Advertisement

Ptychography

Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Ptychography is a computational imaging technique. A detector records an extensive data set consisting of many inference patterns obtained as an object is displaced to various positions relative to an illumination field. A computer algorithm of some type is then used to invert these data into an image. It has three key advantages: it does not depend upon a good-quality lens, or indeed on using any lens at all; it can obtain the image wave in phase as well as in intensity; and it can self-calibrate in the sense that errors that arise in the experimental set up can be accounted for and their effects removed. Its transfer function is in theory perfect, with resolution being wavelength limited. Although the main concepts of ptychography were developed many years ago, it has only recently (over the last 10 years) become widely adopted. This chapter surveys visible light, x-ray, electron, and EUV ptychography as applied to microscopic imaging. It describes the principal experimental arrangements used at these various wavelengths. It reviews the most common inversion algorithms that are nowadays employed, giving examples of meta code to implement these. It describes, for those new to the field, how to avoid the most common pitfalls in obtaining good quality reconstructions. It also discusses more advanced techniques such as modal decomposition and strategies to cope with three-dimensional () multiple scattering.

References

  1. R. Hegerl, W. Hoppe: Dynamic theory of crystalline structure analysis by electron diffraction in inhomogeneous primary wave field, Ber. Bunsenges. Phys. Chem. 74(11), 1148–1154 (1970)Google Scholar
  2. W. Hoppe: Diffraction in inhomogeneous primary wave fields: 1. Principle of phase determination from, electron diffraction interference, Acta Crystallogr. A 25, 495–501 (1969)Google Scholar
  3. W. Hoppe: Diffraction in inhomogeneous primary wave fields: 3. Amplitude and phase determination for nonperiodic objects, Acta Crystallogr. A 25, 508–515 (1969)Google Scholar
  4. W. Hoppe, G. Strube: Diffraction in inhomogeneous primary wave fields: 2. Optical experiments for phasedetermination of lattice interferences, Acta Crystallogr. A 25, 502–507 (1969)Google Scholar
  5. J. Rodenburg: Ptychography and related diffractive imaging methods, Adv. Imaging Electron Phys. 150, 87–184 (2008)Google Scholar
  6. W. Hoppe: Trace structure-analysis, ptychography, phase tomography, Ultramicroscopy 10(3), 187–198 (1982)Google Scholar
  7. M. Landauer: Indirect Modes of Coherent Imaging in High-Resolution Electron Microscopy (Univ. Cambridge, Cambridge 1996)Google Scholar
  8. H.N. Chapman: Phase-retrieval x-ray microscopy by Wigner-distribution deconvolution, Ultramicroscopy 66(3/4), 153–172 (1996)Google Scholar
  9. H. Yang, I. MacLaren, L. Jones, G.T. Martinez, M. Simson, M. Huth, H. Ryll, H. Soltau, R. Sagawa, Y. Kondo, C. Ophus, P. Ercius, L. Jin, A. Kovacs, P.D. Nellist: Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution, Ultramicroscopy 180, 173–179 (2017)Google Scholar
  10. H. Yang, R.N. Rutte, L. Jones, M. Simson, R. Sagawa, H. Ryll, M. Huth, T.J. Pennycook, M.L.H. Green, H. Soltau, Y. Kondo, B.G. Davis, P.D. Nellist: Simultaneous atomic-resolution electron ptychography and z-contrast imaging of light and heavy elements in complex nanostructures, Nat. Commun. 7, 12532 (2016)Google Scholar
  11. J. Rodenburg, A. Hurst, A. Cullis, B. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, I. Johnson: Hard-x-ray lensless imaging of extended objects, Phys. Rev. Lett. 98(3), 034801 (2007)Google Scholar
  12. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, F. Pfeiffer: High-resolution scanning x-ray diffraction microscopy, Science 321(5887), 379–382 (2008)Google Scholar
  13. P. Thibault, M. Guizar-Sicairos, A. Menzel: Coherent imaging at the diffraction limit, J. Synchrotron Radiat. 21, 1011–1018 (2014)Google Scholar
  14. J.C.H. Spence, M. Howells, L.D. Marks, J. Miao: Lensless imaging: A workshop on new approaches to the phase problem for non-periodic objects, Ultramicroscopy 90(1), 1–6 (2001)Google Scholar
  15. J.C.H. Spence, U. Weierstall, M. Howells: Phase recovery and lensless imaging by iterative methods in optical, x-ray and electron diffraction, Philos. Trans. R. Soc. A 360(1794), 875–895 (2002)Google Scholar
  16. K.A. Nugent: Coherent methods in the x-ray sciences, Adv. Phys. 59(1), 1–99 (2010)Google Scholar
  17. J. Rodenburg, A. Hurst, A. Cullis: Transmission microscopy without lenses for objects of unlimited size, Ultramicroscopy 107(2), 227–231 (2007)Google Scholar
  18. J.M. Rodenburg, H.M. Faulkner: A phase retrieval algorithm for shifting illumination, Appl. Phys. Lett. 85(20), 4795–4797 (2004)Google Scholar
  19. Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, Y. Kohmura, T. Ishikawa: High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter, Appl. Phys. Lett. 102(9), 094102 (2013)Google Scholar
  20. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C.M. Kewish, R. Wepf, O. Bunk, F. Pfeiffer: Ptychographic x-ray computed tomography at the nanoscale, Nature 467(7314), 436–439 (2010)Google Scholar
  21. A. Diaz, P. Trtik, M. Guizar-Sicairos, A. Menzel, P. Thibault, O. Bunk: Quantitative x-ray phase nanotomography, Phys. Rev. B 85(2), 020104(R) (2012)Google Scholar
  22. Y.M. Bruck, L. Sodin: On the ambiguity of the image reconstruction problem, Opt. Commun. 30(3), 304–308 (1979)Google Scholar
  23. R.H.T. Bates: Fourier phase problems are uniquely solvable in more than one dimension. I: Underlying theory, Optik 61(3), 247–262 (1982)Google Scholar
  24. J.R. Fienup: Reconstruction of an object from modulus of its Fourier-transform, Opt. Lett. 3(1), 27–29 (1978)Google Scholar
  25. J.R. Fienup: Phase retrieval algorithms, Appl. Opt. 21(15), 2758–2769 (1982)Google Scholar
  26. R.W. Gerchberg, W. Saxton: Phase determination from image and diffraction plane pictures in electron-microscope, Optik 34(3), 275 (1971)Google Scholar
  27. R.W. Gerchberg: A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35, 237–246 (1972)Google Scholar
  28. H. Faulkner, J. Rodenburg: Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm, Phys. Rev. Lett. 93(2), 023903 (2004)Google Scholar
  29. L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, L. Waller: Experimental robustness of Fourier ptychography phase retrieval algorithms, Opt. Express 23(26), 33214–33240 (2015)Google Scholar
  30. M. Guizar-Sicairos, J.R. Fienup: Phase retrieval with transverse translation diversity: A nonlinear optimization approach, Opt. Express 16(10), 7264–7278 (2008)Google Scholar
  31. B. McCallum, J. Rodenburg: Simultaneous reconstruction of object and aperture functions from multiple far-field intensity measurements, J. Opt. Soc. Am. A 10(2), 231–239 (1993)Google Scholar
  32. S. Gravel, V. Elser: Divide and concur: A general approach to constraint satisfaction, Phys. Rev. E 78(3), 036706 (2008)Google Scholar
  33. A.M. Maiden, J.M. Rodenburg: An improved ptychographical phase retrieval algorithm for diffractive imaging, Ultramicroscopy 109(10), 1256–1262 (2009)Google Scholar
  34. A. Schropp, P. Boye, J. Feldkamp, R. Hoppe, J. Patommel, D. Samberg, S. Stephan, K. Giewekemeyer, R. Wilke, T. Salditt: Hard x-ray nanobeam characterization by coherent diffraction microscopy, Appl. Phys. Lett. 96(9), 091102 (2010)Google Scholar
  35. F. Hüe, J. Rodenburg, A. Maiden, F. Sweeney, P. Midgley: Wave-front phase retrieval in transmission electron microscopy via ptychography, Phys. Rev. B 82(12), 121415 (2010)Google Scholar
  36. C Yang, J. Qian, A. Schirotzek, F. Maia, S. Marchesini: Iterative algorithms for ptychographic phase retrieval, arXiv:1105.5628 [physics.optics] (2011)Google Scholar
  37. Z. Wen, C. Yang, X. Liu, S. Marchesini: Alternating direction methods for classical and ptychographic phase retrieval, Inverse Probl. 28(11), 115010 (2012)Google Scholar
  38. S. Marchesini, Y.-C. Tu, H.-T. Wu: Alternating projection, ptychographic imaging and phase synchronization, Appl. Comput. Harmon. Anal. 41(3), 815–851 (2016)Google Scholar
  39. S. Marchesini, H. Krishnan, B.J. Daurer, D.A. Shapiro, T. Perciano, J.A. Sethian, F.R. Maia: Sharp: A distributed GPU-based ptychographic solver, J. Appl. Crystallogr. 49(4), 1245–1252 (2016)Google Scholar
  40. A. D'alfonso, A. Morgan, A. Yan, P. Wang, H. Sawada, A. Kirkland, L. Allen: Deterministic electron ptychography at atomic resolution, Phys. Rev. B 89(6), 064101 (2014)Google Scholar
  41. G. Zheng, R. Horstmeyer, C. Yang: Wide-field, high-resolution Fourier ptychographic microscopy, Nat. Photonics 7(9), 739–745 (2013)Google Scholar
  42. R. Hesse, D.R. Luke, S. Sabach, M.K. Tam: Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging, SIAM J. Imaging Sci. 8(1), 426–457 (2015)Google Scholar
  43. A. Maiden, D. Johnson, P. Li: Further improvements to the ptychographical iterative region, Optica 4(7), 736–745 (2017)Google Scholar
  44. P. Thibault, M. Guizar-Sicairos: Maximum-likelihood refinement for coherent diffractive imaging, New J. Phys. 14, 063004 (2012)Google Scholar
  45. P. Godard, M. Allain, V. Chamard, J. Rodenburg: Noise models for low counting rate coherent diffraction imaging, Opt. Express 20(23), 25914–25934 (2012)Google Scholar
  46. L. Bian, J. Suo, J. Chung, X. Ou, C. Yang, F. Chen, Q. Dai: Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient, Sci. Rep. 6, 27384 (2016)Google Scholar
  47. S. Marchesini, A. Schirotzek, C. Yang, H.-T. Wu, F. Maia: Augmented projections for ptychographic imaging, Inverse Probl. 29(11), 115009 (2013)Google Scholar
  48. A. Maiden, M. Sarahan, M. Stagg, S. Schramm, M. Humphry: Quantitative electron phase imaging with high sensitivity and an unlimited field of view, Sci. Rep. 5, 14690 (2015)Google Scholar
  49. S. McDermott, P. Li, G. Williams, A. Maiden: Characterizing a spatial light modulator using ptychography, Opt. Lett. 42(3), 371–374 (2017)Google Scholar
  50. P. Thibault, A. Menzel: Reconstructing state mixtures from diffraction measurements, Nature 494(7435), 68–71 (2013)Google Scholar
  51. S. Cao, P. Kok, P. Li, A. Maiden, J. Rodenburg: Modal decomposition of a propagating matter wave via electron ptychography, Phys. Rev. A 94(6), 063621 (2016)Google Scholar
  52. P. Li, T. Edo, D. Batey, J. Rodenburg, A. Maiden: Breaking ambiguities in mixed state ptychography, Opt. Express 24(8), 9038–9052 (2016)Google Scholar
  53. X. Huang, K. Lauer, J.N. Clark, W. Xu, E. Nazaretski, R. Harder, I.K. Robinson, Y.S. Chu: Fly-scan ptychography, Sci. Rep. 5, 9074 (2015)Google Scholar
  54. D.J. Batey, D. Claus, J.M. Rodenburg: Information multiplexing in ptychography, Ultramicroscopy 138, 13–21 (2014)Google Scholar
  55. J.N. Clark, X. Huang, R.J. Harder, I.K. Robinson: Dynamic imaging using ptychography, Phys. Rev. Lett. 112(11), 113901 (2014)Google Scholar
  56. M. Odstrcil, P. Baksh, S. Boden, R. Card, J. Chad, J. Frey, W. Brocklesby: Ptychographic coherent diffractive imaging with orthogonal probe relaxation, Opt. Express 24(8), 8360–8369 (2016)Google Scholar
  57. A. Maiden, M. Humphry, M. Sarahan, B. Kraus, J. Rodenburg: An annealing algorithm to correct positioning errors in ptychography, Ultramicroscopy 120, 64–72 (2012)Google Scholar
  58. F. Zhang, I. Peterson, J. Vila-Comamala, A. Diaz, F. Berenguer, R. Bean, B. Chen, A. Menzel, I.K. Robinson, J.M. Rodenburg: Translation position determination in ptychographic coherent diffraction imaging, Opt. Express 21(11), 13592–13606 (2013)Google Scholar
  59. A. Tripathi, I. McNulty, O.G. Shpyrko: Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods, Opt. Express 22(2), 1452–1466 (2014)Google Scholar
  60. A.M. Maiden, M.J. Humphry, J. Rodenburg: Ptychographic transmission microscopy in three dimensions using a multi-slice approach, J. Opt. Soc. Am. A 29(8), 1606–1614 (2012)Google Scholar
  61. R. Horstmeyer, J. Chung, X. Ou, G. Zheng, C. Yang: Diffraction tomography with Fourier ptychography, Optica 3(8), 827–835 (2016)Google Scholar
  62. O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, F. Pfeiffer: Influence of the overlap parameter on the convergence of the ptychographical iterative engine, Ultramicroscopy 108(5), 481–487 (2008)Google Scholar
  63. R. Kasprowicz, R. Suman, P. O'Toole: Characterising live cell behaviour: Traditional label-free and quantitative phase imaging approaches, Int. J. Biochem. Cell Biol. 84, 89–95 (2017)Google Scholar
  64. J.W. Miao, P. Charalambous, J. Kirz, D. Sayre: Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens, Nature 400(6742), 342–344 (1999)Google Scholar
  65. T. Edo, D. Batey, A. Maiden, C. Rau, U. Wagner, Z. Pešić, T. Waigh, J. Rodenburg: Sampling in x-ray ptychography, Phys. Rev. A 87(5), 053850 (2013)Google Scholar
  66. J.C. da Silva, A. Menzel: Elementary signals in ptychography, Opt. Express 23(26), 33812–33821 (2015)Google Scholar
  67. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, F. Pfeiffer: Probe retrieval in ptychographic coherent diffractive imaging, Ultramicroscopy 109(4), 338–343 (2009)Google Scholar
  68. F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas: Perfect x-ray focusing via fitting corrective glasses to aberrated optics, Nat. Commun. 8, 14623 (2017)Google Scholar
  69. M. Humphry, B. Kraus, A. Hurst, A. Maiden, J. Rodenburg: Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging, Nat. Commun. 3, 730 (2012)Google Scholar
  70. A.M. Maiden, J.M. Rodenburg, M.J. Humphry: Optical ptychography: A practical implementation with useful resolution, Opt. Lett. 35(15), 2585–2587 (2010)Google Scholar
  71. M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, A. Menzel: Role of the illumination spatial-frequency spectrum for ptychography, Phys. Rev. B 86(10), 100103 (2012)Google Scholar
  72. P. Li, T.B. Edo, J.M. Rodenburg: Ptychographic inversion via Wigner distribution deconvolution: Noise suppression and probe design, Ultramicroscopy 147, 106–113 (2014)Google Scholar
  73. A. Maiden, G. Morrison, B. Kaulich, A. Gianoncelli, J. Rodenburg: Soft x-ray spectromicroscopy using ptychography with randomly phased illumination, Nat. Commun. 4, 1669 (2013)Google Scholar
  74. C.T. Putkunz, A.J. D'Alfonso, A.J. Morgan, M. Weyland, C. Dwyer, L. Bourgeois, J. Etheridge, A. Roberts, R.E. Scholten, K.A. Nugent, L.J. Allen: Atom-scale ptychographic electron diffractive imaging of boron nitride cones, Phys. Rev. Lett. 108(6), 4 (2012)Google Scholar
  75. I. Peterson, B. Abbey, C.T. Putkunz, D.J. Vine, G.A. van Riessen, G.A. Cadenazzi, E. Balaur, R. Ryan, H.M. Quiney, I. McNulty, A.G. Peele, K.A. Nugent: Nanoscale Fresnel coherent diffraction imaging tomography using ptychography, Opt. Express 20(22), 24678–24685 (2012)Google Scholar
  76. A.M. Maiden, M.J. Humphry, F. Zhang, J.M. Rodenburg: Superresolution imaging via ptychography, J. Opt. Soc. Am. A 28(4), 604–612 (2011)Google Scholar
  77. R. Hegerl, W. Hoppe: Influence of electron noise on 3-dimensional image-reconstruction, Z. Naturforsch. A 31(12), 1717–1721 (1976)Google Scholar
  78. W. Hoppe, R. Hegerl: Some remarks concerning the influence of electron noise on 3-D reconstruction, Ultramicroscopy 6(1), 205–206 (1981)Google Scholar
  79. P. Li, D.J. Batey, T.B. Edo, A.D. Parsons, C. Rau, J.M. Rodenburg: Multiple mode x-ray ptychography using a lens and a fixed diffuser optic, J. Opt. 18(5), 054008 (2016)Google Scholar
  80. D.A. Shapiro, Y.-S. Yu, T. Tyliszczak, J. Cabana, R. Celestre, W. Chao, K. Kaznatcheev, A.D. Kilcoyne, F. Maia, S. Marchesini: Chemical composition mapping with nanometre resolution by soft x-ray microscopy, Nat. Photonics 8(10), 765–769 (2014)Google Scholar
  81. Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M.J. Tate, J. Park, S.M. Gruner, V. Elser, D.A. Muller: Electron ptychography of 2-D materials to deep sub-ångström resolution, Nature 559, 343–349 (2018)Google Scholar
  82. J.M. Cowley: Image contrast in a transmission scanning electron microscope, Appl. Phys. Lett. 15(2), 58 (1969)Google Scholar
  83. W. Hoppe: Image projection of complex functions in electron microscopy, Z. Naturforsch. A 26(7), 1155 (1971)Google Scholar
  84. W. Hoppe, D. Kostler, D. Typke, N. Hunsmann: Contrast transfer for bright field image reconstruction with tilted illumination in electron-microscopy, Optik 42(1), 43–56 (1975)Google Scholar
  85. S.J. Haigh, H. Sawada, A.I. Kirkland: Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope, Phys. Rev. Lett. 103(12), 126101 (2009)Google Scholar
  86. S. Dong, R. Shiradkar, P. Nanda, G. Zheng: Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging, Biomed. Opt. Express 5(6), 1757–1767 (2014)Google Scholar
  87. K. Guo, S. Dong, G. Zheng: Fourier ptychography for brightfield, phase, darkfield, reflective, multi-slice, and fluorescence imaging, IEEE J. Sel. Top. Quantum Electron. 22(4), 77–88 (2016)Google Scholar
  88. S. Pacheco, G. Zheng, R. Liang: Reflective Fourier ptychography, J. Biomed. Opt. 21(2), 026010 (2016)Google Scholar
  89. S. Dong, Z. Bian, R. Shiradkar, G. Zheng: Sparsely sampled Fourier ptychography, Opt. Express 22(5), 5455–5464 (2014)Google Scholar
  90. L. Tian, X. Li, K. Ramchandran, L. Waller: Multiplexed coded illumination for Fourier ptychography with an LED array microscope, Biomed. Opt. Express 5(7), 2376–2389 (2014)Google Scholar
  91. Y. Zhang, W. Jiang, L. Tian, L. Waller, Q. Dai: Self-learning based Fourier ptychographic microscopy, Opt. Express 23(14), 18471–18486 (2015)Google Scholar
  92. S. Dong, P. Nanda, R. Shiradkar, K. Guo, G. Zheng: High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography, Opt. Express 22(17), 20856–20870 (2014)Google Scholar
  93. X. Ou, G. Zheng, C. Yang: Embedded pupil function recovery for Fourier ptychographic microscopy, Opt. Express 22(5), 4960–4972 (2014)Google Scholar
  94. G. Zheng: Fourier Ptychographic Imaging. A Matlab Tutorial (Morgan & Claypool Publishers, San Rafael 2016)Google Scholar
  95. J. Marrison, L. Räty, P. Marriott, P. O'Toole: Ptychography–A label free, high-contrast imaging technique for live cells using quantitative phase information, Sci. Rep. 3, 2369 (2013)Google Scholar
  96. M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, P. Thibault: Near-field ptychography: Phase retrieval for inline holography using a structured illumination, Sci. Rep. 3, 1927 (2013)Google Scholar
  97. V.E. Cosslett, W.C. Nixon: An experimental x-ray shadow microscope, Proc. R. Soc. B 900(140), 422–431 (1952)Google Scholar
  98. M. Holler, M. Guizar-Sicairos, E.H. Tsai, R. Dinapoli, E. Müller, O. Bunk, J. Raabe, G. Aeppli: High-resolution non-destructive three-dimensional imaging of integrated circuits, Nature 543(7645), 402–406 (2017)Google Scholar
  99. N. Jiang, J.C. Spence: On the dose-rate threshold of beam damage in TEM, Ultramicroscopy 113, 77–82 (2012)Google Scholar
  100. D.J. Vine, G.J. Williams, B. Abbey, M.A. Pfeifer, J.N. Clark, M.D. de Jonge, I. McNulty, A.G. Peele, K.A. Nugent: Ptychographic Fresnel coherent diffractive imaging, Phys. Rev. A 80(6), 063823 (2009)Google Scholar
  101. A. Hurst, T. Edo, T. Walther, F. Sweeney, J. Rodenburg: Probe position recovery for ptychographical imaging, J. Phys. Conf. Ser. 241, 012004 (2010)Google Scholar
  102. M.A. Pfeifer, G.J. Williams, I.A. Vartanyants, R. Harder, I.K. Robinson: Three-dimensional mapping of a deformation field inside a nanocrystal, Nature 442(7098), 63–66 (2006)Google Scholar
  103. S. Hruszkewycz, M. Holt, C. Murray, J. Bruley, J. Holt, A. Tripathi, O. Shpyrko, I. McNulty, M. Highland, P. Fuoss: Quantitative nanoscale imaging of lattice distortions in epitaxial semiconductor heterostructures using nanofocused x-ray Bragg projection ptychography, Nano Lett. 12(10), 5148–5154 (2012)Google Scholar
  104. S. Hruszkewycz, M. Allain, M. Holt, C. Murray, J. Holt, P. Fuoss, V. Chamard: High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography, Nat. Mater. 16, 244–251 (2016)Google Scholar
  105. V. Chamard, M. Allain, P. Godard, A. Talneau, G. Patriarche, M. Burghammer: Strain in a silicon-on-insulator nanostructure revealed by 3-D x-ray Bragg ptychography, Sci. Rep. 5(1), 9827 (2015)Google Scholar
  106. D. Claus, D. Robinson, D. Chetwynd, Y. Shuo, W. Pike, J.J. de Jesus Toriz-Garcia, J. Rodenburg: Dual wavelength optical metrology using ptychography, J. Opt. 15(3), 035702 (2013)Google Scholar
  107. B. Zhang, D.F. Gardner, M.D. Seaberg, E.R. Shanblatt, H.C. Kapteyn, M.M. Murnane, D.E. Adams: High contrast 3-D imaging of surfaces near the wavelength limit using tabletop EUV ptychography, Ultramicroscopy 158, 98–104 (2015)Google Scholar
  108. M.D. Seaberg, B. Zhang, D.F. Gardner, E.R. Shanblatt, M.M. Murnane, H.C. Kapteyn, D.E. Adams: Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography, Optica 1(1), 39–44 (2014)Google Scholar
  109. J. Bø Fløystad, E.T.B. Skjønsfjell, M. Guizar-Sicairos, K. Høydalsvik, J. He, J.W. Andreasen, Z. Zhang, D.W. Breiby: Quantitative 3-D x-ray imaging of densification, delamination and fracture in a micro-composite under compression, Adv. Eng. Mater. 17(4), 545–553 (2015)Google Scholar
  110. J. Rodenburg, R. Bates: The theory of super-resolution electron microscopy via Wigner-distribution deconvolution, Philos. Trans. R. Soc. A 339(1655), 521–553 (1992)Google Scholar
  111. J.M. Cowley: Diffraction Physics (Elsevier, Amsterdam 1995)Google Scholar
  112. J.M. Cowley, A.F. Moodie: The scattering of electrons by atoms and crystals: I. A new theoretical approach, Acta Crystallogr. 10(10), 609–619 (1957)Google Scholar
  113. L. Tian, L. Waller: 3-D intensity and phase imaging from light field measurements in an LED array microscope, Optica 2(2), 104–111 (2015)Google Scholar
  114. P. Li, D.J. Batey, T.B. Edo, J.M. Rodenburg: Separation of three-dimensional scattering effects in tilt-series Fourier ptychography, Ultramicroscopy 158, 1–7 (2015)Google Scholar
  115. T. Godden, R. Suman, M. Humphry, J. Rodenburg, A. Maiden: Ptychographic microscope for three-dimensional imaging, Opt. Express 22(10), 12513–12523 (2014)Google Scholar
  116. A. Suzuki, S. Furutaku, K. Shimomura, K. Yamauchi, Y. Kohmura, T. Ishikawa, Y. Takahashi: High-resolution multislice x-ray ptychography of extended thick objects, Phys. Rev. Lett. 112(5), 053903 (2014)Google Scholar
  117. E.H.R. Tsai, I. Usov, A. Diaz, A. Menzel, M. Guizar-Sicairos: X-ray ptychography with extended depth of field, Opt. Express 24(25), 29089–29108 (2016)Google Scholar
  118. E. Wolf: New theory of partial coherence in the space–frequency domain. Part I: Spectra and cross spectra of steady-state sources, J. Opt. Soc. Am. 72(3), 343–351 (1982)Google Scholar
  119. D. Batey, T. Edo, C. Rau, U. Wagner, Z. Pešić, T. Waigh, J. Rodenburg: Reciprocal-space up-sampling from real-space oversampling in x-ray ptychography, Phys. Rev. A 89(4), 043812 (2014)Google Scholar
  120. D.R. Luke: Relaxed averaged alternating reflections for diffraction imaging, Inverse Probl. 21(1), 37 (2004)Google Scholar
  121. S. Wang, D. Shapiro, K. Kaznatcheev: X-ray ptychography with highly-curved wavefront, J. Phys. Conf. Ser. 463, 012040 (2013)Google Scholar
  122. D.G. Voelz: Computational Fourier Optics: A Matlab Tutorial (SPIE, Bellingham 2011)Google Scholar
  123. R. Bates, J. Rodenburg: Sub-Ångström transmission microscopy: A Fourier transform algorithm for microdiffraction plane intensity information, Ultramicroscopy 31(3), 303–307 (1989)Google Scholar
  124. J. Rodenburg, B. McCallum, P. Nellist: Experimental tests on double-resolution coherent imaging via STEM, Ultramicroscopy 48(3), 304–314 (1993)Google Scholar
  125. B. McCallum, J. Rodenburg: Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration, Ultramicroscopy 45(3/4), 371–380 (1992)Google Scholar
  126. S.L. Friedman, J. Rodenburg: Optical demonstration of a new principle of far-field microscopy, J. Phys. D 25(2), 147 (1992)Google Scholar
  127. T. Plamann, J. Rodenburg: Double resolution imaging with infinite depth of focus in single lens scanning microscopy, Optik 96(1), 31–36 (1994)Google Scholar
  128. T. Plamann, J. Rodenburg: Electron ptychography. II. Theory of three-dimensional propagation effects, Acta Crystallogr. A 54(1), 61–73 (1998)Google Scholar
  129. M. Landauer, B. McCallum, J. Rodenburg: Double resolution imaging of weak phase specimens with quadrant detectors in the STEM, Optik 100(1), 37–46 (1995)Google Scholar
  130. B. Hornberger, M. Feser, C. Jacobsen: Quantitative amplitude and phase contrast imaging in a scanning transmission x-ray microscope, Ultramicroscopy 107(8), 644–655 (2007)Google Scholar
  131. T.J. Pennycook, A.R. Lupini, H. Yang, M.F. Murfitt, L. Jones, P.D. Nellist: Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution, Ultramicroscopy 151, 160–167 (2015)Google Scholar
  132. P. Nellist, J. Rodenburg: Electron ptychography. I. Experimental demonstration beyond the conventional resolution limits, Acta Crystallogr. A 54(1), 49–60 (1998)Google Scholar
  133. P. Nellist, B. McCallum, J. Rodenburg: Resolution beyond the information limit in transmission electron microscopy, Nature 374(6523), 630 (1995)Google Scholar
  134. B. McCallum, J. Rodenburg: Error analysis of crystalline ptychography in the STEM mode, Ultramicroscopy 52(1), 85–99 (1993)Google Scholar
  135. P. Nellist, J. Rodenburg: Beyond the conventional information limit: The relevant coherence function, Ultramicroscopy 54(1), 61–74 (1994)Google Scholar
  136. Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, H. Li: Optical image encryption via ptychography, Opt. Lett. 38(9), 1425–1427 (2013)Google Scholar
  137. M. Odstrcil, P. Baksh, C. Gawith, R. Vrcelj, J. Frey, W. Brocklesby: Nonlinear ptychographic coherent diffractive imaging, Opt. Express 24(18), 20245–20252 (2016)Google Scholar
  138. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 464(7288), 571–574 (2010)Google Scholar
  139. L. Yang, R. McRae, M.M. Henary, R. Patel, B. Lai, S. Vogt, C.J. Fahrni: Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy, Proc. Natl. Acad. Sci. U.S.A. 102(32), 11179–11184 (2005)Google Scholar
  140. R. Henderson: The potential and limitations of neutrons, electrons and x-rays for atomic-resolution microscopy of unstained biological molecules, Q. Rev. Biophys. 28(2), 171–193 (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Electronic & Electrical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations