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 207–236Google Scholar
  149. O. Nakamura: Fundamentals of two-photon microscopy, Microsc. Res. Tech. 47, 165–171 (1999)Google Scholar
  150. A. Diaspro, C.J.R. Sheppard: Two-photon excitation microscopy: Basic principles and architectures. In: Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 39–74Google Scholar
  151. M. Born, E. Wolf: Principles of Optics, 6th edn. (Cambridge Univ. Press, Cambridge 1980)Google Scholar
  152. G. Chirico, F. Cannone, S. Beretta, A. Diaspro, B. Campanini, S. Bettati, R. Ruotolo, A. Mozzarelli: Dynamics of green fluorescent protein mutant2 in solution, on spin-coated glasses, and encapsulated in wet silica gels, Protein Sci. 11(5), 1152–1161 (2002)Google Scholar
  153. C. Xu: Cross-sections of fluorescence molecules used in multiphoton microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 75–100Google Scholar
  154. G.C. Cianci, J. Wu, K. Berland: Saturation modified point spread functions in two-photon microscopy, Microsc. Res. Tech. 64(2), 135–141 (2004)Google Scholar
  155. A. Diaspro, G. Chirico: Two-photon excitation microscopy, Adv. Imaging Elect. Phys. 126, 195–286 (2003)Google Scholar
  156. P.T.C. So, K.H. Kim, C. Buehler, B.R. Masters, L. Hsu, C.Y. Dong: Basic principles of multi-photon excitation microscopy. In: Methods in Cellular Imaging, ed. by A. Periasamy (Oxford Univ. Press, New York 2001) pp. 152–161Google Scholar
  157. C. Xu, J. Guild, W.W. Webb, W. Denk: Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation, Opt. Lett. 20, 2372–2374 (1995)Google Scholar
  158. M.A. Albota, C. Xu, W.W. Webb: Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm, Appl. Opt. 37, 7352–7356 (1998)Google Scholar
  159. M. Albota, D. Beljonne, J.L. Brédas, J.E. Ehrlich, J.Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, J.W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W.W. Webb, X.L. Wu, C. Xu: Design of organic molecules with large two-photon absorption cross sections, Science 281(5383), 1653–1656 (1998)Google Scholar
  160. A. Abbotto, G. Baldini, L. Beverina, G. Chirico, M. Collini, L. D'alfonso, A. Diaspro, R. Magrassi, L. Nardo, G.A. Pagani: Dimethyl-pepep: A DNA probe in two-photon excitation cellular imaging, Biophys. Chem. 114(1), 35–41 (2005)Google Scholar
  161. D.W. Piston, B.R. Masters, W.W. Webb: Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy, J. Microsc. 178, 20–27 (1995)Google Scholar
  162. J.R. Lakowicz, I. Gryczynski: Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation, Biophys. Chem. 45, 1–6 (1992)Google Scholar
  163. M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher: Green fluorescent protein as a marker for gene expression, Science 263, 802–805 (1994)Google Scholar
  164. M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher: Green fluorescent protein as a marker for gene expression, Science 263(5148), 802–805 (1994)Google Scholar
  165. M. Chalfie, S. Kain (Eds.): Green Fluorescent Protein. Properties, Applications and Protocols (Wiley, New York 1998)Google Scholar
  166. M. Zimmer: Green fluorescence protein (GFP): Applications, structure, and related photophysical behavior, Chem. Rev. 102(3), 759–781 (2002)Google Scholar
  167. G.A. Blab, P.H.M. Lommerse, L. Cognet, G.S. Harms, T. Schmidt: Two-photon excitation action cross-sections of the autofluorescent proteins, Chem. Phys. Lett. 350(1/2), 71–77 (2001)Google Scholar
  168. C.J.R. Sheppard, M. Gu: Image formation in two-photon fluorescence microscopy, Optik 86, 104–106 (1990)Google Scholar
  169. O. Nakamura: Three-dimensional imaging characteristics of laser scan fluorescence microscopy: two-photon excitation vs. single-photon excitation, Optik 93, 39–42 (1993)Google Scholar
  170. A. Periasamy, C. Noakes, P. Skoglund, R. Keller, A.E. Sutherland: Two-photon excitation fluorescence microscopy imaging in Xenopus and transgenic mouse embryos. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 271–284Google Scholar
  171. K. König, U.K. Tirlapur: Cellular and subcellular perturbations during multiphoton microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 191–206Google Scholar
  172. C.J. de Grauw, H.C. Gerritsen: Multiple time-gate module for fluorescence lifetime imaging, Appl. Spectrosc. 55(6), 670–678 (2001)Google Scholar
  173. C. Soeller, M.B. Cannell: Two-photon microscopy: imaging in scattering samples and three-dimensionally resolved flash photolysis, Microsc. Res. Tech. 47, 182–195 (1999)Google Scholar
  174. C. Buehler, K.H. Kim, C.Y. Dong, B.R. Masters, P.T.C. So: Innovations in two-photon deep tissue microscopy, IEEE Eng. Med. Biol. 185, 23–30 (1999)Google Scholar
  175. P.T.C. So, K.M. Berland, T. French, C.Y. Dong, E. Gratton: Two photon fluorescence microscopy: time resolved and intensity imaging. In: Fluorescence Imaging Spectroscopy and Microscopy, Chemical Analysis Series, Vol. 137, ed. by X.F. Wang, B. Herman (J. Wiley & Sons, New York 1996) pp. 351–373Google Scholar
  176. C. Soeller, M.B. Cannell: Construction of a two-photon microscope and optimisation of illumination pulse duration, Pflüg. Arch. Eur. J. Physiol. 432, 555–561 (1996)Google Scholar
  177. D.L. Wokosin, J.G. White: Optimization of the design of a multiple-photon excitation laser scanning fluorescence imaging system. In: Three-Dimensional Microscopy: Image, Acquisition and Processing, Proc. SPIE 2984, Vol. IV (1997) pp. 25–29Google Scholar
  178. S.M. Potter, C.M. Wang, P.A. Garrity, S.E. Fraser: Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy, Gene 173, 25–31 (1996)Google Scholar
  179. R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon: Characterization and optimization of a laser scanning microscope in the femtosecond regime, Appl. Phys. B 67, 87–94 (1998)Google Scholar
  180. A. Diaspro, M. Corosu, P. Ramoino, M. Robello: Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture, Microsc. Res. Tech. 47, 196–205 (1999)Google Scholar
  181. W.G. Wier, C.W. Balke, J.A. Michael, J.R. Mauban: A custom confocal and two-photon digital laser scanning microscope, Am. J. Physiol. 278, H2150–H2156 (2000)Google Scholar
  182. Y.P. Tan, I. Llano, A. Hopt, F. Wurriehausen, E. Neher: Fast scanning and efficient photodetection in a simple two-photon microscope, J. Neurosci. Methods 92, 123–135 (1999)Google Scholar
  183. Z.F. Mainen, M. Malectic-Savic, S.H. Shi, Y. Hayashi, R. Malinow, K. Svoboda: Two-photon imaging in living brain slices, Methods 18, 231–239 (1999)Google Scholar
  184. A. Majewska, G. Yiu, R. Yuste: A custom-made two-photon microscope and deconvolution system, Pflüg. Arch. Eur. J. Physiol. 441(2/3), 398–408 (2000)Google Scholar
  185. V. Iyer, T.M. Hoogland, B.E. Losavio, A.R. McQuiston, P. Saggau: Compact two-photon laser scanning microscope made from minimally modified commercial components. In: Multiphoton Microscopy in the Biomedical Sciences II, Proc. SPIE, Vol. 4620, ed. by A. Periasamy, P.T.C. So (2002) pp. 274–280Google Scholar
  186. B.R. Masters, P.T. So, E. Gratton: Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin, Biophys. J. 72, 2405–2412 (1997)Google Scholar
  187. V. Daria, C.M. Blanca, O. Nakamura, S. Kawata, C. Saloma: Image contrast enhancement for two-photon fluorescence microscopy in a turbid medium, Appl. Opt. 37, 7960–7967 (1998)Google Scholar
  188. D.L. Wokosin, W.B. Amos, J.G. White: Detection sensitivity enhancements for fluorescence imaging with multiphoton excitation microscopy, Proc. IEEE Eng. Med. Biol. Soc. 20, 1707–1714 (1998)Google Scholar
  189. D.B. Murphy: Fundamentals of Light Microscopy and Electronic Imaging (Wiley, New York 2001)Google Scholar
  190. Hamamatsu Photonics: Photomultiplier Tubes: Basics and Applications, 2nd edn. (Hamamatsu Photonics, Japan 1999)Google Scholar
  191. R.A. Farrer, M.J.R. Previte, C.E. Olson, L.A. Peyser, J.T. Fourkas, P.T.C. So: Single molecule detection with a two-photon fluorescence microscope with fast scanning capabilities and polarization sensitivity, Opt. Lett. 24, 1832–1834 (1999)Google Scholar
  192. K. Fujita, T. Takamatsu: Real-time in situ calcium imaging with single and two-photon confocal microscopy. In: Confocal and Two-photon Microscopy: Foundation, Application and Advances, ed. by A. Diaspro (John Wiley & Sons, New York 2001)Google Scholar
  193. H.T.M. van der Voort, K.C. Strasters: Restoration of confocal images for quantitative image analysis, J. Microsc. 178, 165–181 (1995)Google Scholar
  194. D.M. Shotton: Electronic light microscopy—present capabilities and future prospects, Histochem. Cell Biol. 104, 97–137 (1995)Google Scholar
  195. A. Diaspro, S. Annunziata, M. Robello: Single-pinhole confocal imaging of sub-resolution sparse objects using experimental point spread function and image restoration, Microsc. Res. Tech. 51, 464–468 (2000)Google Scholar
  196. W. Carrington: Imaging live cells in 3-D using wide field microscopy with image restoration. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 33–346Google Scholar
  197. F. Difato, F. Mazzone, S. Scaglione, M. Fato, F. Beltrame, L. Kubinova, J. Janacek, P. Ramoino, G. Vicidomini, A. Diaspro: Improvement in volume estimation from confocal sections after image deconvolution, Microsc. Res. Tech. 64(2), 151–155 (2004)Google Scholar
  198. E. Gratton, M.J. van de Ven: Laser sources for confocal microscopy. In: Handbook of Confocal Microscopy, ed. by J.B. Pawley (Plenum, New York 1995) pp. 69–97Google Scholar
  199. P.E. Hanninen, S.W. Hell: Femtosecond pulse broadening in the focal region of a two-photon fluorescence microscope, Bioimaging 2, 117–121 (1994)Google Scholar
  200. K. König, H. Liang, M.W. Berns, B.J. Tromberg: Cell damage by near-IR microbeams, Nature 377, 20–21 (1995)Google Scholar
  201. W.G. Fisher, E.A. Watcher, M. Armas, C. Seaton: Titanium:sapphire laser as an excitation source in two-photon spectroscopy, Appl. Spectrosc. 51, 218–226 (1997)Google Scholar
  202. D.L. Wokosin, V.E. Centonze, J. White, D. Armstrong, G. Robertson, A.I. Ferguson: All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging, IEEE J. Sel. Top. Quantum Electron. 2, 1051–1065 (1996)Google Scholar
  203. W. Denk, K.R. Delaney, A. Gelperin, D. Kleinfeld, B.W. Strowbridge, D.W. Tank, R. Yuste: Anatomical and functional imaging of neurons using two-photon laser scanning microscopy, J. Neurosci. Methods 54, 151–162 (1994)Google Scholar
  204. H.J. Koester, D. Baur, R. Uhl, S.W. Hell: Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage, Biophys. J. 77, 2226–2236 (1999)Google Scholar
  205. K. König, H. Liang, M.W. Berns, B.J. Tromberg: Cell damage in near infrared multimode optical traps as a result of multiphoton absorption, Opt. Lett. 21, 1090–1092 (1996)Google Scholar
  206. K. König, S. Boehme, N. Leclerc, R. Ahuja: Time-gated autofluorescence microscopy of motile green microalga in an optical trap, Cell. Mol. Biol. 44, 763–770 (1998)Google Scholar
  207. J.B. Guild, C. Xu, W.W. Webb: Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence, Appl. Opt. 36, 397–401 (1997)Google Scholar
  208. R. Wolleschensky, M. Dickinson, S.E. Fraser: Group velocity dispersion and fiber delivery in multiphoton laser scanning microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 171–190Google Scholar
  209. K. de Grauw, H. Gerritsen: Aberrations and penetration depth in confocal and two-photon microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 153–170Google Scholar
  210. M. Gu, X. Gan, A. Kisteman, M.G. Xu: Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media, Appl. Phys. Lett. 77(10), 1551–1553 (2000)Google Scholar
  211. C. Saloma, C. Saloma-Palmes, H. Kondoh: Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium, Phys. Med. Biol. 43, 1741 (1998)Google Scholar
  212. A. Schonle, S.W. Hell: Heating by absorption in the focus of an objective lens, Opt. Lett. 23, 325–327 (1998)Google Scholar
  213. R.M. Tyrrell, S.M. Keyse: The interaction of UVA radiation with cultured cells, J. Photochem. Photobiol. B 4, 349–361 (1990)Google Scholar
  214. J.N. Post, K.A. Lidke, B. Rieger, D.J. Arndt-Jovin: One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos, FEBS Letters 579, 325–330 (2005)Google Scholar
  215. M.L. Gostkowski, R. Allen, M.L. Plenert, E. Okerberg, M.J. Gordon, J.B. Shear: Multiphoton-excited serotonin photochemistry, Biophys. J. 86(5), 3223–3229 (2004)Google Scholar
  216. D.L. Wokosin, C.M. Loughrey, G.L. Smith: Characterization of a range of Fura dyes with two-photon excitation, Biophys. J. 86(3), 1726–1738 (2004)Google Scholar
  217. Y. Wang, X.F. Wang, C. Wang, H. Ma: Simultaneously multi-parameter determination of hematonosis cell apoptosis by two-photon and confocal laser scanning microscopy, J. Clin. Lab. Anal. 18(5), 271–275 (2004)Google Scholar
  218. A. Diaspro, G. Chirico, F. Federici, F. Cannone, S. Beretta, M. Robello: Two-photon microscopy and spectroscopy based on a compact confocal scanning head, J. Biomed. Opt. 6, 300–310 (2001)Google Scholar
  219. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398(6722), 51–54 (1999)Google Scholar
  220. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada: Finer features for functional microdevices, Nature 412, 697–698 (2001)Google Scholar
  221. C.L. Caylor, I. Dobrianov, C. Kimmer, R.E. Thorne, W. Zipfel, W.W. Webb: Two-photon fluorescence imaging of impurity distributions in protein crystals, Phys. Rev. E 59, 3831–3834 (1999)Google Scholar
  222. U.K. Tirlapur, K. König: Two-photon near infrared femtosecond laser scanning microscopy in plant biology. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 449–468Google Scholar
  223. E.J. Yoder, D. Kleinfeld: Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy, Microsc. Res. Tech. 56(4), 304–305 (2002)Google Scholar
  224. A. Diaspro, D. Silvano, S. Krol, O. Cavalleri, A. Gliozzi: Single living cell encapsulation in nano-organized polyelectrolyte shells, Langmuir 18, 5047–5050 (2002)Google Scholar
  225. A. Diaspro, P. Fronte, M. Raimondo, M. Fato, G. De Leo, F. Beltrame, F. Cannone, G. Chirico, P. Ramoino: Functional imaging of living paramecium by means of confocal and two-photon excitation fluorescence microscopy. In: Functional Imaging, Proc. SPIE, Vol. 4622, ed. by D. Farkas (2002) pp. 47–53Google Scholar
  226. A. Zoumi, X. Lu, G.S. Kassab, B.J. Tromberg: Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy, Biophys. J. 87(4), 2778–2786 (2004)Google Scholar
  227. L. Novotny, E.J. Sanchez, X.S. Xie: Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams, Ultramicroscopy 71(1–4), 21–29 (1998)Google Scholar
  228. E.J. Sánchez, L. Novotny, X.S. Xie: Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys. Rev. Lett. 82(20), 4014–4017 (1999)Google Scholar
  229. J.M. Gerton, L.A. Wade, G.A. Lessard, Z. Ma, S.R. Quake: Tip-enhanced fluorescence microscopy at 10 nanometer resolution, Phy. Rev. Lett. 93(18), 180801 (2004)Google Scholar
  230. A. Diaspro, F. Federici, C. Viappiani, S. Krol, M. Pisciotta, G. Chirico, F. Cannone, A. Gliozzi: Two-photon photolysis of 2-nitrobenz-aldehyde monitored by fluorescent-labeled nanocapsules, J. Phy. Chem. B 107(40), 11008–11012 (2003)Google Scholar
  231. J.D. Bhawalkar, N.D. Kumar, C.F. Zhao, P.N. Prasad: Two-photon photodynamic therapy. J. Clin. Laser Med. Surg. 15, 201–204 (1997)Google Scholar
  232. G.L. Duveneck, M.A. Bopp, M. Ehrat, M. Haiml, U. Keller, M.A. Bader, G. Marowsky, S. Soria: Evanescent-field-induced two-photon fluorescence: Excitation of macroscopic areas of planar waveguides, Appl. Phys. B 73, 869–871 (2001)Google Scholar
  233. A. Diaspro: Optical Fluorescence Microscopy: From the Spectral to the Nano Dimension (Springer, New York 2010)Google Scholar
  234. A. Diaspro (Ed.): Nanoscopy and Multidimensional Optical Fluorescence Microscopy (CRC, Boca Raton 2010)Google Scholar
  235. C.A. Combs, H. Shroff: Fluorescence microscopy: A concise guide to current imaging methods, Curr. Protoc. Neurosci. 79, 2.1.1–2.1.25 (2017)Google Scholar
  236. L. Schermelleh, R. Heintzmann, H. Leonhardt: A guide to super-resolution fluorescence microscopy, J. Cell Biol. 190(2), 165–175 (2010)Google Scholar
  237. A. Diaspro, M. van Zandvoort: Super-Resolution Imaging in Biomedicine (CRC, Boca Raton 2016)Google Scholar
  238. J. Pawley: Handbook of Biological Confocal Microscopy (Springer, Boston 2010)Google Scholar
  239. P.P. Mondal, A. Diaspro: Fundamentals of Fluorescence Microscopy (Springer, Dordrecht 2013)Google Scholar
  240. B. Neupane, F.S. Ligler, G. Wang: Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging, J. Biomed. Opt. 19(8), 080901 (2014)Google Scholar
  241. S.W. Hell, S.J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M.J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S.J. Davis, C. Eggeling, D. Klenerman, K.I. Willig, G. Vicidomini, M. Castello, A. Diaspro, T. Cordes: The 2015 super-resolution microscopy roadmap, J. Phys. D: Appl. Phys. 48(44), 443001–443036 (2015)Google Scholar
  242. C. Eggeling, K.I. Willig, S.J. Sahl, S.W. Hell: Lens-based fluorescence nanoscopy, Q. Rev. Biophys. 48(2), 178–243 (2015)Google Scholar
  243. Z. Zeng, P. Xi: Advances in three-dimensional super-resolution nanoscopy, Microsc. Res. Tech. 79(10), 893–898 (2016)Google Scholar
  244. S.J. Sahl, S.W. Hell, S. Jakobs: Fluorescence nanoscopy in cell biology, Nat. Publ. Group 18(11), 685–701 (2017)Google Scholar
  245. G. Vicidomini, P. Bianchini, A. Diaspro: STED super-resolved microscopy, Nat. Methods 15(3), 173–182 (2018)Google Scholar
  246. R. Won: The super-resolution debate, Nat. Photonics 12(5), 259–260 (2018)Google Scholar
  247. Y. Garini, B.J. Vermolen, I.T. Young: From micro to nano: recent advances in high-resolution microscopy, Curr. Opin. Biotechnol. 16(1), 3–12 (2005)Google Scholar
  248. A. Diaspro: Circumventing the diffraction limit, Il Nuovo Saggiatore 30(5), 45–51 (2014)Google Scholar
  249. G. Toraldo di Francia: Resolving power and information, JOSA 45(7), 497–501 (1955)Google Scholar
  250. G. Toraldo di Francia: Sur les lois générales de la Diffraction-Rapport critique, Revue dOptique 28(11), 597–611 (1949)Google Scholar
  251. C.J.R. Sheppard: Resolution and super-resolution, Microsc. Res. Tech. 80(6), 590–598 (2017)Google Scholar
  252. E. Abbe: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9(1), 413–418 (1873)Google Scholar
  253. J.W. Goodman: Introduction to Fourier Optics (McGraw-Hill, San Francisco 1968)Google Scholar
  254. E. Abbe, H. Fripp: A contribution to the theory of the micro-scope, and the nature of microscopic vision, Proc. Bristol Naturalists Soc. New Ser. 1, 200–258 (1874)Google Scholar
  255. H.D. Luke: The origins of the sampling theorem, IEEE TBE 37(4), 106 (1999)Google Scholar
  256. J.W. Lichtman, J.-A. Conchello: Fluorescence microscopy, Nat. Meth. 2(12), 910–919 (2005)Google Scholar
  257. M. Gustafsson: Super-resolution light microscopy goes live, Nat. Methods 5, 385–387 (2008)Google Scholar
  258. R. Heintzmann, C.J.R. Sheppard: The sampling limit in fluorescence microscopy, Micron 38(2), 145–149 (2007)Google Scholar
  259. M. Castello, C.J.R. Sheppard, A. Diaspro, G. Vicidomini: Image scanning microscopy with a quadrant detector, Opt. Lett. 40(22), 5355–5354 (2015)Google Scholar
  260. C.J.R. Sheppard: 10.12 The scanning optical microscope, IEEE J. Quantum Electron. 13(9), 861–861 (1977)Google Scholar
  261. C.J.R. Sheppard, M. Castello, G. Tortarolo, G. Vicidomini, A. Diaspro: Image formation in image scanning microscopy, including the case of two-photon excitation, J. Opt. Soc. Am. A 34(8), 1339–1312 (2017)Google Scholar
  262. C.J.R. Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, A. Diaspro: Interpretation of the optical transfer function: significance for image scanning microscopy, Optics 24(24), 27280–27287 (2016)Google Scholar
  263. E.H.K. Stelzer: Light-sheet fluorescence microscopy for quantitative biology, Nat. Methods 12(1), 23–26 (2015)Google Scholar
  264. R. Yuste: Fluorescence microscopy today, Nat. Meth. 2(12), 902–904 (2005)Google Scholar
  265. D.M. Jameson (Ed.): Perspectives on Fluorescence, Vol. 17 (Springer, Cham 2016)Google Scholar
  266. J.R. Lakowicz: Principles Topics in Fluorescence Spectroscopy, Vol. 2 (Springer, New York 1991)Google Scholar
  267. R.Y. Tsien: The green fluorescent protein, Annu. Rev. Biochem. 67(1), 509–544 (1998)Google Scholar
  268. A. Diaspro: Shine on … proteins, Microsc. Res. Tech. 69(3), 149–151 (2006)Google Scholar
  269. A. Esposito, S. Schlachter, G.S.K. Schierle, A.D. Elder, A. Diaspro, F.S. Wouters, C.F. Kaminski, A.I. Iliev: Quantitative fluorescence microscopy techniques, Methods Mol. Biol. 586, 117–142 (2009)Google Scholar
  270. T. Ha, P. Tinnefeld: Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging, Annu. Rev. Phys. Chem. 63(1), 595–617 (2012)Google Scholar
  271. I. Testa, D. Mazza, S. Barozzi, M. Faretta, A. Diaspro: Blue-light (488 nm)-irradiation-induced photoactivation of the photoactivatable green fluorescent protein, Appl. Phy.s Lett. 91(13), 133902 (2007)Google Scholar
  272. I. Testa, M. Garrè, D. Parazzoli, S. Barozzi, I. Ponzanelli, D. Mazza, M. Faretta, A. Diaspro: Photoactivation of pa-GFP in 3-D: Optical tools for spatial confinement, Eur. Biophys. J. 37(7), 1219–1227 (2008)Google Scholar
  273. L.M. Almassalha, G.M. Bauer, J.E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. Thusgaard Ruhoff, H.K. Roy, H. Subramanian, N.S. Chandel, I. Szleifer, V. Backman: Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy, Proc. Natl. Acad. Sci. U.S.A. 113(42), E6372–E6381 (2016)Google Scholar
  274. A. Diaspro, G. Chirico, M. Collini: Two-photon fluorescence excitation and related techniques in biological microscopy, Q. Rev. Biophys. 38, 97–166 (2005)Google Scholar
  275. F. Balzarotti, Y. Eilers, K.C. Gwosch, A.H. Gynnå, V. Westphal, F.D. Stefani, J. Elf, S.W. Hell: Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes, Science 355(6325), 606–612 (2017)Google Scholar
  276. A. Diaspro, G. Chirico, C. Usai, P. Ramoino, J. Dobrucki: Photobleaching. In: Handbook Of Biological Confocal Microscopy, Vol. 39, ed. by J. Pawley (Springer, Boston 2006) pp. 690–702Google Scholar
  277. A. Diaspro, I. Cainero, L. Lanzanò, P. Bianchini, G. Vicidomini, F.C. Zanacchi, L. Pesce, S. Pelicci, M. Oneto, M. Di Bona, M. Faretta, P. Barboro, A. Le Gratiet: A liquid tunable microscope as a new paradigm in optical microscopy to paint 4-D chromatin organisation in the cell nucleus, Biophys. J. 114(1), 347a (2018)Google Scholar
  278. A. Diaspro, N. Anthony, P. Bianchini, I. Cainero, M. Di Bona, L. Lanzanò, A. Le Gratiet, R. Marongiu, M. Oneto, S. Pelicci, L. Pesce: LIQUITOPY®: A liquid tunable microscope to study chromatin organization in the cell nucleus, Microsc. Microanal. 24(1), 1368–1369 (2018)Google Scholar
  279. J.G. McNally, C. Preza, J.A. Conchello, L.J. Thomas: Artifacts in computational optical-sectioning microscopy, J. Opt. Soc. Am. A 11(3), 1056–1067 (1994)Google Scholar
  280. A. Diaspro, P. Bianchini, F.C. Zanacchi, G. Vicidomini: Fluorescence three-dimensional optical imaging. In: Encyclopedia of Biophysics, Vol. 828, ed. by G. Roberts (Springer, Berlin, Heidelberg 2013) pp. 824–826Google Scholar
  281. M.T. Strauss, F. Schueder, D. Haas, P.C. Nickels, R. Jungmann: Quantifying absolute addressability in DNA origami with molecular resolution, Nat. Commun. 9, 1600 (2018)Google Scholar
  282. F.C. Zanacchi, C. Manzo, A.S. Alvarez, N.D. Derr, M.F. Garcia-Parajo, M. Lakadamyali: A DNA origami platform for quantifying protein copy number in super-resolution, Nat. Meth. 14(8), 789–792 (2017)Google Scholar
  283. W.O. Saxton, W. Baumeister: The correlation averaging of a regularly arranged bacterial cell envelope protein, J. Microsc. 127(2), 127–138 (1982)Google Scholar
  284. R.P.J. Nieuwenhuizen, K.A. Lidke, M. Bates, D.L. Puig, D. Grunwald, S. Stallinga, B. Rieger: Measuring image resolution in optical nanoscopy, Nat. Meth. 10(6), 557–562 (2013)Google Scholar
  285. G. Tortarolo, M. Castello, A. Diaspro, S. Koho, G. Vicidomini: Evaluating image resolution in stimulated emission depletion microscopy, Optica 5(1), 32–35 (2018)Google Scholar
  286. C.J.R. Sheppard: Fundamentals of superresolution, Micron 38(2), 165–169 (2007)Google Scholar
  287. C. Cremer, B.R. Masters: Resolution enhancement techniques in microscopy, EPJ H 38(3), 281–344 (2013)Google Scholar
  288. W.E. Moerner: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 54(28), 8067–8093 (2015)Google Scholar
  289. E. Betzig, S.W. Hell, W.E. Moerner: The Nobel Prize in Chemistry 2014, (2014)
  290. N.A. Jensen, J.G. Danzl, K.I. Willig, F. Lavoie-Cardinal, T. Brakemann, S.W. Hell, S. Jakobs: Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein dreiklang, Chem. Phys. Chem. 15(4), 756–762 (2014)Google Scholar
  291. M. Gustafsson: In-vivo super-resolution microscopy by structured illumination, Biophys. J. 16(3, Suppl. 1), 202a (2009)Google Scholar
  292. H. Geertsema, H. Ewers: Expansion microscopy passes its first test, Nat. Methods 13(6), 481–482 (2016)Google Scholar
  293. S.J. Sahl, W.E. Moerner: Super-resolution fluorescence imaging with single molecules, Curr. Opin. Struct. Biol. 23(5), 778–787 (2013)Google Scholar
  294. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess: Imaging intracellular fluorescent proteins at nanometer resolution, Science 313(5793), 1642–1645 (2006)Google Scholar
  295. S.T. Hess, T.P.K. Girirajan, M.D. Mason: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91(11), 4258–4272 (2006)Google Scholar
  296. M.J. Rust, M. Bates, X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Meth. 3(10), 793–796 (2006)Google Scholar
  297. J. Schnitzbauer, M.T. Strauss, T. Schlichthaerle, F. Schueder, R. Jungmann: Super-resolution microscopy with DNA-PAINT, Nat. Protoc. 12(6), 1198–1228 (2017)Google Scholar
  298. F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro: Live-cell 3-D super-resolution imaging in thick biological samples, Nat. Meth. 8(12), 1047–1049 (2011)Google Scholar
  299. H. Deschout, F.C. Zanacchi, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S.T. Hess, K. Braeckmans: Precisely and accurately localizing single emitters in fluorescence microscopy, Nat. Meth. 11(3), 253–266 (2014)Google Scholar
  300. A. Dupont, D.C. Lamb: Nanoscale three-dimensional single particle tracking, Nanoscale 3(11), 4532–4541 (2011)Google Scholar
  301. G. Sancataldo, L. Scipioni, T. Ravasenga, L. Lanzanò, A. Diaspro, A. Barberis, M. Duocastella: Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges, Optica 4(3), 367–373 (2017)Google Scholar
  302. M.H. Ulbrich, E.Y. Isacoff: Subunit counting in membrane-bound proteins, Nat. Meth. 4(4), 319–321 (2007)Google Scholar
  303. C.G. Specht, I. Izeddin, P.C. Rodriguez, M. El Beheiry, P. Rostaing, X. Darzacq, M. Dahan, A. Triller: Quantitative nanoscopy of inhibitory synapses: Counting gephyrin molecules and receptor binding sites, Neuron 79(2), 308–321 (2013)Google Scholar
  304. N. Durisic, A.G. Godin, C.M. Wever, C.D. Heyes, M. Lakadamyali, J.A. Dent: Stoichiometry of the human glycine receptor revealed by direct subunit counting, J. Neurosci. 32(37), 12915–12920 (2012)Google Scholar
  305. M.A. Ricci, C. Manzo, M.F. García-Parajo, M. Lakadamyali, M.P. Cosma: Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo, Cell 160(6), 1145–1158 (2015)Google Scholar
  306. C. Karathanasis, F. Fricke, G. Hummer, M. Heilemann: Molecule counts in localization microscopy with organic fluorophores, Chem. Phys. Chem. 18(8), 942–948 (2017)Google Scholar
  307. J.J. Schmied, M. Raab, C. Forthmann, E. Pibiri, B. Wünsch, T. Dammeyer, P. Tinnefeld: DNA origami-based standards for quantitative fluorescence microscopy, Nat. Protoc. 9(6), 1367–1391 (2014)Google Scholar
  308. R. Jungmann, M.S. Avendaño, M. Dai, J.B. Woehrstein, S.S. Agasti, Z. Feiger, A. Rodal, P. Yin: Quantitative super-resolution imaging with qPAINT, Nat. Meth. 13(5), 439–442 (2016)Google Scholar
  309. N.D. Derr, B.S. Goodman, R. Jungmann, A.E. Leschziner, W.M. Shih, S.L. Reck-Peterson: Tug-of-war in motor protein ensembles revealed with a programmable DNA origami Scaffold, Science 338(6107), 662–665 (2012)Google Scholar
  310. F. Pennacchietti, S. Vascon, T. Nieus, C. Rosillo, S. Das, S.K. Tyagarajan, A. Diaspro, A. Del Bue, E.M. Petrini, A. Barberis, F. Cella Zanacchi: Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of GABAergic synaptic potentiation, J. Neurosci. 37(7), 1747–1756 (2017)Google Scholar
  311. H.D. MacGillavry, Y. Song, S. Raghavachari, T.A. Blanpied: Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors, Neuron 78(4), 615–622 (2013)Google Scholar
  312. A.-H. Tang, H. Chen, T.P. Li, S.R. Metzbower, H.D. MacGillavry, T.A. Blanpied: A trans-synaptic nanocolumn aligns neurotransmitter release to receptors, Nature 536(7615), 210–214 (2016)Google Scholar
  313. T. Nozaki, R. Imai, M. Tanbo, R. Nagashima, S. Tamura, T. Tani, Y. Joti, M. Tomita, K. Hibino, M.T. Kanemaki, K.S. Wendt, Y. Okada, T. Nagai, K. Maeshima: Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging, Mol. Cell 67(2), 282–293.e7 (2017)Google Scholar
  314. F.C. Zanacchi, Z. Lavagnino, M. Faretta, L. Furia: Light-sheet confined super-resolution using two-photon photoactivation, PLOS ONE 8(7), e67667 (2013)Google Scholar
  315. S.W. Hell, J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19(11), 780–782 (1994)Google Scholar
  316. T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell: Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000)Google Scholar
  317. P. Bianchini, C. Peres, M. Oneto, S. Galiani, G. Vicidomini, A. Diaspro: STED nanoscopy: A glimpse into the future, Cell Tissue Res. 360(1), 143–150 (2015)Google Scholar
  318. G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, S.W. Hell: Sharper low-power STED nanoscopy by time gating, Nat. Methods 8(7), 571–573 (2011)Google Scholar
  319. G. Vicidomini, I.C. Hernández, P. Bianchini, A. Diaspro: STED microscopy with time-gated detection: Benefits and limitations, Biophys. J. 104(2), 667A–668A (2013)Google Scholar
  320. M. Castello: Gated-sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching, Microsc. Res. Tech. 79(9), 785–791 (2016)Google Scholar
  321. I.C. Hernández, M. D'Amora, A. Diaspro, G. Vicidomini: Influence of laser intensity noise on gated CW-STED microscopy, Laser Phys. Lett. 11(9), 095603 (2014)Google Scholar
  322. L. Lanzanò, L. Scipioni, M. Castello, P. Bianchini: Role of the pico-nano-second temporal dimension in STED microscopy. In: Perspectives in Fluorescence, ed. by D. Jameson (Springer, Cham 2016) pp. 311–328Google Scholar
  323. L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, G. Vicidomini: Encoding and decoding spatio-temporal information for super-resolution microscopy, Nat. Commun. 6(1), 1347 (2015)Google Scholar
  324. M. Dyba, S. Jakobs, S.W. Hell: Immunofluorescence stimulated emission depletion microscopy, Nat. Biotechnol. 21(11), 1303–1304 (2003)Google Scholar
  325. B. Harke, J. Keller, C.K. Ullal, V. Westphal, A. Schönle, S.W. Hell: Resolution scaling in STED microscopy, Opt. Express 16(6), 4154–4162 (2008)Google Scholar
  326. S.W. Hell, S.J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M.J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S.J. Davis, C. Eggeling, D. Klenerman, K.I. Willig, G. Vicidomini, M. Castello, A. Diaspro, T. Cordes: The 2015 super-resolution microscopy roadmap, J.Phys. D: Appl. Phys. 48, 443001 (2015)Google Scholar
  327. S. Hell, M. Kroug: Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit, Appl. Phys. B Lasers Opt. 60(5), 495–497 (1995)Google Scholar
  328. M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell: Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005)Google Scholar
  329. M.A. Schwentker, H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling, S.W. Hell: Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching, Microsc. Res. Tech. 70(3), 269–280 (2007)Google Scholar
  330. T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, S.W. Hell: Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature 478(7368), 204–208 (2011)Google Scholar
  331. I. Testa, N.T. Urban, S. Jakobs, C. Eggeling, K.I. Willig, S.W. Hell: NeuroResource, Neuron 75(6), 992–1000 (2012)Google Scholar
  332. B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, A. Diaspro: Polymerization inhibition by triplet state absorption for nanoscale lithography, Adv. Mater. 25(6), 904–909 (2013)Google Scholar
  333. M. Elmeranta, G. Vicidomini, M. Duocastella: Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy, Opt. Mater. 6(10), 3169–3179 (2016)Google Scholar
  334. C. Silien, N. Liu, N. Hendaoui, S.A.M. Tofail, A. Peremans: A framework for far-field infrared absorption microscopy beyond the diffraction limit, Opt. Express 20(28), 29694–29704 (2012)Google Scholar
  335. P. Wang, M.N. Slipchenko, J. Mitchell, C. Yang, E.O. Potma, X. Xu, J.-X. Cheng: Far-field imaging of non-fluorescent species with subdiffraction resolution, Nat. Photonics 7(6), 449–453 (2013)Google Scholar
  336. N. Liu, M. Kumbham, I. Pita, Y. Guo, P. Bianchini, A. Diaspro, S.A.M. Tofail, A. Peremans, C. Silien: Far-field subdiffraction imaging of semiconductors using nonlinear transient absorption differential microscopy, ACS Photonics 3(3), 478–485 (2016)Google Scholar
  337. J. Keller, A. Schoenle, S.W. Hell: Efficient fluorescence inhibition patterns for RESOLFT microscopy, Opt. Express 15(6), 3361–3371 (2007)Google Scholar
  338. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, P. Bianchini: Strategies to maximize the performance of a STED microscope, Opt. Express 20(7), 7362–7374 (2012)Google Scholar
  339. B. Harke, C.K. Ullal, J. Keller, S.W. Hell: Three-dimensional nanoscopy of colloidal crystals, Nano Lett. 8(5), 1309–1313 (2008)Google Scholar
  340. R. Schmidt, C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S.W. Hell: Spherical nanosized focal spot unravels the interior of cells, Nat. Meth. 5(6), 539–544 (2008)Google Scholar
  341. G. Donnert, J. Keller, C.A. Wurm, S.O. Rizzoli, V. Westphal, A. Schönle, R. Jahn, S. Jakobs, C. Eggeling, S.W. Hell: Two-color far-field fluorescence nanoscopy, Biophys. J. 92(8), L67–L69 (2007)Google Scholar
  342. L. Meyer, D. Wildanger, R. Medda, A. Punge, S.O. Rizzoli, G. Donnert, S.W. Hell: Dual-color STED microscopy at 30-nm focal-plane resolution, Small 4(8), 1095–1100 (2008)Google Scholar
  343. H. Blom, D. Rönnlund, L. Scott, Z. Spicarova, V. Rantanen, J. Widengren, A. Aperia, H. Brismar: Nearest neighbor analysis of dopamine D1 receptors and Na+-K+-ATPases in dendritic spines dissected by STED microscopy, Microsc. Res. Tech. 75(2), 220–228 (2011)Google Scholar
  344. M. Leutenegger, C. Eggeling, S.W. Hell: Analytical description of STED microscopy performance, Opt. Express 18(25), 26417–26429 (2010)Google Scholar
  345. K.I. Willig, B. Harke, R. Medda, S.W. Hell: STED microscopy with continuous wave beams, Nat. Methods 4(11), 915–918 (2007)Google Scholar
  346. G. Vicidomini, I.C. Hernández, M. D'Amora, F.C. Zanacchi, P. Bianchini, A. Diaspro: Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation, Methods 66(2), 124–130 (2014)Google Scholar
  347. I.C. Hernández, C. Peres, F.C. Zanacchi, M. D'Amora, S. Christodoulou, P. Bianchini, A. Diaspro, G. Vicidomini: A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy, J. Biophotonics 7(6), 376–380 (2014)Google Scholar
  348. M. Castello, A. Diaspro, G. Vicidomini: Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy, Appl. Phys. Lett. 105(23), 234106 (2014)Google Scholar
  349. G. Moneron, S.W. Hell: Two-photon excitation STED microscopy, Opt. Express 17(17), 14567–14573 (2009)Google Scholar
  350. J.B. Ding, K.T. Takasaki, B.L. Sabatini: Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy, Neuron 63(4), 429–437 (2009)Google Scholar
  351. P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, U.V. Nägerl: Two-photon excitation STED microscopy in two colors in acute brain slices, Biophys. J. 104(4), 778–785 (2013)Google Scholar
  352. I. Coto Hernández, M. Castello, L. Lanzanò, M. D'Amora, P. Bianchini, A. Diaspro, G. Vicidomini: Two-photon excitation STED microscopy with time-gated detection, Sci. Rep. 6(1), 954 (2016)Google Scholar
  353. P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro: Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging, Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012)Google Scholar
  354. M. Dyba, S.W. Hell: Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission, Appl. Opt. 42(25), 5123–5129 (2003)Google Scholar
  355. T.J. Gould, J. Bewersdorf: Nanoscopy at low light intensities shows its potential, eLife 1, 942–943 (2012)Google Scholar
  356. D. Magde, E. Elson, W.W. Webb: Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy, Phys. Rev. Lett. 29(11), 705–708 (1972)Google Scholar
  357. M. Ehrenberg, R. Rigler: Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules, Q. Rev. Biophys. 9(1), 69–81 (1976)Google Scholar
  358. E. Haustein, P. Schwille: Fluorescence correlation spectroscopy: novel variations of an established technique, Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007)Google Scholar
  359. M.A. Digman, E. Gratton: Lessons in fluctuation correlation spectroscopy, Annu. Rev. Phys. Chem. 62(1), 645–668 (2011)Google Scholar
  360. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V.N. Belov, B. Hein, C. von Middendorff, A. Schönle, S.W. Hell: Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature 457(7233), 1159–1162 (2009)Google Scholar
  361. P.N. Hedde, R.M. Dörlich, R. Blomley, D. Gradl, E. Oppong, A.C.B. Cato, G.U. Nienhaus: Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells, Nat. Commun. 4, 2093–2104 (2013)Google Scholar
  362. L. Scipioni, M. Di Bona, G. Vicidomini, A. Diaspro, L. Lanzanò: Local raster image correlation spectroscopy generates high-resolution intracellular diffusion maps, Commun. Biol. 1(1), 10 (2018)Google Scholar
  363. P. Bianchini, F. Cardarelli, M. Di Luca, A. Diaspro, R. Bizzarri: Nanoscale protein diffusion by STED-based pair correlation analysis, PLoS ONE 9(6), e99619 (2014)Google Scholar
  364. L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, G. Vicidomini: Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS, Nat. Commun. 8(1), 65 (2017)Google Scholar
  365. M.G. Gustafsson: Extended resolution fluorescence microscopy, Curr. Opin. Struct. Biol. 9(5), 627–634 (1999)Google Scholar
  366. W. Lukosz: Optical systems with resolving powers exceeding the classical limit, JOSA 56(11), 1463–1472 (1966)Google Scholar
  367. M. Saxena, G. Eluru, S.S. Gorthi: Structured illumination microscopy, Adv. Opt. Photonics 7(2), 241–235 (2015)Google Scholar
  368. L. Schermelleh, P.M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M.C. Cardoso, D.A. Agard, M.G.L. Gustafsson, H. Leonhardt, J.W. Sedat: Subdiffraction multicolor imaging of the nuclear periphery with 3-D structured illumination microscopy, Science 320(5881), 1332–1336 (2008)Google Scholar
  369. P.A. Benedetti, V. Evangelista, D. Guidarini, S. Vestri: Achieving confocal-point performance in confocal-line microscopy, Bioimaging 2(3), 122–130 (1994)Google Scholar
  370. M.D. Egger, M. Hadravský, M. Petráň, R. Galambos: Tandem-scanning reflected-light microscope, JOSA 58(5), 661–664 (1968)Google Scholar
  371. R. Heintzmann, T.M. Jovin, C. Cremer: Saturated patterned excitation microscopy–A concept for optical resolution improvement, J. Opt. Soc. Am. A 19(8), 1599–1609 (2002)Google Scholar
  372. P.A. Benedetti, R. Heintzmann: High-resolution image reconstruction in fluorescence microscopy with patterned excitation, Appl. Opt. 45(20), 5037–5045 (2006)Google Scholar
  373. M.G.L. Gustafsson, L. Shao, D.A. Agard, J.W. Sedat: Fluorescence microscopy without resolution limit, biophotonics/optical interconnects and VLSI photonics/WBM microcavities. In: 2004 Digest of the LEOS Summer Topical Meet (IEEE, Piscataway 2004) pp. 25–26Google Scholar
  374. M. Gustafsson: Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081 (2015)Google Scholar
  375. A.G. York, P. Chandris, D.D. Nogare, J. Head, P. Wawrzusin, R.S. Fischer, A. Chitnis, H. Shroff: Instant super-resolution imaging in live cells and embryos via analog image processing, Nat. Meth. 10(11), 1122–1126 (2013)Google Scholar
  376. P.W. Winter, A.G. York, D.D. Nogare, M. Ingaramo, R. Christensen, A. Chitnis, G.H. Patterson, H. Shroff: Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples, Optica 1(3), 181–111 (2014)Google Scholar
  377. F. Wei, Z. Liu: Plasmonic structured illumination microscopy, Nano Lett. 10(7), 2531–2536 (2010)Google Scholar
  378. P.W. Tillberg, F. Chen, K.D. Piatkevich, Y. Zhao, C.-C.J. Yu, B.P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E.M. DeGennaro, D.H. Roossien, G. Gong, U. Seneviratne, S.R. Tannenbaum, R. Desimone, D. Cai, E.S. Boyden: Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies, Nat. Biotechnol. 34(9), 1–9 (2016)Google Scholar
  379. F. Chen, P.W. Tillberg, E.S. Boyden: Optical imaging. Expansion microscopy, Science 347(6221), 543–548 (2015)Google Scholar
  380. I. Cainero, M. Oneto, L. Pesce, G. Zanini, L. Lanzanò, A. Diaspro, P. Bianchini: Combining expansion microscopy and STED nanoscopy for the study of cellular organization, Biophys. J. 112(3), 140a (2017)Google Scholar
  381. M. Gao, R. Maraspini, O. Beutel, A. Zehtabian, B. Eickholt, A. Honigmann, H. Ewers: Expansion stimulated emission depletion microscopy (ExSTED), ACS Nano 12(8), 4178–4185 (2018)Google Scholar
  382. L. Pesce, M. Cozzolino, L. Lanzanò, A. Diaspro, P. Bianchini: Expansion microscopy: a tool to investigate Hutchinson-Gilford progeria syndrome at molecular level, Biophys. J. 114(1), 536a (2018)Google Scholar
  383. C. Smith: Microscopy: Two microscopes are better than one, Nature 492(7428), 293–297 (2012)Google Scholar
  384. B. Harke, J.V. Chacko, H. Haschke, C. Canale, A. Diaspro: A novel nanoscopic tool by combining AFM with STED microscopy, Opt. Nanosc. 1(1), 1–6 (2012)Google Scholar
  385. J.V. Chacko, F.C. Zanacchi, A. Diaspro: Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach, Cytoskeleton 70(11), 729–740 (2013)Google Scholar
  386. A. Diaspro, J. Chacko, F.C. Zanacchi, R. Oropesa, S. Dante, C. Canale: Correlative nanoscopy: super resolved fluorescence and atomic force microscopy towards nanoscale manipulation and multimodal investigations, Microsc. Microanal. 21(3), 2351–2352 (2015)Google Scholar
  387. Z. Bauman: Liquid Life (Polity, Cambridge 2005)Google Scholar
  388. M. Samim, S. Krouglov, V. Barzda: Double stokes Mueller polarimetry of second-harmonic generation in ordered molecular structures, J. Opt. Soc. Am. B 32(3), 451–411 (2015)Google Scholar
  389. N. Mazumder, J. Qiu, F.-J. Kao, A. Diaspro: Mueller matrix signature in advanced fluorescence microscopy imaging, J. Opt. 19(2), 025301 (2017)Google Scholar
  390. F. Piccinini, T. Balassa, A. Szkalisity, C. Molnar, L. Paavolainen, K. Kujala, K. Buzas, M. Sarazova, V. Pietiainen, U. Kutay, K. Smith, P. Horvath: Advanced cell classifier: User-friendly machine-learning-based software for discovering phenotypes in high-content imaging data, Cell Syst. 4(6), 651–655.e5 (2017)Google Scholar
  391. S. Colabrese, M. Castello, G. Vicidomini, A. Del Bue: Machine learning approach for single molecule localisation microscopy, Biomed. Opt. Express 9(4), 1680 (2018)Google Scholar
  392. W. Ouyang, A. Aristov, M. Lelek, X. Hao, C. Zimmer: Deep learning massively accelerates super-resolution localization microscopy, Nat. Biotechnol. 36(5), 460–468 (2018)Google Scholar
  393. J. Ma, M.K. Yu, S. Fong, K. Ono, E. Sage, B. Demchak, R. Sharan, T. Ideker: Using deep learning to model the hierarchical structure and function of a cell, Nat. Methods 15(4), 290–298 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of NanophysicsItalian Institute of TechnologyGenoaItaly
  2. 2.Dept. of NanoscopyItalian Institute of TechnologyGenoaItaly
  3. 3.Nikon Imaging CenterItalian Institute of TechnologyGenoaItaly
  4. 4.Dept. of PhysicsUniversity of GenoaGenoaItaly

Personalised recommendations