Electron Holography

Part of the Springer Handbooks book series (SHB)


Electron holography is a powerful technique that allows the phase shift of a high-energy electron wave that has passed through a specimen in the transmission electron microscope to be measured directly. The phase shift can then be used to provide quantitative information about local variations in magnetic field and electrostatic potential both within and surrounding the specimen. This chapter begins with an outline of the experimental procedures and theoretical background that are needed to obtain phase information from electron holograms. It then presents recent examples of the application of electron holography to the characterization of magnetic domain structures and electrostatic fields in nanoscale materials and working devices, including arrangements of closely spaced nanocrystals, patterned elements and nanowires, and electrostatic fields in field emitters and doped semiconductors. The advantages of using digital approaches to record and analyze electron holograms are highlighted. Finally, high-resolution electron holography, alternative modes of electron holography and future prospects for the development of the technique are briefly outlined.



The authors are grateful to T. Almeida, J. Barthel, M. Beleggia, S. Blügel, C.B. Boothroyd, T.J. Bromwich, R.F. Broom, P.R. Buseck, J. Caron, S. Chang, R.K.K. Chong, D. Cooper, P. Diehle, H. Du, C. Dwyer, R.B. Frankel, M. Farle, I. Farrer, J.M. Feinberg, P.E. Fischione, R.B. Frankel, K. Harada, R.J. Harrison, L.J. Heyderman, M.J. Hÿtch, B.E. Kardynal, N. Kiselev, M. Kläui, J. Li, Z.-A. Li, J.C. Loudon, D. Meertens, P.A. Midgley, V. Migunov, A.R. Muxworthy, S.B. Newcomb, P. Parameswaran, A.K. Petford-Long, M. Pósfai, G. Pozzi, A. Putnis, D.A. Ritchie, A.C. Robins, C.A. Ross, M.R. Scheinfein, K. Shibata, E.T. Simpson, E. Snoeck, A.H. Tavabi, Y. Tokura, A. Tonomura, S.L. Tripp, A.C. Twitchett-Harrison, A. Wei, W. Williams, F. Winkler, S. Yazdi, F. Zheng and Y. Zhu for discussions and ongoing collaborations. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823717-ESTEEM3.


  1. D. Gabor: Microscopy by reconstructed wave-fronts, Proc. Royal Soc. A 197, 454–487 (1949)Google Scholar
  2. A. Tonomura, L.F. Allard, G. Pozzi, D.C. Joy, Y.A. Ono (Eds.): Electron Holography (Elsevier, Amsterdam 1992)Google Scholar
  3. A. Tonomura: The Quantum World Unveiled by Electron Waves (World Scientific, Singapore 1998)Google Scholar
  4. E. Völkl, L.F. Allard, D.C. Joy (Eds.): Introduction to Electron Holography (Plenum, New York 1998)Google Scholar
  5. G. Pozzi: Microscopia e olografia con elettroni (Bononia Univ. Press, Bologna 2013)Google Scholar
  6. G. Pozzi: Particles and Waves in Electron Optics and Microscopy, Advances in Imaging and Electron Physics, Vol. 194 (Academic Press, Cambridge 2016)Google Scholar
  7. A. Tonomura: Electron-holographic interference microscopy, Adv. Phys. 41, 59–103 (1992)Google Scholar
  8. P.A. Midgley: An introduction to off-axis electron holography, Micron 32, 167–184 (2001)Google Scholar
  9. H. Lichte: Electron interference: Mystery and reality, Philos. Trans. Royal Soc. A 360, 897–920 (2002)Google Scholar
  10. G. Matteucci, G.F. Missiroli, G. Pozzi: Electron holography of long-range electrostatic fields, Adv. Imaging Electron Phys. 122, 173–249 (2002)Google Scholar
  11. R.E. Dunin-Borkowski, M.R. McCartney, D.J. Smith: Electron holography of nanostructured materials. In: Encyclopaedia of Nanoscience and Nanotechnology, Vol. 3, ed. by H.S. Nalwa (American Scientific, Stevenson Ranch 2004) pp. 41–100Google Scholar
  12. R.E. Dunin-Borkowski, T. Kasama, A. Wei, S.L. Tripp, M.J. Hÿtch, E. Snoeck, R.J. Harrison, A. Putnis: Off-axis electron holography of magnetic nanowires and chains, rings, and planar arrays of magnetic nanoparticles, Microsc. Res. Tech. 64, 390–402 (2004)Google Scholar
  13. M.R. McCartney, D.J. Smith: Electron holography: Phase imaging with nanometer resolution, Annu. Rev. Mater. Res. 37, 729–767 (2007)Google Scholar
  14. H. Lichte, M. Lehmann: Electron holography—Basics and applications, Rep. Prog. Phys. 71, 016102 (2008)Google Scholar
  15. J.M. Thomas, E.T. Simpson, T. Kasama, R.E. Dunin-Borkowski: Electron holography for the study of nanomagnetic materials, Acc. Chem. Res. 41, 665–674 (2008)Google Scholar
  16. P.A. Midgley, R.E. Dunin-Borkowski: Electron tomography and holography in materials science, Nat. Mater. 8, 271–280 (2009)Google Scholar
  17. G. Pozzi, M. Beleggia, T. Kasama, R.E. Dunin-Borkowski: Interferometric methods for mapping static electric and magnetic fields, C. R. Phys. 15, 126–139 (2014)Google Scholar
  18. T. Tanigaki, K. Harada, Y. Murakami, K. Niitsu, T. Akashi, Y. Takahashi, A. Sugawara, D. Shindo: New trend in electron holography, J. Phys. D 49, 244001 (2016)Google Scholar
  19. G. Möllenstedt, H. Düker: Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen, Naturwissenschaften 42, 41 (1954)Google Scholar
  20. G. Matteucci, G.F. Missiroli, G. Pozzi: Electron holography of long-range electrostatic fields, Adv. Imaging Electron Phys. 99, 171–240 (1998)Google Scholar
  21. P.F. Fazzini, P.G. Merli, G. Pozzi: Electron microscope calibration for the Lorentz mode, Ultramicroscopy 99, 201–209 (2004)Google Scholar
  22. J. Sickmann, P. Formánek, M. Linck, U. Muehle, H. Lichte: Imaging modes for potential mapping in semiconductor devices by electron holography with improved lateral resolution, Ultramicroscopy 111, 290–302 (2011)Google Scholar
  23. R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, S.S.P. Parkin, M.R. Scheinfein, D.J. Smith: Off-axis electron holography of patterned magnetic nanostructures, J. Microsc. 200, 187–205 (2000)Google Scholar
  24. L. Reimer: Transmission Electron Microscopy (Springer, Berlin 1991)Google Scholar
  25. W.J. de Ruijter, J.K. Weiss: Detection limits in quantitative off-axis electron holography, Ultramicroscopy 50, 269–283 (1993)Google Scholar
  26. D.J. Smith, W.J. de Ruijter, J.K. Weiss, M.R. McCartney: Quantitative electron holography. In: Introduction to Electron Holography, ed. by E. Völkl, L.F. Allard, D.C. Joy (Kluwer/Plenum, New York 1998) pp. 107–124Google Scholar
  27. W.J. de Ruijter: Imaging properties and applications of slow-scan charge-coupled device cameras suitable for electron microscopy, Micron 26, 247–275 (1995)Google Scholar
  28. R.R. Meyer, A.I. Kirkland: Characterisation of the signal and noise transfer of CCD cameras for electron detection, Microsc. Res. Tech. 49, 269–280 (2000)Google Scholar
  29. S.L.Y. Chang, C. Dwyer, J. Barthel, C.B. Boothroyd, R.E. Dunin-Borkowski: Performance of a direct detection camera for off-axis electron holography, Ultramicroscopy 161, 90–97 (2016)Google Scholar
  30. H. Lichte, G. Möllenstedt: Measurement of the roughness of supersmooth surfaces using an electron mirror interference microscope, J. Phys. E 12, 941–944 (1979)Google Scholar
  31. T. Tanigaki, Y. Inada, S. Aizawa, T. Suzuki, H.S. Park, T. Matsuda, A. Taniyama, D. Shindo, A. Tonomura: Split-illumination electron holography, Appl. Phys. Lett. 101, 043101 (2012)Google Scholar
  32. K. Harada, H. Kasai: Accumulated reconstruction method for electron holography, Microsc. Microanal. 20, 248–249 (2014)Google Scholar
  33. D.C. Ghiglia, M.D. Pritt: Two-Dimensional Phase Unwrapping. Theory, Algorithms and Software (Wiley, New York 1998)Google Scholar
  34. D.J. Smith, M.R. McCartney: Practical electron holography. In: Introduction to Electron Holography, ed. by E. Völkl, L.F. Allard, D.C. Joy (Kluwer/Plenum, New York 1998) pp. 87–106Google Scholar
  35. M. Lehmann: Influence of the elliptical illumination on acquisition and correction of coherent aberrations in high-resolution electron holography, Ultramicroscopy 100, 9–23 (2004)Google Scholar
  36. E. Völkl, L.F. Allard, A. Datye, B. Frost: Advanced electron holography: A new algorithm for image processing and a standardized quality test for the FEG electron microscope, Ultramicroscopy 58, 97–103 (1995)Google Scholar
  37. S.L.Y. Chang, C. Dwyer, C.B. Boothroyd, R.E. Dunin-Borkowski: Optimising electron holography in the presence of partial coherence and instrument instabilities, Ultramicroscopy 151, 37–45 (2015)Google Scholar
  38. A. Harscher, H. Lichte: Experimental study of amplitude and phase detection limits in electron holography, Ultramicroscopy 64, 57–66 (1996)Google Scholar
  39. H. Lichte: Performance limits of electron holography, Ultramicroscopy 108, 256–262 (2008)Google Scholar
  40. E. Völkl: Noise in off-axis type holograms including reconstruction and CCD camera parameters, Ultramicroscopy 110, 199–210 (2010)Google Scholar
  41. E. Völkl, D. Tang: Approaching routine 2\(\uppi\)/1000 phase resolution for off-axis type holography, Ultramicroscopy 110, 447–459 (2010)Google Scholar
  42. F. Röder, A. Lubk, D. Wolf, T. Niermann: Noise estimation for off-axis electron holography, Ultramicroscopy 144, 32–42 (2014)Google Scholar
  43. H. Lichte: Electron holography: State and experimental steps towards 0.1 nm with the CM30-Special Tübingen. In: Electron Holography, ed. by A. Tonomura, L.F. Allard, G. Pozzi, D.C. Joy, Y.A. Ono (Elsevier, Amsterdam 1995) pp. 11–31Google Scholar
  44. T. Niermann, M. Lehmann: Averaging scheme for atomic resolution off-axis electron holograms, Micron 63, 28–34 (2014)Google Scholar
  45. R.A. McLeod, M. Bergen, M. Malac: Phase measurement error in summation of electron holography series, Ultramicroscopy 141, 38–50 (2014)Google Scholar
  46. K. Yamamoto, T. Tanji, M. Hibino: Hologram simulation for off-axis electron holography, Ultramicroscopy 85, 35–49 (2000)Google Scholar
  47. M.A. Schofield, M. Beleggia, Y. Zhu, G. Pozzi: Characterization of JEOL 2100F Lorentz-TEM for low-magnification electron holography and magnetic imaging, Ultramicroscopy 108, 625–634 (2008)Google Scholar
  48. T. Fujita, M.R. McCartney: Phase recovery for electron holography using Gerchberg–Papoulis iterative algorithm, Ultramicroscopy 102, 279–286 (2005)Google Scholar
  49. K. Harada, A. Tonomura, Y. Togawa, T. Akashi, T. Matsuda: Double-biprism electron interferometry, Appl. Phys. Lett. 84, 3229–3231 (2004)Google Scholar
  50. K. Yamamoto, T. Hirayama, T. Tanji: Off-axis electron holography without Fresnel fringes, Ultramicroscopy 101, 265–269 (2004)Google Scholar
  51. K. Harada, T. Matsuda, A. Tonomura, T. Akashi, Y. Togawa: Triple-biprism electron interferometry, J. Appl. Phys. 99, 113502 (2006)Google Scholar
  52. T. Tanigaki, S. Aizawa, H.S. Park, T. Matsuda, K. Harada, D. Shindo: Advanced split-illumination electron holography without Fresnel fringes, Ultramicroscopy 137, 7–11 (2014)Google Scholar
  53. G. Matteucci, M. Muccini, U. Hartmann: Flux measurements on ferromagnetic microprobes by electron holography, Phys. Rev. B 50, 6823–6828 (1994)Google Scholar
  54. Y. Aizawa, K. Yamamoto, T. Sato, H. Murata, R. Yoshida, C.A. Fisher, T. Kato, Y. Iriyama, T. Hirayama: In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage, Ultramicroscopy 178, 20–26 (2017)Google Scholar
  55. J.C.H. Spence: On the accurate measurement of structure-factor amplitudes and phases by electron diffraction, Acta Crystallogr. A 49, 231–260 (1993)Google Scholar
  56. P.A. Doyle, P.S. Turner: Relativistic Hartree–Fock x-ray and electron scattering factors, Acta Crystallogr. A 24, 390–397 (1968)Google Scholar
  57. D. Rez, P. Rez, I. Grant: Dirac–Fock calculations of x-ray scattering factors and contributions to the mean inner potential for electron scattering, Acta Crystallogr. A 50, 481–497 (1994)Google Scholar
  58. G. Radi: Complex lattice potentials in electron diffraction calculated for a number of crystals, Acta Crystallogr. A 26, 41–56 (1970)Google Scholar
  59. M. Gajdardziska-Josifovska, A. Carim: Applications of electron holography. In: Introduction to Electron Holography, ed. by E. Völkl, L.F. Allard, D.C. Joy (Kluwer/Plenum, New York 1998) pp. 267–294Google Scholar
  60. M. Gajdardziska-Josifovska, M.R. McCartney, W.J. de Ruijter, D.J. Smith, J.K. Weiss, J.M. Zuo: Accurate measurements of mean inner potential of crystal wedges using digital electron holograms, Ultramicroscopy 50, 285–299 (1993)Google Scholar
  61. W.J. de Ruijter, M. Gajdardziska-Josifovska, M.R. McCartney, R. Sharma, D.J. Smith, J.K. Weiss: Quantification of high-resolution lattice images and electron holograms, Scanning Microsc. Suppl. 6, 347–357 (1992)Google Scholar
  62. J. Li, M.R. McCartney, R.E. Dunin-Borkowski, D.J. Smith: Determination of mean inner potential of germanium using electron holography, Acta Crystallogr. A 55, 652–658 (1999)Google Scholar
  63. W.D. Rau, F.H. Baumann, J.A. Rentschler, P.K. Roy, A. Ourmazd: Characterization of stacked gate oxides by electron holography, Appl. Phys. Lett. 68, 3410–3412 (1996)Google Scholar
  64. Y.C. Wang, T.M. Chou, M. Libera, T.F. Kelly: Transmission electron holography of silicon nanospheres with surface oxide layers, Appl. Phys. Lett. 70, 1296–1298 (1997)Google Scholar
  65. Y. Ding, Y. Liu, K.C. Pradel, Y. Bando, N. Fukata, Z.L. Wang: Quantifying mean inner potential of ZnO nanowires by off-axis electron holography, Micron 78, 67–72 (2015)Google Scholar
  66. A. Harscher, H. Lichte: Inelastic mean free path and mean inner potential of carbon foil and vitrified ice measured with electron holography. In: Electron Microsc. '98, Cancun, ed. by H.A. Calderón Benavides, M.J. Yacamán (Institute of Physics, Bristol 1998) pp. 553–554Google Scholar
  67. I. MacLaren, L. Wang, D. McGrouther, A.J. Craven, S. McVitie, R. Schierholz, A. Kovács, J. Barthel, R.E. Dunin-Borkowski: On the origin of differential phase contrast at a locally charged and globally charge-compensated domain boundary in a polar-ordered material, Ultramicroscopy 154, 57–63 (2015)Google Scholar
  68. R.E. Dunin-Borkowski, C.B. Boothroyd, M. Beleggia: Dynamical effects in the study of supported nanocrystals using electron holography, Microsc. Microanal. 16(S2), 572–573 (2010)Google Scholar
  69. A. Lubk, D. Wolf, H. Lichte: The effect of dynamical scattering in off-axis holographic mean inner potential and inelastic mean free path measurements, Ultramicroscopy 110, 438–446 (2010)Google Scholar
  70. S.M. Kathmann, I.F.W. Kuo, C.J. Mundy, G.K. Schenter: Understanding the surface potential of water, J. Phys. Chem. B 115, 4369–4377 (2011)Google Scholar
  71. B. Sellner, S.M. Kathmann: A matter of quantum voltages, J. Chem. Phys. 141, 18C534 (2014)Google Scholar
  72. M. Shirai, T. Tanigaki, S. Aizawa, H.S. Park, T. Matsuda, D. Shindo: In situ electron holographic study of ionic liquid, Ultramicroscopy 146, 125–129 (2014)Google Scholar
  73. T. Prozorov, T.P. Almeida, A. Kovács, R.E. Dunin-Borkowski: Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid, J. Royal Soc. Interface 14, 20170464 (2017)Google Scholar
  74. L. Ortolani, F. Houdellier, M. Monthioux, E. Snoeck, V. Morandi: Surface electrostatic potentials in carbon nanotubes and graphene membranes investigated with electron holography, Carbon 49, 1423–1429 (2011)Google Scholar
  75. D. Cooper, C.T. Pan, S. Haigh: Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography, J. Appl. Phys. 115, 233709 (2014)Google Scholar
  76. M. O’Keeffe, J.C.H. Spence: On the average Coulomb potential (Σ0) and constraints on the electron density in crystals, Acta Crystallogr. A 50, 33–45 (1994)Google Scholar
  77. S.J. Lloyd, R.E. Dunin-Borkowski, C.B. Boothroyd: The determination of the ionicity of sapphire using energy filtered high resolution electron microscopy, Inst. Phys. Conf. Ser. 153, 113–116 (1997)Google Scholar
  78. M.R. McCartney, M.A. Gribelyuk, J. Li, P. Ronsheim, J.S. McMurray, D.J. Smith: Quantitative analysis of one-dimensional dopant profile by electron holography, Appl. Phys. Lett. 80, 3213–3215 (2002)Google Scholar
  79. K.H. Downing, M.R. McCartney, R.M. Glaeser: Experimental characterization and mitigation of specimen charging on thin films with one conducting layer, Microsc. Microanal. 10, 783–789 (2004)Google Scholar
  80. M.R. McCartney: Characterization of charging in semiconductor device materials by electron holography, J. Electron Microsc. 54, 239–242 (2005)Google Scholar
  81. R.E. Dunin-Borkowski, S.B. Newcomb, T. Kasama, M.R. McCartney, M. Weyland, P.A. Midgley: Conventional and back-side focused ion beam milling for electron holography of electrostatic potentials in transistors, Ultramicroscopy 103, 67–81 (2005)Google Scholar
  82. T. Latychevskaia, F. Wicki, J.N. Longchamp, C. Escher, H.W. Fink: Direct observation of individual charges and their dynamics on graphene by low-energy electron holography, Nano Lett. 16, 5469–5474 (2016)Google Scholar
  83. M.R. McCartney, M. Gajdardziska-Josifovska: Absolute measurement of normalized thickness, t/λi, from off-axis electron holography, Ultramicroscopy 53, 283–289 (1994)Google Scholar
  84. A. Lubk, D. Wolf, F. Kern, F. Röder, P. Prete, N. Lovergine, H. Lichte: Nanoscale three-dimensional reconstruction of elastic and inelastic mean free path lengths by electron holographic tomography, Appl. Phys. Lett. 105, 173101 (2014)Google Scholar
  85. J.K. Weiss, W.J. de Ruijter, M. Gajdardziska-Josifovska, D.J. Smith, E. Völkl, H. Lichte: Applications of electron holography to multilayer interfaces. In: Proc. 49th Annu. EMSA Meet., ed. by G.W. Bailey (San Francisco, San Francisco 1991) pp. 674–675Google Scholar
  86. J.K. Weiss, W.J. de Ruijter, M. Gajdardziska-Josifovska, M.R. McCartney, D.J. Smith: Applications of electron holography to the study of interfaces, Ultramicroscopy 50, 301–311 (1993)Google Scholar
  87. L.F. Allard, E. Völkl, A. Carim, A.K. Datye, R. Ruoff: Morphology and crystallography of nano-particulates revealed by electron holography, Nanostruct. Mater. 7, 137–146 (1996)Google Scholar
  88. X. Lin, V.P. Dravid: Mapping the potential of graphite nanotubes with electron holography, Appl. Phys. Lett. 69, 1014–1016 (1996)Google Scholar
  89. K. Aoyama, Q. Ru: Electron holographic observation for biological specimens: Electron holography of bio-specimens, J. Microsc. 182, 177–185 (1996)Google Scholar
  90. A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakabe: Sensitivity-enhanced electron-holographic interferometry and thickness-measurement applications at atomic scale, Phys. Rev. Lett. 54, 60–62 (1985)Google Scholar
  91. D. Wolf, A. Lubk, F. Röder, H. Lichte: Electron holographic tomography, Curr. Opin. Solid State Mater. Sci. 17, 126–134 (2013)Google Scholar
  92. G. Lai, K. Hirayama, T. Ishizuka, T. Tanji, A. Tonomura: Three-dimensional reconstruction of electric-potential distribution in electron-holographic interferometry, Appl. Opt. 33, 829–833 (1994)Google Scholar
  93. T. Fujita, M. Chen: Quantitative electron holographic tomography for a spherical object, J. Electron Microsc. 58, 301–304 (2009)Google Scholar
  94. T. Tanigaki, S. Aizawa, T. Suzuki, A. Tonomura: Three-dimensional reconstructions of electrostatic potential distributions with 1.5-nm resolution using off-axis electron holography, J. Electron Microsc. 61, 77–84 (2012)Google Scholar
  95. T. Uhlig, M. Heumann, J. Zweck: Development of a specimen holder for in situ generation of pure in-plane magnetic fields in a transmission electron microscope, Ultramicroscopy 94, 193–196 (2003)Google Scholar
  96. G. Yi, W.A.P. Nicholson, C.K. Lim, J.N. Chapman, S. McVitie, C.D.W. Wilkinson: A new design of specimen stage for in situ magnetising experiments in the transmission electron microscope, Ultramicroscopy 99, 65–72 (2004)Google Scholar
  97. M. Inoue, T. Tomita, M. Naruse, Z. Akase, Y. Murakami, D. Shindo: Development of a magnetizing stage for in situ observations with electron holography and Lorentz microscopy, J. Electron Microsc. 54, 509–513 (2005)Google Scholar
  98. J. Cumings, E. Olsson, A.K. Petford-Long, Y. Zhu: Electric and magnetic phenomena studied by in situ transmission electron microscopy, MRS Bulletin 33, 101–106 (2008)Google Scholar
  99. M. Arita, R. Tokuda, K. Hamada, Y. Takahashi: Development of TEM holder generating in-plane magnetic field used for in-situ TEM observation, Mater. Trans. 55, 403–409 (2014)Google Scholar
  100. L. Marton: Electron optical “Schlieren” effect, J. Appl. Phys. 19, 687–688 (1948)Google Scholar
  101. L. Marton: Electron optical observation of magnetic fields, J. Appl. Phys. 19, 863–864 (1948)Google Scholar
  102. L. Marton, S.H. Lachenbruch: Electron optical mapping of electromagnetic fields, J. Appl. Phys. 20, 1171–1182 (1949)Google Scholar
  103. T. Matsuda, A. Tonomura, R. Suzuki, J. Endo, N. Osakabe, H. Umezaki, H. Tanabe, Y. Sugita, H. Fujiwara: Observation of microscopic distribution of magnetic fields by electron holography, J. Appl. Phys. 53, 5444–5446 (1982)Google Scholar
  104. N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tonomura: Observation of recorded magnetization pattern by electron holography, Appl. Phys. Lett. 42, 746–748 (1983)Google Scholar
  105. T. Matsuda, S. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama, J. Endo, N. Osakabe, A. Tonomura, R. Aoki: Magnetic field observation of a single flux quantum by electron-holographic interferometry, Phys. Rev. Lett. 62, 2519–2522 (1989)Google Scholar
  106. T. Matsuda, A. Fukuhara, T. Yoshida, S. Hasegawa, A. Tonomura, Q. Ru: Computer reconstruction from electron holograms and observation of fluxon dynamics, Phys. Rev. Lett. 66, 457–460 (1991)Google Scholar
  107. J.E. Bonevich, K. Harada, T. Matsuda, H. Kasai, T. Yoshida, G. Pozzi, A. Tonomura: Electron holography observation of vortex lattices in a superconductor, Phys. Rev. Lett. 70, 2952–2955 (1993)Google Scholar
  108. W. Ehrenberg, R.E. Siday: The refractive index in electron optics and the principles of dynamics, Proc. Phys. Soc. B 62, 8–21 (1949)Google Scholar
  109. Y. Aharonov, D. Bohm: Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115, 485–491 (1959)Google Scholar
  110. A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sugita, H. Fujiwara: Observation of Aharonov–Bohm effect by electron holography, Phys. Rev. Lett. 48, 1443–1446 (1982)Google Scholar
  111. A. Tonomura, H. Umezaki, T. Matsuda, N. Osakabe, J. Endo, Y. Sugita: Is magnetic flux quantized in a toroidal ferromagnet?, Phys. Rev. Lett. 51, 331–334 (1983)Google Scholar
  112. J.N. Chapman: The investigation of magnetic domain structures in thin foils by electron microscopy, J. Phys. D 17, 623–647 (1984)Google Scholar
  113. N.H. Dekkers, H. de Lang: Differential phase contrast in a STEM, Optik 41, 452–456 (1974)Google Scholar
  114. J.N. Chapman, P.E. Batson, E.M. Waddell, R.P. Ferrier: The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy, Ultramicroscopy 3, 203–214 (1978)Google Scholar
  115. K.J. Kirk, S. McVitie, J.N. Chapman, C.D.W. Wilkinson: Imaging magnetic domain structure in sub-500 nm thin film elements, J. Appl. Phys. 89, 7174–7176 (2001)Google Scholar
  116. M.R. McCartney, Y. Zhu: Induction mapping of Nd2Fe14B magnetic domains by electron holography, Appl. Phys. Lett. 72, 1380–1382 (1998)Google Scholar
  117. A. Kovács, K.G. Pradeep, G. Herzer, D. Raabe, R.E. Dunin-Borkowski: Magnetic microstructure in a stress-annealed Fe73.5Si15.5B7Nb3Cu1 soft magnetic alloy observed using off-axis electron holography and Lorentz microscopy, AIP Advances 6, 056501 (2016)Google Scholar
  118. M. De Graef, T. Nuhfer, M.R. McCartney: Phase contrast of spherical magnetic particles, J. Microsc. 194, 84–94 (1999)Google Scholar
  119. D.J. Wohlleben: Magnetic phase contrast. In: Electron Microscopy in Materials Science, Vol. 2, ed. by U. Valdré (Academic Press, New York 1971) pp. 712–757Google Scholar
  120. A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Holographic interference electron microscopy for determining specimen magnetic structure and thickness distribution, Phys. Rev. B 34, 3397–3402 (1986)Google Scholar
  121. R.E. Dunin-Borkowski, M.R. McCartney, D.J. Smith, S.S.P. Parkin: Towards quantitative electron holography of magnetic thin films using in situ magnetisation reversal, Ultramicroscopy 74, 61–73 (1998)Google Scholar
  122. R.P. Blakemore: Magnetotactic bacteria, Science 190, 377–379 (1975)Google Scholar
  123. D.A. Bazylinski, B.M. Moskowitz: Microbial biomineralization of magnetic iron minerals: Microbiology, magnetism and environmental significance, Rev. Mineral. Geochem. 35, 181–223 (1997)Google Scholar
  124. D.J. Dunlop, Ö. Özdemir: Rock Magnetism (Cambridge Univ. Press, Cambridge 1997)Google Scholar
  125. R.E. Dunin-Borkowski, M.R. McCartney, R.B. Frankel, D.A. Bazylinski, M. Pósfai, P.R. Buseck: Magnetic microstructure of magnetotactic bacteria by electron holography, Science 282, 1868–1870 (1998)Google Scholar
  126. R.E. Dunin-Borkowski, M.R. McCartney, M. Pósfai, R.B. Frankel, D.A. Bazylinski, P.R. Buseck: Off-axis electron holography of magnetotactic bacteria: Magnetic microstructure of strains MV-1 and MS-1, Eur. J. Mineral. 13, 671–684 (2001)Google Scholar
  127. E.T. Simpson, T. Kasama, M. Pósfai, P.R. Buseck, R.J. Harrison, R.E. Dunin-Borkowski: Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography, J. Phys. Conf. Ser. 17, 108–121 (2005)Google Scholar
  128. T. Kasama, M. Pósfai, R.K.K. Chong, A.P. Finlayson, P.R. Buseck, R.B. Frankel, R.E. Dunin-Borkowski: Magnetic properties, microstructure, composition and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography, Am. Mineral. 91, 1216–1229 (2006)Google Scholar
  129. T.P. Almeida, T. Kasama, A.R. Muxworthy, W. Williams, L. Nagy, T.W. Hansen, P.D. Brown, R.E. Dunin-Borkowski: Visualised effect of oxidation on chemical remanent magnetisation of pseudo-single-domain magnetite particles, Nat. Commun. 5, 5154 (2014)Google Scholar
  130. T.P. Almeida, T. Kasama, A.R. Muxworthy, W. Williams, L. Nagy, R.E. Dunin-Borkowski: Observing thermomagnetic stability of non-ideal magnetite particles: Good paleomagnetic recorders?, Geophys. Res. Lett. 41, 7041–7047 (2014)Google Scholar
  131. T.P. Almeida, A.R. Muxworthy, T. Kasama, W. Williams, C.D. Damsgaard, C. Frandsen, T.J. Pennycook, R.E. Dunin-Borkowski: Effect of maghemization on the magnetic properties of non-stoichiometric pseudo-single-domain magnetite particles, Geochem. Geophys. Geosyst. 16, 2969–2979 (2015)Google Scholar
  132. T.P. Almeida, A.R. Muxworthy, A. Kovács, W. Williams, L. Nagy, P.Ó. Conbhuí, C. Frandsen, R. Supakulopas, R.E. Dunin-Borkowski: Direct observation of the thermal demagnetization of a vortex structure held by a non-ideal magnetite recorder, Geophys. Res. Lett. 43, 8426–8434 (2016)Google Scholar
  133. T.P. Almeida, A.R. Muxworthy, A. Kovács, W. Williams, P.D. Brown, R.E. Dunin-Borkowski: Direct visualization of the thermomagnetic behavior of pseudo-single-domain magnetite particles, Sci. Adv. 2, e1501801 (2016)Google Scholar
  134. V. Reichel, A. Kovács, M. Kumari, É. Bereczk-Tompa, E. Schneck, P. Diehle, M. Pósfai, A.M. Hirt, M. Duchamp, R.E. Dunin-Borkowski, D. Faivre: Single crystalline superstructured stable single domain magnetite nanoparticles, Sci. Rep. 7, 45484 (2017)Google Scholar
  135. S.L. Tripp, S.V. Pusztay, A.E. Ribbe, A. Wei: Self-assembly of cobalt nanoparticle rings, J. Am. Chem. Soc. 124, 7914–7915 (2002)Google Scholar
  136. S.L. Tripp, R.E. Dunin-Borkowski, A. Wei: Flux closure in self-assembled cobalt nanoparticle rings, Angew. Chem. 42, 5591–5593 (2003)Google Scholar
  137. T. Kasama, R.E. Dunin-Borkowski, M.R. Scheinfein, S.L. Tripp, J. Liu, A. Wei: Reversal of flux closure states in cobalt nanoparticle rings with coaxial magnetic pulses, Adv. Mater. 20, 4248–4252 (2008)Google Scholar
  138. A. Wei, S.L. Tripp, J. Liu, T. Kasama, R.E. Dunin-Borkowski: Calixarene-stabilized cobalt nanoparticle rings: Self-assembly and collective magnetic properties, Supramol. Chem. 21, 189–195 (2009)Google Scholar
  139. A. Wei, T. Kasama, R.E. Dunin-Borkowski: Self-assembly and flux closure studies of magnetic nanoparticle rings, J. Mater. Chem. 21, 16686–16693 (2011)Google Scholar
  140. I.S. Jacobs, C.P. Bean: An approach to elongated fine-particle magnets, Phys. Rev. 100, 1060–1067 (1955)Google Scholar
  141. M.J. Hÿtch, R.E. Dunin-Borkowski, M.R. Scheinfein, J. Moulin, C. Duhamel, F. Mazelayrat, Y. Champion: Vortex flux channeling in magnetic nanoparticle chains, Phys. Rev. Lett. 91, 257207 (2003)Google Scholar
  142. P. Barpanda, T. Kasama, R.E. Dunin-Borkowski, M.R. Scheinfein, A.S. Arrott: Evolution and propagation of magnetic vortices in chains of permalloy nanospheres, J. Appl. Phys. 99, 08G103 (2006)Google Scholar
  143. P. Barpanda, M.R. Scheinfein, T. Kasama, R.E. Dunin-Borkowski: The role of magnetic vortex formation in chains of spherical FeNi nanoparticles: A micromagnetics study, Jpn. J. Appl. Phys. 48, 103002 (2009)Google Scholar
  144. R.K.K. Chong, R.E. Dunin-Borkowski, T. Kasama, M.J. Hÿtch, M.R. McCartney: Off-axis electron holography and image spectroscopy of ferromagnetic FeNi nanoparticles, Inst. Phys. Conf. Ser. 179, 451–454 (2003)Google Scholar
  145. M.K. Kim, P. Dhak, H.Y. Lee, J.H. Lee, M.W. Yoo, J. Lee, K. Jin, A. Chu, K.T. Nam, H.S. Park, S. Aizawa: Self-assembled magnetic nanospheres with three-dimensional magnetic vortex, Appl. Phys. Lett. 105, 232402 (2014)Google Scholar
  146. G.D. Price: Subsolidus phase relations in the titanomagnetite solid solution series, Am. Mineral. 66, 751–758 (1981)Google Scholar
  147. R.J. Harrison, R.E. Dunin-Borkowski, A. Putnis: Direct imaging of nanoscale magnetic interactions in minerals, Proc. Natl. Acad. Sci. U.S.A. 99, 16556–16561 (2002)Google Scholar
  148. J.M. Feinberg, R.J. Harrison, T. Kasama, R.E. Dunin-Borkowski, G.R. Scott, P.R. Renne: Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: An electron holography study, J. Geophys. Res. 111, B12S15 (2006)Google Scholar
  149. T. Kasama, N.S. Church, J.M. Feinberg, R.E. Dunin-Borkowski, R.J. Harrison: Direct observation of ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition, Earth Planet. Sci. Lett. 297, 10–17 (2010)Google Scholar
  150. T. Kasama, R.J. Harrison, N.S. Church, M. Nagao, J.M. Feinberg, R.E. Dunin-Borkowski: Ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Part I: Electron holography and Lorentz microscopy, Phase Transit. 86, 67–87 (2013)Google Scholar
  151. J.F.J. Bryson, T. Kasama, R.E. Dunin-Borkowski, R.J. Harrison: Ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Part II: Micromagnetic and image simulations, Phase Transit. 86, 88–102 (2013)Google Scholar
  152. M. Varón, M. Beleggia, T. Kasama, R.J. Harrison, R.E. Dunin-Borkowski, V.F. Puntes, C. Frandsen: Direct observation of dipolar magnetism in low-dimensional nanoparticle assemblies, Sci. Rep. 3, 1234 (2013)Google Scholar
  153. C.A. Ross: Patterned magnetic recording media, Annu. Rev. Mater. Res. 31, 203–235 (2001)Google Scholar
  154. R.E. Dunin-Borkowski, S.B. Newcomb, M.R. McCartney, C.A. Ross, M. Farhoud: Off-axis electron holography of magnetic microstructure in nanomagnet arrays fabricated by interferometric lithography, Inst. Phys. Conf. Ser. 168, 485–488 (2001)Google Scholar
  155. T.J. Bromwich, A. Kohn, A.K. Petford-Long, T. Kasama, R.E. Dunin-Borkowski, S.B. Newcomb, C.A. Ross: Remanent magnetization states and interactions of arrays of 100 nm cobalt dots measured using TEM, J. Appl. Phys. 98, 053909 (2005)Google Scholar
  156. T.J. Bromwich, T. Kasama, R.K.K. Chong, R.E. Dunin-Borkowski, A.K. Petford-Long, O.G. Heinonen, C.A. Ross: Remanent magnetic states and interactions in nano-pillars, Nanotechnology 17, 4367–4373 (2006)Google Scholar
  157. H. Hu, H. Wang, M.R. McCartney, D.J. Smith: Study of in situ magnetization reversal processes for nanoscale Co rings using off-axis electron holography, J. Appl. Phys. 97, 054305 (2005)Google Scholar
  158. M. Heumann, T. Uhlig, J. Zweck: True single domain and configuration-assisted switching of submicron permalloy dots observed by electron holography, Phys. Rev. Lett. 94, 077202 (2005)Google Scholar
  159. D.J. Smith, R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, M.R. Scheinfein: Interlayer coupling within individual patterned magnetic elements, J. Appl. Phys. 87, 7400–7404 (2000)Google Scholar
  160. F. Junginger, M. Kläui, D. Backes, U. Rüdiger, T. Kasama, R.E. Dunin-Borkowski, L.J. Heyderman, C.A.F. Vaz, J.A.C. Bland: Spin torque and heating effects in current-induced domain wall motion probed by high-resolution transmission electron microscopy, Appl. Phys. Lett. 90, 132506 (2007)Google Scholar
  161. M. Eltschka, M. Wötzel, J. Rhensius, S. Krzyk, U. Nowak, M. Kläui, T. Kasama, R.E. Dunin-Borkowski, L.J. Heyderman, H.J. van Driel, R.A. Duine: Nonadiabatic spin torque investigated using thermally activated magnetic domain wall dynamics, Phys. Rev. Lett. 105, 056601 (2010)Google Scholar
  162. A.N. Bogdanov, D.A. Yablonskii: Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets, Sov. Phys. JETP 68, 101–103 (1989)Google Scholar
  163. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni: Skyrmion lattice in a chiral magnet, Science 323, 915–919 (2009)Google Scholar
  164. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura: Real-space observation of a two-dimensional skyrmion crystal, Nature 465, 901–904 (2010)Google Scholar
  165. X.Z. Yu, N. Kanazawa, W.Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, Y. Tokura: Skyrmion flow near room temperature in an ultralow current density, Nat. Commun. 3, 988 (2012)Google Scholar
  166. A. Kovács, Z.-A. Li, K. Shibata, R.E. Dunin-Borkowski: Lorentz imaging and off-axis electron holography of magnetic skyrmions in FeGe, Resolut. Discov. 1, 2–8 (2016)Google Scholar
  167. Z.-A. Li, F. Zheng, A.H. Tavabi, J. Caron, C. Jin, H. Du, A. Kovács, M. Tian, M. Farle, R.E. Dunin-Borkowski: Magnetic skyrmion formation at lattice defects and grain boundaries studied by quantitative off-axis electron holography, Nano Lett. 17, 1395–1401 (2017)Google Scholar
  168. A. Kovács, J. Caron, A. Savchenko, N.S. Kiselev, K. Shibata, Z.-A. Li, N. Kanazawa, Y. Tokura, S. Blügel, R.E. Dunin-Borkowski: Mapping the magnetization fine structure of a lattice of Bloch-type skyrmions in an FeGe thin film, Appl. Phys. Lett. 111, 192410 (2017)Google Scholar
  169. K. Shibata, A. Kovács, N. Kanazawa, R.E. Dunin-Borkowski, Y. Tokura: Temperature and magnetic field dependence of the internal and lattice structures of skyrmions by off-axis electron holography, Phys. Rev. Lett. 118, 087202 (2017)Google Scholar
  170. C. Jin, Z.-A. Li, A. Kovács, J. Caron, F. Zheng, F.N. Rybakov, N.S. Kiselev, H. Du, S. Blügel, M. Tian, Y. Zhang, M. Farle, R.E. Dunin-Borkowski: Control of morphology and formation of highly geometrically confined magnetic skyrmions, Nat. Commun. 8, 15569 (2017)Google Scholar
  171. F. Zheng, H. Li, S. Wang, D. Song, C. Jin, W. Wei, A. Kovács, J. Zang, M. Tian, Y. Zhang, H. Du, R.E. Dunin-Borkowski: Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk, Phys. Rev. Lett. 119, 197205 (2017)Google Scholar
  172. E. Snoeck, R.E. Dunin-Borkowski, F. Dumestre, P. Renaud, C. Amiens, B. Chaudret, P. Zurcher: Quantitative magnetization measurements on nanometer ferromagnetic cobalt wires using electron holography, Appl. Phys. Lett. 82, 88–90 (2003)Google Scholar
  173. A. Akhtari-Zavareh, L.P. Carignan, A. Yelon, D. Ménard, T. Kasama, R. Herring, R.E. Dunin-Borkowski, M.R. McCartney, K.L. Kavanagh: Off-axis electron holography of ferromagnetic multilayer nanowires, J. Appl. Phys. 116, 023902 (2014)Google Scholar
  174. M.R. McCartney, R.E. Dunin-Borkowski: Electron holography of nano-scale magnetic particles and cross-sectional tunnel junctions. In: Electron Microsc. '98, Cancun, Vol. 2, ed. by H.A. Calderón Benavides, M.J. Yacamán (Institute of Physics, Bristol 1998) pp. 497–498Google Scholar
  175. J.C. Loudon, N.D. Mathur, P.A. Midgley: Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3, Nature 420, 797–800 (2002)Google Scholar
  176. Y. Murakami, J.H. Yoo, D. Shindo, T. Atou, M. Kikuchi: Magnetization distribution in the mixed-phase state of hole-doped manganites, Nature 423, 965–968 (2003)Google Scholar
  177. T. Kasama, M.S. Moreno, R.E. Dunin-Borkowski, S.B. Newcomb, N. Haberkorn, J. Guimpel, P.A. Midgley: Characterization of the magnetic properties of a GdBa2Cu3O7/La0.75Sr0.25MnO3 superlattice using off-axis electron holography, Appl. Surf. Sci. 252, 3977–3983 (2006)Google Scholar
  178. A. Masseboeuf, A. Marty, P. Bayle-Guillemaud, C. Gatel, E. Snoeck: Quantitative observation of magnetic flux distribution in new magnetic films for future high density recording media, Nano Lett. 9, 2803–2806 (2009)Google Scholar
  179. D. Zhang, J.M. Shaw, D.J. Smith, M.R. McCartney: Domain structure and perpendicular magnetic anisotropy in CoFe/Pd multilayers using off-axis electron holography, J. Magn. Magn. Mater. 388, 16–21 (2015)Google Scholar
  180. M. Beleggia, T. Kasama, R.E. Dunin-Borkowski: The quantitative measurement of magnetic moments from phase images of nanoparticles and nanostructures, Ultramicroscopy 110, 425–432 (2010)Google Scholar
  181. J. Caron: Model-Based Reconstruction of Magnetisation Distributions in Nanostructures from Electron Optical Phase Images, Ph.D. Thesis (RWTH Aachen, Aachen 2017)Google Scholar
  182. R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, D.J. Smith, M.R. Scheinfein: Switching asymmetries in closely coupled magnetic nanostructure arrays, Appl. Phys. Lett. 75, 2641–2643 (1999)Google Scholar
  183. J.F. Bryson, N.S. Church, T. Kasama, R.J. Harrison: Nanomagnetic intergrowths in Fe-Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields, Earth Planet. Sci. Lett. 388, 237–248 (2014)Google Scholar
  184. E. Snoeck, C. Gatel, L.M. Lacroix, T. Blon, S. Lachaize, J. Carrey, M. Respaud, B. Chaudret: Magnetic configurations of 30 nm iron nanocubes studied by electron holography, Nano Lett. 8, 4293–4298 (2008)Google Scholar
  185. N. Biziere, C. Gatel, R. Lassalle-Balier, M.C. Clochard, J.E. Wegrowe, E. Snoeck: Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder, Nano Lett. 13, 2053–2057 (2013)Google Scholar
  186. J.F. Einsle, C. Gatel, A. Masseboeuf, R. Cours, M.A. Bashir, M. Gubbins, R.M. Bowman, E. Snoeck: In situ electron holography of the dynamic magnetic field emanating from a hard-disk drive writer, Nano Res. 8, 1241–1249 (2015)Google Scholar
  187. S.K. Walton, K. Zeissler, W.R. Branford, S. Felton: MALTS: A tool to simulate Lorentz transmission electron microscopy from micromagnetic simulations, IEEE Trans. Magn. 49, 4795–4800 (2013)Google Scholar
  188. H. Lichte, K.H. Herrmann, F. Lenz: Electron noise in off-axis image plane holography, Optik 77, 135–140 (1987)Google Scholar
  189. T. Tanigaki, T. Akashi, A. Sugawara, K. Miura, J. Hayakawa, K. Niitsu, T. Sato, X. Yu, Y. Tomioka, K. Harada, D. Shindo: Magnetic field observations in CoFeB/Ta layers with 0.67-nm resolution by electron holography, Sci. Rep. 7, 16598 (2017)Google Scholar
  190. G. Matteucci, G.F. Missiroli, M. Muccini, G. Pozzi: Electron holography in the study of the electrostatic fields: The case of charged microtips, Ultramicroscopy 45, 77–83 (1992)Google Scholar
  191. G. Matteucci, G.F. Missiroli, G. Pozzi: Electron interferometry and holography of electrostatic fields: Fundamental and applicative aspects, Physica B 151, 223–229 (1988)Google Scholar
  192. T. Kawasaki, G.F. Missiroli, G. Pozzi, A. Tonomura: Multiple-beam interference experiments with a holographic electron microscope, Optik 92, 168–174 (1993)Google Scholar
  193. T. Matsumoto, A. Tonomura: The phase constancy of electron waves traveling through Boersch's electrostatic phase plate, Ultramicroscopy 63, 5–10 (1996)Google Scholar
  194. J. Cumings, A. Zettl, M.R. McCartney, J.C.H. Spence: Electron holography of field-emitting carbon nanotubes, Phys. Rev. Lett. 88, 056804 (2002)Google Scholar
  195. J.J. Kim, D. Shindo, Y. Murakami, W. Xia, L.J. Chou, Y.L. Chueh: Direct observation of field emission in a single TaSi2 nanowire, Nano Lett. 7, 2243–2247 (2007)Google Scholar
  196. F. Houdellier, A. Masseboeuf, M. Monthioux, M.J. Hÿtch: New carbon cone nanotip for use in a highly coherent cold field emission electron microscope, Carbon 50, 2037–2044 (2012)Google Scholar
  197. L. de Knoop, F. Houdellier, C. Gatel, A. Masseboeuf, M. Monthioux, M.J. Hÿtch: Determining the work function of a carbon-cone cold-field emitter by in situ electron holography, Micron 63, 2–8 (2014)Google Scholar
  198. F. Houdellier, L. de Knoop, C. Gatel, A. Masseboeuf, S. Mamishin, Y. Taniguchi, M. Delmas, M. Monthioux, M.J. Hÿtch, E. Snoeck: Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip, Ultramicroscopy 151, 107–115 (2015)Google Scholar
  199. M. Beleggia, T. Kasama, R.E. Dunin-Borkowski, D.J. Larson, T.F. Kelly, G. Pozzi: Towards quantitative electron holographic mapping of the electric field around the tip of a sharp biased metallic needle, J. Appl. Phys. 116, 024305 (2014)Google Scholar
  200. V. Migunov, A. London, M. Farle, R.E. Dunin-Borkowski: Model-independent measurement of the charge density in an Fe atom probe needle using off-axis electron holography without mean inner potential effects, J. Appl. Phys. 117, 134301 (2015)Google Scholar
  201. M. Beleggia, T. Kasama, R.E. Dunin-Borkowski, S. Hofmann, G. Pozzi: Direct measurement of the charge distribution along a biased carbon nanotube bundle using electron holography, Appl. Phys. Lett. 98, 243101 (2011)Google Scholar
  202. C. Gatel, A. Lubk, G. Pozzi, E. Snoeck, M.J. Hÿtch: Counting elementary charges on nanoparticles by electron holography, Phys. Rev. Lett. 111, 025501 (2013)Google Scholar
  203. M. Beleggia, L.C. Gontard, R.E. Dunin-Borkowski: Local charge measurement using off-axis electron holography, J. Phys. D 49, 294003 (2016)Google Scholar
  204. J.M. Titchmarsh, A.J. Lapworth, G.R. Booker: A new method for investigating the electric field regions of p-n junctions, Phys. Status Solidi (b) 34, K83–K86 (1969)Google Scholar
  205. S. Frabboni, G. Matteucci, G. Pozzi: Observation of electrostatic fields by electron holography: The case of reverse-biased p-n junctions, Ultramicroscopy 23, 29–37 (1987)Google Scholar
  206. G. Pozzi, M. Vanzi: Interpretation of electron interference images of reverse-biased p-n junctions, Optik 60, 175–180 (1982)Google Scholar
  207. M. Beleggia, D. Cristofori, P.G. Merli, G. Pozzi: Electron microscopy of reverse biased p-n junctions, Micron 31, 231–236 (2000)Google Scholar
  208. A. Pantzer, A. Vakahy, Z. Eliyahou, G. Levi, D. Horvitz, A. Kohn: Dopant mapping in thin FIB prepared silicon samples by off-axis electron holography, Ultramicroscopy 138, 36–45 (2014)Google Scholar
  209. W.D. Rau, P. Schwander, F.H. Baumann, W. Höppner, A. Ourmazd: Two-dimensional mapping of the electrostatic potential in transistors by electron holography, Phys. Rev. Lett. 82, 2614–2617 (1999)Google Scholar
  210. M.A. Gribelyuk, M.R. McCartney, J. Li, C.S. Murthy, P. Ronsheim, B. Doris, J.S. McMurray, S. Hegde, D.J. Smith: Mapping of electrostatic potential in deep submicron CMOS devices by electron holography, Phys. Rev. Lett. 89, 025502 (2002)Google Scholar
  211. S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi: Electron holographic observations of the electrostatic field associated with thin reverse-biased p-n junctions, Phys. Rev. Lett. 55, 2196–2199 (1985)Google Scholar
  212. A.C. Twitchett, R.E. Dunin-Borkowski, P.A. Midgley: Quantitative electron holography of biased semiconductor devices, Phys. Rev. Lett. 88, 238302 (2002)Google Scholar
  213. A.C. Twitchett, R.E. Dunin-Borkowski, R.J. Hallifax, R.F. Broom, P.A. Midgley: Off-axis electron holography of electrostatic potentials in unbiased and reverse biased focused ion beam milled semiconductor devices, J. Microsc. 214, 287–296 (2004)Google Scholar
  214. A.C. Twitchett, R.E. Dunin-Borkowski, R.J. Hallifax, R.F. Broom, P.A. Midgley: Off-axis electron holography of unbiased and reverse-biased focused ion beam milled Si p-n junctions, Microsc. Microanal. 11, 66–78 (2005)Google Scholar
  215. R.E. Dunin-Borkowski, A.C. Twitchett, P.A. Midgley: The determination and interpretation of electrically active charge density profiles at reverse biased p-n junctions from electron holograms, Microsc. Microanal. 8(S2), 42–43 (2002)Google Scholar
  216. Z. Wang, T. Hirayama, T. Kato, K. Sasaki, H. Saka, N. Kato: Electron holographic characterization of electrostatic potential distributions in a transistor sample fabricated by focused ion beam, Appl. Phys. Lett. 80, 246–248 (2002)Google Scholar
  217. Z. Wang, K. Sasaki, N. Kato, K. Urata, T. Hirayama, H. Saka: Examination of electrostatic potential distribution across an implanted p-n junction by electron holography, J. Electron Microsc. 50, 479–484 (2002)Google Scholar
  218. Z. Wang, T. Kato, N. Shibata, T. Hirayama, N. Kato, K. Sasaki, H. Saka: Characterizing an implanted Si/Si p-n junction with lower doping level by combined electron holography and focused-ion-beam milling, Appl. Phys. Lett. 81, 478–480 (2002)Google Scholar
  219. Z. Wang, T. Kato, T. Hirayama, N. Kato, K. Sasaki, H. Saka: Wedge-shaped and flat cross-sections for quantitative characterization of the electrostatic potential distributions across p-n junctions by electron holography, Surf. Interface Anal. 37, 221–224 (2005)Google Scholar
  220. D. Cooper, A.C. Twitchett, P.K. Somodi, P.A. Midgley, R.E. Dunin-Borkowski, I. Farrer, D.A. Ritchie: Improvement in electron holographic phase images of focused-ion-beam-milled GaAs and Si p-n junctions by in situ annealing, Appl. Phys. Lett. 88, 063510 (2006)Google Scholar
  221. D. Cooper, R. Truche, A.C. Twitchett-Harrison, R.E. Dunin-Borkowski, P.A. Midgley: Quantitative off-axis electron holography of GaAs p-n junctions, J. Microsc. 233, 102–113 (2009)Google Scholar
  222. M. Beleggia, G.C. Cardinali, P.F. Fazzini, P.G. Merli, G. Pozzi: Influence of the specimen surfaces on TEM images of reverse-biased p-n junctions, Inst. Phys. Conf. Ser. 169, 427–430 (2001)Google Scholar
  223. R.E. Dunin-Borkowski, W.O. Saxton: The importance of the fringing field surrounding a TEM foil to the quantification of phase contrast at a p-n junction, MRS Proceedings 466, 73–78 (1996)Google Scholar
  224. P.K. Somodi, A.C. Twitchett-Harrison, P.A. Midgley, B.E. Kardynal, C.H.W. Barnes, R.E. Dunin-Borkowski: Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography, Ultramicroscopy 134, 160–166 (2013)Google Scholar
  225. M.Y. Kim, J.M. Zuo, J.C.H. Spence: Ab-initio LDA calculations of the mean Coulomb potential V0 in slabs of crystalline Si, Ge and MgO, Phys. Status Solidi (a) 166, 445–451 (1998)Google Scholar
  226. M. Schowalter, D. Lamoen, A. Rosenauer, P. Kruse, D. Gerthsen: First-principles calculations of the mean inner Coulomb potential for sphalerite type II–VI semiconductors, Appl. Phys. Lett. 85, 4938–4940 (2004)Google Scholar
  227. M. Schowalter, A. Rosenauer, D. Lamoen, P. Kruse, D. Gerthsen: Ab initio computation of the mean inner Coulomb potential of wurtzite-type semiconductors and gold, Appl. Phys. Lett. 88, 232108 (2006)Google Scholar
  228. R.S. Pennington, C.B. Boothroyd, R.E. Dunin-Borkowski: Surface effects on mean inner potentials studied using density functional theory, Ultramicroscopy 159, 34–45 (2015)Google Scholar
  229. K.H. Park: Cross-sectional TEM specimen preparation of semiconductor devices by focused ion beam etching, MRS Proceedings 199, 271–280 (1990)Google Scholar
  230. J. Szot, R. Hornsey, T. Ohnishi, J. Minagawa: Focused ion beam micromachining for transmission electron microscopy specimen preparation of semiconductor laser diodes, J. Vac. Sci. Technol. B 10, 575–579 (1992)Google Scholar
  231. S.M. Sze: Physics of Semiconductor Devices (Wiley, New York 2002)Google Scholar
  232. S.M. Schwarz, B.W. Kempshall, L.A. Giannuzzi, M.R. McCartney: Avoiding the curtaining effect: Backside milling by FIB INLO, Microsc. Microanal. 9(S2), 116–117 (2003)Google Scholar
  233. M.R. McCartney, J. Li, P. Chakraborty, L.A. Giannuzzi, S.M. Schwarz: Issues affecting quantitative evaluation of dopant profiles using electron holography, Microsc. Microanal. 9(S2), 776–777 (2003)Google Scholar
  234. D. Cooper, R. Truche, P. Rivallin, J.M. Hartmann, F. Laugier, F. Bertin, A. Chabli, J.L. Rouviere: Medium resolution off-axis electron holography with millivolt sensitivity, Appl. Phys. Lett. 91, 143501 (2007)Google Scholar
  235. D. Cooper, P. Rivallin, J.M. Hartmann, A. Chabli, R.E. Dunin-Borkowski: Extending the detection limit of dopants for focused ion beam prepared semiconductor specimens examined by off-axis electron holography, J. Appl. Phys. 106, 064506 (2009)Google Scholar
  236. D. Cooper, A.C. Twitchett-Harrison, P.A. Midgley, R.E. Dunin-Borkowski: The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions, J. Appl. Phys. 101, 094508 (2007)Google Scholar
  237. D. Cooper, C. Ailliot, J.P. Barnes, J.M. Hartmann, P. Salles, G. Benassayag, R.E. Dunin-Borkowski: Dopant profiling of focused ion beam milled semiconductors using off-axis electron holography: Reducing artefacts, extending detection limits and reducing the effects of gallium implantation, Ultramicroscopy 110, 383–389 (2010)Google Scholar
  238. J.B. Park, T. Niermann, D. Berger, A. Knauer, I. Koslow, M. Weyers, M. Kneissl, M. Lehmann: Impact of electron irradiation on electron holographic potentiometry, Appl. Phys. Lett. 105, 094102 (2014)Google Scholar
  239. A. Lenk, H. Lichte, U. Muehle: 2-D-mapping of dopant distribution in deep sub micron CMOS devices by electron holography using adapted FIB-preparation, J. Electron Microsc. 54, 351–359 (2005)Google Scholar
  240. P. Formanek, E. Bugiel: On specimen tilt for electron holography of semiconductor devices, Ultramicroscopy 106, 292–300 (2006)Google Scholar
  241. D. Cooper, F. de La Peña, A. Béché, J.L. Rouvière, G. Servanton, R. Pantel, P. Morin: Field mapping with nanometer-scale resolution for the next generation of electronic devices, Nano Lett. 11, 4585–4590 (2011)Google Scholar
  242. D. Cooper, P. Rivallin, G. Guegan, C. Plantier, E. Robin, F. Guyot, I. Constant: Field mapping of focused ion beam prepared semiconductor devices by off-axis and dark field electron holography, Semicond. Sci. Technol. 28, 125013 (2013)Google Scholar
  243. D. Cooper, R.E. Dunin-Borkowski: Interpretation of phase images of delta-doped layers, Microscopy 62(S1), S87–S98 (2013)Google Scholar
  244. S. Yazdi, T. Kasama, M. Beleggia, M.S. Yekta, D.W. McComb, A.C. Twitchett-Harrison, R.E. Dunin-Borkowski: Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography, Ultramicroscopy 152, 10–20 (2015)Google Scholar
  245. A.C. Twitchett, T.J.V. Yates, S.B. Newcomb, R.E. Dunin-Borkowski, P.A. Midgley: High-resolution three-dimensional mapping of semiconductor dopant potentials, Nano Lett. 7, 2020–2023 (2007)Google Scholar
  246. A.C. Twitchett-Harrison, T.J.V. Yates, R.E. Dunin-Borkowski, P.A. Midgley: Quantitative electron holographic tomography for the 3-D characterisation of semiconductor device structures, Ultramicroscopy 108, 1401–1407 (2008)Google Scholar
  247. D. Wolf, A. Lubk, A. Lenk, S. Sturm, H. Lichte: Tomographic investigation of fermi level pinning at focused ion beam milled semiconductor surfaces, Appl. Phys. Lett. 103, 264104 (2013)Google Scholar
  248. M.R. McCartney, F.A. Ponce, J. Cai, D.P. Bour: Mapping electrostatic potential across an AlGaN/InGaN/AlGaN diode by electron holography, Appl. Phys. Lett. 76, 3055–3057 (2000)Google Scholar
  249. M. Stevens, A. Bell, M.R. McCartney, F.A. Ponce, H. Marui, S. Tanaka: Effect of layer thickness on the electrostatic potential in InGaN quantum wells, Appl. Phys. Lett. 85, 4651–4653 (2004)Google Scholar
  250. L. Zhou, M. Gonschorek, E. Giraud, E. Feltin, J.F. Carlin, N. Grandjean, D.J. Smith, M.R. McCartney: Measurement of polarization-induced electric fields in GaN/AlInN quantum wells, Appl. Phys. Lett. 101, 251902 (2012)Google Scholar
  251. L. Zhou, D.J. Smith, M.R. McCartney, T. Xu, T.D. Moustakas: Measurement of electric field across individual wurtzite GaN quantum dots using electron holography, Appl. Phys. Lett. 99, 101905 (2011)Google Scholar
  252. L. Li, D.J. Smith, E. Dailey, P. Madras, J. Drucker, M.R. McCartney: Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography, Nano Lett. 11, 493–497 (2011)Google Scholar
  253. D. Cherns, C.G. Jiao: Electron holography studies of the charge on dislocations in GaN, Phys. Rev. Lett. 87, 205504 (2001)Google Scholar
  254. S. Chung, R.A. Berechman, M.R. McCartney, M. Skowronski: Electronic structure analysis of threading screw dislocations in 4H-SiC using electron holography, J. Appl. Phys. 109, 034906 (2011)Google Scholar
  255. J. Dietrich, D. Abou-Ras, S.S. Schmidt, T. Rissom, T. Unold, O. Cojocaru-Mirédin, T. Niermann, M. Lehmann, C. Boit: Origins of electrostatic potential wells at dislocations in polycrystalline Cu(In,Ga)Se2 thin films, J. Appl. Phys. 115, 103507 (2014)Google Scholar
  256. L. Li, L. Jin, J. Wang, D.J. Smith, W.J. Yin, Y. Yan, H. Sang, W.C.H. Choy, M.R. McCartney: Polarization-induced charge distribution at homogeneous zincblende/wurtzite heterostructural junctions in ZnSe nanobelts, Adv. Mater. 24, 1328–1332 (2012)Google Scholar
  257. A. Marchewka, D. Cooper, C. Lenser, S. Menzel, H. Du, R. Dittmann, R.E. Dunin-Borkowski, R. Waser: Determination of the electrostatic potential distribution in Pt/Fe:SrTiO3/Nb:SrTiO3 thin-film structures by electron holography, Sci. Rep. 4, 6975 (2014)Google Scholar
  258. M. Duchamp, V. Migunov, A.H. Tavabi, A. Mehonic, M. Buckwell, M. Munde, A.J. Kenyon, R.E. Dunin-Borkowski: In situ transmission electron microscopy of resistive switching in thin silicon oxide layers, Resolut. Discov. 1, 27–33 (2016)Google Scholar
  259. S. Yazdi, A. Berg, M.T. Borgström, T. Kasama, M. Beleggia, L. Samuelson, J.B. Wagner: Doping GaP core-shell nanowire pn-junctions: A study by off-axis electron holography, Small 11, 2687–2695 (2015)Google Scholar
  260. M.H.T. Dastjerdi, E.M. Fiordaliso, E.D. Leshchenko, A. Akhtari-Zavareh, T. Kasama, M. Aagesen, V.G. Dubrovskii, R.R. LaPierre: Three-fold symmetric doping mechanism in GaAs nanowires, Nano Lett. 17, 5875–5882 (2017)Google Scholar
  261. Z. Gan, M. Gu, J. Tang, C.Y. Wang, Y. He, K.L. Wang, C. Wang, D.J. Smith, M.R. McCartney: Direct mapping of charge distribution during lithiation of Ge nanowires using off-axis electron holography, Nano Lett. 16, 3748–3753 (2016)Google Scholar
  262. D. Keller, S. Buecheler, P. Reinhard, F. Pianezzi, E. Snoeck, C. Gatel, M.D. Rossell, R. Erni, A.N. Tiwari: Assessment of off-axis and in-line electron holography for measurement of potential variations in Cu(In,Ga)Se2 thin-film solar cells, Adv. Struct. Chem. Imaging 2, 1 (2017)Google Scholar
  263. J. Frenkel: Kinetic Theory of Liquids (Oxford Univ. Press, Oxford 1946)Google Scholar
  264. V. Ravikumar, R.P. Rodrigues, V.P. Dravid: Direct imaging of spatially varying potential and charge across internal interfaces in solids, Phys. Rev. Lett. 75, 4063–4066 (1995)Google Scholar
  265. G. Pozzi: The influence of the external field on transmission electron microscopy observations of electric fields at interfaces, J. Phys. D 29, 1807–1811 (1996)Google Scholar
  266. R.E. Dunin-Borkowski, W.O. Saxton: The electrostatic contribution to the forward scattering potential at a space charge layer in high energy electron diffraction. II. Fringing fields, Acta Crystallogr. A 53, 242–250 (1997)Google Scholar
  267. M. Elfwing, E. Olsson: Electron holography study of active interfaces in zinc oxide varistor materials, J. Appl. Phys. 92, 5272–5280 (2002)Google Scholar
  268. Z. Mao, R.E. Dunin-Borkowski, C.B. Boothroyd, K.M. Knowles: Direct measurement and interpretation of electrostatic potentials at 24° [001] tilt boundaries in undoped and niobium-doped strontium titanate bicrystals, J. Am. Ceram. Soc. 81, 2917–2926 (1998)Google Scholar
  269. R.E. Dunin-Borkowski, W.M. Stobbs, D.D. Perovic, Z.R. Wasilewski: The interpretation of the measured mean forward scattering potential of delta-doped layers in semiconductors. In: Proc. 13th Int. Conf. Electron Microsc., Paris, ed. by B. Jouffrey, C. Colliex (1994) pp. 411–412Google Scholar
  270. P.F. Fazzini, G. Pozzi, M. Beleggia: Electron optical phase-shifts by Fourier methods: Analytical versus numerical calculations, Ultramicroscopy 104, 193–205 (2005)Google Scholar
  271. S. von Alfthan, N.A. Benedek, L. Chen, A. Chua, D.J.H. Cockayne, K.J. Dudeck, C. Elsässer, M.W. Finnis, C.T. Koch, B. Rahmati, M. Rühle, S.-J. Shih, A.P. Sutton: The structure of grain boundaries in strontium titanate: Theory, simulation, and electron microscopy, Annu. Rev. Mater. Res. 40, 557–599 (2010)Google Scholar
  272. H. Lichte: Are ferroelectric crystals blaze-gratings for electrons?, Cryst. Res. Technol. 35, 887–898 (2000)Google Scholar
  273. H. Lichte, M. Reibold, K. Brand, M. Lehmann: Ferroelectric electron holography, Ultramicroscopy 93, 199–212 (2003)Google Scholar
  274. T. Matsumoto, M. Koguchi, K. Suzuki, H. Nishimura, Y. Motoyoshi, N. Wada: Ferroelectric 90\({}^{\circ}\) domain structure in a thin film of BaTiO3 fine ceramics observed by 300 kV electron holography, Appl. Phys. Lett. 92, 072902 (2008)Google Scholar
  275. D. Szwarcman, A. Lubk, M. Linck, K. Vogel, Y. Lereah, H. Lichte, G. Markovich: Ferroelectric effects in individual BaTiO3 nanocrystals investigated by electron holography, Phys. Rev. B 85, 134112 (2012)Google Scholar
  276. C. Phatak, A.K. Petford-Long, M. Beleggia, M. De Graef: Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy, Phys. Rev. B 89, 214112 (2014)Google Scholar
  277. A. Orchowski, W.D. Rau, H. Lichte: Electron holography surmounts resolution limit of electron microscopy, Phys. Rev. Lett. 74, 399–402 (1995)Google Scholar
  278. H. Lichte: Optimum focus for taking electron holograms, Ultramicroscopy 38, 13–22 (1991)Google Scholar
  279. H. Lichte: Electron holography: I. Can electron holography reach 0.1 nm resolution?, Ultramicroscopy 47, 223–230 (1992)Google Scholar
  280. H. Lichte, W.D. Rau: High-resolution electron holography with the CM30FEG-Special Tübingen, Ultramicroscopy 54, 310–316 (1994)Google Scholar
  281. K. Ishizuka, T. Tanji, A. Tonomura, T. Ohno, Y. Murayama: Aberration correction using off-axis holography II. Beyond the Scherzer limit, Ultramicroscopy 55, 197–207 (1994)Google Scholar
  282. M. Lehmann, H. Lichte, D. Geiger, G. Lang, E. Schweda: Electron holography at atomic dimensions—Present state, Mater. Charact. 42, 249–263 (1999)Google Scholar
  283. M. Lehmann, H. Lichte: Electron holographic material analysis at atomic dimensions, Cryst. Res. Technol. 40, 149–160 (2005)Google Scholar
  284. H. Lichte, P. Formanek, A. Lenk, M. Linck, C. Matzeck, M. Lehmann, P. Simon: Electron holography: Applications to materials questions, Annu. Rev. Mater. Res. 37, 539–588 (2007)Google Scholar
  285. M. Linck, B. Freitag, S. Kujawa, M. Lehmann, T. Niermann: State of the art in atomic resolution off-axis electron holography, Ultramicroscopy 116, 13–23 (2012)Google Scholar
  286. M. Linck: Optimum aberration coefficients for recording high-resolution off-axis holograms in a CS-corrected TEM, Ultramicroscopy 124, 77–87 (2013)Google Scholar
  287. S. Borghardt, F. Winkler, Z. Zanolli, M.J. Verstraete, J. Barthel, A.H. Tavabi, R.E. Dunin-Borkowski, B.E. Kardynal: Quantitative agreement between electron-optical phase images of WSe2 and simulations based on electrostatic potentials that include bonding effects, Phys. Rev. Lett. 118, 086101 (2017)Google Scholar
  288. F. Winkler, A.H. Tavabi, J. Barthel, M. Duchamp, E. Yucelen, S. Borghardt, B.E. Kardynal, R.E. Dunin-Borkowski: Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2, Ultramicroscopy 178, 38–47 (2017)Google Scholar
  289. J.M. Cowley: Twenty forms of electron holography, Ultramicroscopy 41, 335–348 (1992)Google Scholar
  290. R.A. Herring, G. Pozzi, T. Tanji, A. Tonomura: Interferometry using convergent electron diffracted beams plus an electron biprism (CBED + EBI), Ultramicroscopy 60, 153–169 (1995)Google Scholar
  291. H. Banzhof, K.-H. Herrmann: Reflection electron holography, Ultramicroscopy 48, 475–481 (1993)Google Scholar
  292. M.J. Hÿtch, F. Houdellier, F. Hüe, E. Snoeck: Nanoscale holographic interferometry for strain measurements in electronic devices, Nature 453, 1086–1089 (2008)Google Scholar
  293. A. Béché, J.L. Rouvière, J.P. Barnes, D. Cooper: Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography, Ultramicroscopy 131, 10–23 (2013)Google Scholar
  294. T. Denneulin, F. Houdellier, M.J. Hÿtch: Differential phase-contrast dark-field electron holography for strain mapping, Ultramicroscopy 160, 98–109 (2016)Google Scholar
  295. T. Denneulin, M.J. Hÿtch: Four-wave dark-field electron holography for imaging strain fields, J. Phys. D 49, 244003 (2016)Google Scholar
  296. H. Rose: Nonstandard imaging methods in electron microscopy, Ultramicroscopy 2, 251–267 (1977)Google Scholar
  297. M. Mankos, M.R. Scheinfein, J.M. Cowley: Absolute magnetometry at nanometer transverse spatial resolution: Holography of thin cobalt films in a scanning transmission electron microscope, J. Appl. Phys. 75, 7418–7424 (1994)Google Scholar
  298. M.R. McCartney, P. Kruit, A.H. Buist, M.R. Scheinfein: Differential phase contrast in TEM, Ultramicroscopy 65, 179–186 (1996)Google Scholar
  299. G. Pozzi: Amplitude division off-axis Fresnel holography in transmission electron microscopy, Optik 66, 91–100 (1983)Google Scholar
  300. G. Matteucci, G.F. Missiroli, G. Pozzi: A new off-axis Fresnel holographic method in transmission electron microscopy: an application on the mapping of ferromagnetic domains. III, Ultramicroscopy 8, 403–408 (1982)Google Scholar
  301. Q. Ru: Incoherent electron holography, J. Appl. Phys. 77, 1421–1426 (1995)Google Scholar
  302. Q. Ru, J. Endo, T. Tanji, A. Tonomura: Phase-shifting electron holography by beam tilting, Appl. Phys. Lett. 59, 2372–2374 (1992)Google Scholar
  303. T. Kawasaki, J. Endo, T. Matsuda, N. Osakabe, A. Tonomura: Applications of holographic interference electron microscopy to the observation of biological specimens, J. Electron Microsc. 35, 211–214 (1986)Google Scholar
  304. K. Yamamoto, I. Kawajiri, T. Tanji, M. Hibino, T. Hirayama: High precision phase-shifting electron holography, J. Electron Microsc. 49, 31–39 (2000)Google Scholar
  305. T. Suzuki, S. Aizawa, T. Tanigaki, K. Ota, T. Matsuda, A. Tonomura: Improvement of the accuracy of phase observation by modification of phase-shifting electron holography, Ultramicroscopy 118, 21–25 (2012)Google Scholar
  306. H. Sasaki, S. Otomo, R. Minato, K. Yamamoto, T. Hirayama: Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy, Microscopy 63, 235–242 (2014)Google Scholar
  307. D. Lei, K. Mitsuishi, K. Harada, M. Shimojo, D. Ju, M. Takeguchi: Super-resolution phase reconstruction technique in electron holography with a stage-scanning system, Jpn. J. Appl. Phys. 53, 02BC23 (2014)Google Scholar
  308. J. Chen, T. Hirayama, T. Tanji, K. Ishizuka, A. Tonomura: Video-rate electron-holographic interference microscopy and its application to dynamic observation of electromagnetic fields, Opt. Commun. 110, 33–40 (1994)Google Scholar
  309. T. Hirayama, T. Tanji, A. Tonomura: Direct visualization of electromagnetic microfields by interference of three electron waves, Appl. Phys. Lett. 67, 1185–1187 (1995)Google Scholar
  310. T. Hirayama, G. Lai, T. Tanji, N. Tanaka, A. Tonomura: Interference of three electron waves by two biprisms and its application to direct visualization of electromagnetic fields in small regions, J. Appl. Phys. 82, 522–527 (1997)Google Scholar
  311. E. Völkl: Live electron holography: Window to the phase world, Microsc. Microanal. 6, 211–217 (2000)Google Scholar
  312. T. Latychevskaia, H.W. Fink: Solution to the twin image problem in holography, Phys. Rev. Lett. 98, 233901 (2007)Google Scholar
  313. B.J. Thompson, G.B. Parrent, J.H. Ward, B. Justii: A readout technique for the laser fog disdrometer, J. Appl. Meteorol. 5, 343–348 (1966)Google Scholar
  314. A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda: Optical reconstruction of image from Fraunhofer electron-hologram, Jpn. J. Appl. Phys. 7, 295 (1968)Google Scholar
  315. T. Matsumoto, T. Tanji, A. Tonomura: Phase-contrast visualization of an undecagold cluster by in-line electron holography, Ultramicroscopy 54, 317–334 (1994)Google Scholar
  316. R.E. Dunin-Borkowski: The development of Fresnel contrast analysis, and the interpretation of mean inner potential profiles at interfaces, Ultramicroscopy 83, 193–216 (2000)Google Scholar
  317. T. Latychevskaia, P. Formanek, C.T. Koch, A. Lubk: Off-axis and inline electron holography: Experimental comparison, Ultramicroscopy 110, 472–482 (2010)Google Scholar
  318. V.J. Keast, M.J. Gladys, T.C. Petersen, C. Dwyer, C.T. Koch, T. Haber, G. Kothleitner: Energy-filtered phase retrieval using the transport of intensity equation, Appl. Phys. Lett. 99, 221905 (2011)Google Scholar
  319. C. Ozsoy-Keskinbora, C.B. Boothroyd, R.E. Dunin-Borkowski, P.A. van Aken, C.T. Koch: Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity, Sci. Rep. 4, 7020 (2014)Google Scholar
  320. C. Ozsoy-Keskinbora, C.B. Boothroyd, R.E. Dunin-Borkowski, P.A. van Aken, C.T. Koch: Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography, Ultramicroscopy 165, 8–14 (2016)Google Scholar
  321. J.M. Cowley: High resolution side-band holography with a STEM instrument, Ultramicroscopy 34, 293–297 (1990)Google Scholar
  322. M. Mankos, J.M. Cowley, M.R. Scheinfein: Absolute magnetometry using electron holography: Magnetic superlattices and small particles, MRS Bulletin 20, 45–48 (1995)Google Scholar
  323. J.M. Cowley, M. Mankos, M.R. Scheinfein: Greatly defocused, point-projection, off-axis electron holography, Ultramicroscopy 63, 133–147 (1996)Google Scholar
  324. G. Matteucci, M. Muccini: On electron holographic mapping of electric and magnetic fields: Recording and processing problems and field information reliability, Ultramicroscopy 53, 19–25 (1994)Google Scholar
  325. C. Gatel, F. Houdellier, E. Snoeck: Dynamical holographic Moirés in a TEM, J. Phys. D 49, 324001 (2016)Google Scholar
  326. V. Migunov, C. Dwyer, C.B. Boothroyd, G. Pozzi, R.E. Dunin-Borkowski: Prospects for quantitative and time-resolved double and continuous exposure off-axis electron holography, Ultramicroscopy 178, 48–61 (2017)Google Scholar
  327. T. Hirayama: Interference of three electron waves and its application to direct visualization of electric fields, Mater. Charact. 42, 193–200 (1999)Google Scholar
  328. K. Ogai, Y. Kimura, R. Shimizu, J. Fujita, S. Matsui: Nanofabrication of grating and dot patterns by electron holographic lithography, Appl. Phys. Lett. 66, 1560–1562 (1995)Google Scholar
  329. C. Dwyer, C.B. Boothroyd, S.L.Y. Chang, R.E. Dunin-Borkowski: Three-wave electron vortex lattices for nanofield measurements, Ultramicroscopy 148, 25–30 (2015)Google Scholar
  330. T. Tanji, Q. Ru, A. Tonomura: Differential microscopy by conventional electron off-axis holography, Appl. Phys. Lett. 69, 2623–2625 (1996)Google Scholar
  331. T. Tanji, S. Manabe, K. Yamamoto, T. Hirayama: Electron differential microscopy using an electron trapezoidal prism, Ultramicroscopy 75, 197–202 (1999)Google Scholar
  332. F. Venturi, M. Campanini, G.C. Gazzadi, R. Balboni, S. Frabboni, R.W. Boyd, R.E. Dunin-Borkowski, E. Karimi, V. Grillo: Phase retrieval of an electron vortex beam using diffraction holography, Appl. Phys. Lett. 111, 223101 (2017)Google Scholar
  333. A. Lubk, F. Röder: Phase-space foundations of electron holography, Phys. Rev. A 92, 033844 (2015)Google Scholar
  334. S.J. Lade, D. Paganin, M.J. Morgan: Electron tomography of electromagnetic fields, potentials and sources, Opt. Commun. 253, 392–400 (2005)Google Scholar
  335. C. Phatak, M. Beleggia, M. De Graef: Vector field electron tomography of magnetic materials: Theoretical development, Ultramicroscopy 108, 503–513 (2008)Google Scholar
  336. P.Y. Rotha, M.J. Morgan, D.M. Paganin: Lorentz-electron vector tomography using two and three orthogonal tilt series, Phys. Rev. A 83, 023813 (2011)Google Scholar
  337. Z.D.C. Kemp, T.C. Petersen, D.M. Paganin, K.M. Spiers, M. Weyland, M.J. Morgan: Analysis of noise-induced errors in vector-field electron tomography, Phys. Rev. A 90, 023859 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg InstituteForschungszentrum Jülich GmbHJülichGermany
  2. 2.National Centre for Nano Fabrication and CharacterizationTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.Dept. of PhysicsArizona State UniversityTempe, AZUSA

Personalised recommendations