Atom-Probe Tomography

Part of the Springer Handbooks book series (SHB)


This chapter provides an overview of the current state of atom-probe tomography (). The history of APT is recounted so that the reader may put the many modern developments in context. It is noted that atom-probe tomography has the highest spatial resolution among analytical techniques (\({\mathrm{0.2}}\,{\mathrm{nm}}\)), and it has the highest absolute analytical sensitivity (single atoms), a unique combination. The fundamentals of APT, including the operative physics, performance metrics, and hardware configurations, are discussed. Before examining the many benefits that may be realized in APT, however, its limitations such as image distortions and specimen failures are discussed in full. Specimen preparation procedures for most materials are explained. A comprehensive overview of the many materials applications including metals, ceramics, semiconductors, and organics is provided. Finally, there is a look toward the future to see where the technique is headed.


atom-probe tomography time-of-flight mass-spectrometry physics of field evaporation mass resolving power laser pulsing geometry of atom probes detector technology reconstruction algorithms 



The author would like to acknowledge the collaborative efforts of many people in developing the concepts in this article. Dierk Raabe, Baptiste Gault, Gerhard Dehm, and Christina Scheu on Project Laplace at Max-Planck-Institut für Eisenforschung Düsseldorf; Dierk Raabe, Rafal Dunin-Borkowski, Joachim Mayer, and Max Haider on Project Tomo at Forschungszentrum Jülich; Simon P. Ringer, Michael K. Miller, Krishna Rajan, Ondrej Krivanek, and Niklas Dellby on the ATOM Project; Brian Gorman, David Dierks, Christoph Koch, and Wouter van den Broek on LEAP-STEM imaging; Robert McDermott and Joseph Suttle on superconducting detector development; and Jeff Shepard, David J. Larson, Katherine P. Rice, Ty J. Prosa, Brian P. Geiser, Robert Ulfig, Joseph H. Bunton, Tim Payne, Dan Lenz, and Ed Oltman at Cameca Instruments, Inc. John Panitz has helped immensely in correctly recounting some of the history of the early days at Pennsylvania State University with Professor Erwin W. Müller.


  1. W. Friedrich, P. Knipping, M. Laue: Phénomènes d'interférence des rayons de Röntgen, Radium 10, 47–57 (1913)Google Scholar
  2. W.L. Bragg: The diffraction of short electromagnetic waves by a crystal, Proc. Camb. Philos. Soc. 17, 43–57 (1912)Google Scholar
  3. M. Eckert: Max von Laue and the discovery of x-ray diffraction 1912, Ann. Phys. 524, A83–A85 (2012)Google Scholar
  4. L. de Broglie: Waves and quanta, Nature 112, 540 (1923)Google Scholar
  5. H. Busch: Über die Wirkungsweise der Konzentrierungsspule bei der Braunschen Röhre, Arch. Elektrotech. 18, 583–594 (1927)Google Scholar
  6. K. Bahadur: Experimental Investigation of Field Ion Emission, Ph.D. Thesis (Pennsylvania State Univ., State College 1955)Google Scholar
  7. E.W. Müller, K. Bahadur: Field ionization of gases at a metal surface and the resolution of the field ion microscope, Phys. Rev. 102, 624–631 (1956)Google Scholar
  8. A.V. Crewe, J. Wall, J. Langmore: Visibility of single atoms, Science 168, 1338–1340 (1970)Google Scholar
  9. E.W. Müller: Versuche zur Theorie der Elektronenemission unter der Einwirkung hoher Feldstärken, Z. Tech. Phys. 17, 412 (1936)Google Scholar
  10. E.W. Müller: Das Auflösungsvermögen des Feldelektronenmikroskops, Z. Phys. 120, 270 (1943)Google Scholar
  11. E.W. Müller: Elektronenmikroskopische Beobachtungen von Feldkathoden, Z. Phys. 106, 541–550 (1937)Google Scholar
  12. E.W. Müller: Das Feldionenmikroskop, Z. Phys. 131, 136–142 (1951)Google Scholar
  13. A.J. Melmed: Recollections of Erwin Müller's laboratory: The development of FIM (1951–1956), Appl. Surf. Sci. 94/95, 17–25 (1996)Google Scholar
  14. E.W. Müller: Resolution of the atomic structure of a metal surface by the field ion microscope, J. Appl. Phys. 27, 474–476 (1956)Google Scholar
  15. M.K. Miller, J.A. Horton: Direct observation of boron segregation to line and planar defects in Ni3Al, J. Phys. Colloq. 48, 379–384 (1987)Google Scholar
  16. M.K. Miller, A. Cerezo, M.G. Hetherington, G.D.W. Smith: Atom Probe Field Ion Microscopy (Oxford Univ. Press, Oxford 1996)Google Scholar
  17. D.F. Barofsky: A personal retrospective on the origin of the time-of-flight atom probe, Microsc. Microanal. 23, 604–606 (2017)Google Scholar
  18. E.W. Müller, J.A. Panitz, S.B. McLane: The atom-probe field ion microscope, Rev. Sci. Instrum. 39, 83–86 (1968)Google Scholar
  19. A. Cerezo, G.D.W. Smith, A.R. Waugh: The FIM100—Performance of a commercial atom probe system, J. Phys. C 9, 329–335 (1984)Google Scholar
  20. J.A. Panitz: The 10 cm atom probe, Rev. Sci. Instrum. 44, 1034–1038 (1973)Google Scholar
  21. J.A. Panitz: Imaging atom-probe mass spectroscopy, Prog. Surf. Sci. 8, 219–262 (1978)Google Scholar
  22. M.K. Miller: The effects of local magnification and trajectory aberrations on atom probe analysis, J. Phys. 48, 565–570 (1987)Google Scholar
  23. A.R. Waugh, C.H. Richardson, R. Jenkins: APFIM 200—A reflectron-based atom probe, Surf. Sci. 266, 501–505 (1992)Google Scholar
  24. G.L. Kellogg, T.T. Tsong: Pulsed-laser atom-probe field-ion microscopy, J. Appl. Phys. 51, 1184–1194 (1980)Google Scholar
  25. M.K. Miller: Atom-probe field ion microscopy. In: Microbeam Anal. Soc. Annu. Meet (San Francisco Press, Albuquerque 1986) pp. 343–347Google Scholar
  26. A. Cerezo, T.J. Godfrey, G.D.W. Smith: Application of a position-sensitive detector to atom probe microanalysis, Rev. Sci. Instrum. 59, 862–866 (1988)Google Scholar
  27. A. Cerezo, T.J. Godfrey, G.D.W. Smith: Development and initial applications of a position-sensitive atom probe, J. Phys. Colloq. 49(C6), 25–30 (1988)Google Scholar
  28. D. Blavette, B. Deconihout, A. Bostel, J.M. Sarrau, M. Bouet, A. Menand: The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale, Rev. Sci. Instrum. 64, 2911–2919 (1993)Google Scholar
  29. D. Blavette, A. Bostel, J.M. Sarrau, B. Deconihout, A. Menand: An atom probe for three-dimensional tomography, Nature 363, 432–435 (1993)Google Scholar
  30. B. Deconihout, A. Bostel, P. Bas, S. Chambreland, L. Letellier, F. Danoix, D. Blavette: Investigation of some selected metallurgical problems with the tomographic atom probe, Appl. Surf. Sci. 76/77, 145–154 (1994)Google Scholar
  31. O. Nishikawa, M. Kimoto: Toward a scanning atom probe—Computer simulation of electric field, Appl. Surf. Sci. 76/77, 424–430 (1994)Google Scholar
  32. O. Nishikawa, M. Kimoto, M. Iwatsuki, Y. Ishikawa: Development of a scanning atom probe, J. Vac. Sci. Technol. B 13, 599–602 (1995)Google Scholar
  33. T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, S.S. Bajikar: On the many advantages of local-electrode atom probes, Ultramicroscopy 62, 29–42 (1996)Google Scholar
  34. T.F. Kelly, D.J. Larson: Local electrode atom probes, Mater. Charact. 44, 59–85 (2000)Google Scholar
  35. A. Cerezo, C.R.M. Grovenor, G.D.W. Smith: Pulsed laser atom probe analysis of III-V compound semiconductors, J. Phys. Colloq. 47(C2), 309–314 (1986)Google Scholar
  36. A. Cerezo, C.R.M. Grovenor, G.D.W. Smith: Pulsed laser atom probe analysis of semiconductor materials, J. Microsc. 141, 155–170 (1986)Google Scholar
  37. B. Gault, F. Vurpillot, A. Vella, M. Gilbert, A. Menand, D. Blavette, B. Deconihout: Design of a femtosecond laser assisted tomographic atom probe, Rev. Sci. Instrum. 77, 043705 (2006)Google Scholar
  38. J.H. Bunton, J.D. Olson, D. Lenz, T.F. Kelly: Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance, Microsc. Microanal. 13, 418–427 (2007)Google Scholar
  39. A. Devaraj, D.E. Perea, J. Liu, L.M. Gordon, T.J. Prosa, P. Parikh, D.R. Diercks, S. Meher, R.P. Kolli, Y.S. Meng, S. Thevuthasan: Three-dimensional nanoscale characterisation of materials by atom probe tomography, Int. Mater. Rev. 63, 68–101 (2017)Google Scholar
  40. M.K. Miller, R.G. Forbes: Atom-Probe Tomography: The Local Electrode Atom Probe, 1st edn. (Springer, Boston 2014)Google Scholar
  41. D.F. Barofsky, E.W. Müller: Mass spectrometric analysis of low temperature field evaporation, Surf. Sci. 10, 177–196 (1968)Google Scholar
  42. E.W. Müller, J. Panitz: The Atom-Probe Field Ion Microscope (Abstract) (National Bureau of Standards, Washington 1967) p. 31Google Scholar
  43. P.H. Clifton, T.J. Gribb, S.S.A. Gerstl, R.M. Ulfig, D.J. Larson: Performance advantages of a modern, ultra-high mass resolution atom probe, Microsc. Microanal. 14, 454–455 (2008)Google Scholar
  44. L. Currie: Limits for qualitative detection and quantitative determination, Anal. Chem. 40, 586–593 (1968)Google Scholar
  45. T.T. Tsong: Instrumentation and techniques. In: Atom Probe Field Ion Microscopy (Cambridge Univ. Press, New York 1990) pp. 103–163Google Scholar
  46. E. Oltman, T.F. Kelly, T.J. Prosa, D. Lawrence, D.J. Larson: Measuring contributions to mass resolving power in atom probe tomography, Microsc. Microanal. 17(S2), 754–755 (2011)Google Scholar
  47. D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, T.F. Kelly: Appendix D: Mass spectral performance. In: Local Electrode Atom Probe Tomography: A User's Guide (Springer, New York 2013) pp. 281–287Google Scholar
  48. B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer: Atom Probe Microscopy (Springer, New York 2012)Google Scholar
  49. W.P. Poschenrieder: Multiple-focusing time of flight mass spectrometers Part I. TOFMS with equal momentum acceleration, Int. J. Mass. Spectrom. Ion Phys. 6, 413–426 (1971)Google Scholar
  50. W.P. Poschenrieder: Multiple-focusing time-of-flight mass spectrometers Part II. TOFMS with equal energy acceleration, Int. J. Mass Spectrom. Ion Phys. 9, 357–373 (1972)Google Scholar
  51. B.A. Mamyrin, V.I. Karataev, D.V. Shmikk, V.A. Zagulin: The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution, Sov. Phys. JETP 37, 45–48 (1973)Google Scholar
  52. A. Cerezo, T.J. Godfrey, S. Sijbrandij, G.D.W. Smith, P.J. Warren: Performance of an energy compensated three-dimensional atom probe, Rev. Sci. Instrum. 69, 49–58 (1998)Google Scholar
  53. P. Panayi: Reflectron, US Patent 8134119 (2012)Google Scholar
  54. A. Cerezo, P.H. Clifton, S. Lozano-Perez, P. Panayi, G. Sha, G.D.W. Smith: Overview: Recent progress in three-dimensional atom probe instruments and applications, Microsc. Microanal. 13, 408–417 (2007)Google Scholar
  55. M.K. Miller, G.D.W. Smith: An atom probe study of the anomalous field evaporation of alloys containing silicon, J. Vac. Sci. Technol. 19, 57–62 (1981)Google Scholar
  56. R. Herschitz, D.N. Seidman: A quantitative atom-probe field-ion microscope study of the compositions of dilute Co(Nb) and Co(Fe) alloys, Surf. Sci. 130, 63–88 (1983)Google Scholar
  57. J. Liu, T.T. Tsong: High resolution ion kinetic energy analysis of field emitted ions, J. Phys. Colloq. 49(C6), 61–66 (1988)Google Scholar
  58. J.A. Liddle, A. Norman, A. Cerezo, C.R.M. Grovenor: Pulsed laser atom probe analysis of ternary and quaternary III–V epitaxial layers, J. Phys. Colloq. 49, 509–514 (1988)Google Scholar
  59. R. Schlesiger, C. Oberdorfer, R. Wurz, G. Greiwe, P. Stender, M. Artmeier, P. Pelka, F. Spaleck, G. Schmitz: Design of a laser-assisted tomographic atom probe at Münster University, Rev. Sci. Instrum. 81, 043703 (2010)Google Scholar
  60. A. Cerezo, G.D.W. Smith, P.H. Clifton: Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe, Appl. Phys. Lett. 88, 154103 (2006)Google Scholar
  61. F. Vurpillot, B. Gault, A. Vella, A. Bouet, B. Deconihout: Estimation of the cooling times for a metallic tip under laser illumination, Appl. Phys. Lett. 88, 094105 (2006)Google Scholar
  62. A. Vella: On the interaction of an ultra-fast laser with a nanometric tip by laser assisted atom probe tomography: A review, Ultramicroscopy 132, 5–18 (2013)Google Scholar
  63. T.F. Kelly, A. Vella, J.H. Bunton, J. Houard, E.P. Silaeva, J. Bogdanowicz, W. Vandervorst: Laser pulsing of field evaporation in atom probe tomography, Curr. Opin. Solid State Mater. Sci. 18, 81–89 (2014)Google Scholar
  64. A. Cerezo, T.J. Godfrey, M. Huang, G.D.W. Smith: Design of a scanning atom probe with improved mass resolution, Rev. Sci. Instrum. 71, 3016–3023 (2000)Google Scholar
  65. A. Cerezo, D. Vaumousse: Numerical modelling of mass resolution in a scanning atom probe, Ultramicroscopy 89, 155–161 (2001)Google Scholar
  66. F. Vurpillot, C. Oberdorfer: Modeling atom probe tomography: A review, Ultramicroscopy 159(2), 202–216 (2015)Google Scholar
  67. L. Zhao, A. Normand, J. Houard, I. Blum, F. Delaroche, F. Vurpillot: Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation, arXiv:1607.02127 [physics.ins-det] (2016)Google Scholar
  68. T.F. Kelly, D.J. Larson: The second revolution in atom probe tomography, MRS Bulletin 37, 150–158 (2012)Google Scholar
  69. H. Keller, G. Klingelhöfer, E. Kankeleit: A position sensitive microchannelplate detector using a delay line readout anode, Nucl. Instrum. Methods Phys. Res. A 258, 221–224 (1987)Google Scholar
  70. G. Da Costa, F. Vurpillot, A. Bostel, A. Bouet, B. Deconihout: Design of a delay-line position-sensitive detector with improved performance, Rev. Sci. Instrum. 76, 013304 (2004)Google Scholar
  71. M.K. Miller, K.F. Russell: Performance of a local electrode atom probe, Surf. Interface Anal. 39, 262–267 (2007)Google Scholar
  72. P. Ronsheim, P. Flaitz, M. Hatzistergos, C. Molella, K. Thompson, R. Alvis: Impurity measurements in silicon with D-SIMS and atom probe tomography, Appl. Surf. Sci. 255, 1547–1550 (2008)Google Scholar
  73. M. Thuvander, J. Weidow, J. Angseryd, L.K.L. Falk, F. Liu, M. Sonestedt, K. Stiller, H.O. Andren: Quantitative atom probe analysis of carbides, Ultramicroscopy 111, 604–608 (2011)Google Scholar
  74. G. Da Costa, H. Wang, S. Duguay, A. Bostel, D. Blavette, B. Deconihout: Advance in multi-hit detection and quantization in atom probe tomography, Rev. Sci. Instrum. 83, 123709 (2012)Google Scholar
  75. J. Takahashi, K. Kawakami, Y. Kobayashia, T. Tarui: The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scr. Mater. 63, 261–264 (2010)Google Scholar
  76. H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, K. Hono: Quantitative laser atom probe analyses of hydrogenation-disproportionated Nd-Fe-B powders, Ultramicroscopy 111, 615–618 (2011)Google Scholar
  77. R. Calder, G. Lewin: Reduction of stainless-steel outgassing in ultra-high vacuum, Br. J. Appl. Phys. 18, 1459 (1967)Google Scholar
  78. J. Takahashi, K. Kawakami, T. Tarui: Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography, Scr. Mater. 67, 213–216 (2012)Google Scholar
  79. P. Bas, A. Bostel, B. Deconihout, D. Blavette: A general protocol for the reconstruction of 3-D atom probe data, Appl. Surf. Sci. 87/88, 298–304 (1995)Google Scholar
  80. D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, T.F. Kelly: Local Electrode Atom Probe Tomography: A User's Guide (Springer, New York 2013)Google Scholar
  81. B. Gault, D. Haley, F. de Geuser, M.P. Moody, E.A. Marquis, D.J. Larson, B.P. Geiser: Advances in the reconstruction of atom probe tomography data, Ultramicroscopy 111, 448–457 (2011)Google Scholar
  82. J. Ge: Interfacial Adhesion in Metal/Polymer Systems for Electronics, Ph.D. Thesis (Helsinki Univ. Technology, Helsinki 2003)Google Scholar
  83. D.J. Larson, B. Gault, B.P. Geiser, F. De Geuser, F. Vurpillot: Atom probe tomography spatial reconstruction: Status and directions, Curr. Opin. Solid State Mater. Sci. 17, 236–247 (2013)Google Scholar
  84. D.J. Larson, B.P. Geiser, T.J. Prosa, S.S.A. Gerstl, D.A. Reinhard, T.F. Kelly: Improvements in planar feature reconstructions in atom probe tomography, J. Microsc. 243, 15–30 (2011)Google Scholar
  85. D.J. Larson, B.P. Geiser, T.J. Prosa, R. Ulfig, T.F. Kelly: Non-tangential continuity reconstruction in atom probe tomography data, Microsc. Microanal. 17, 740–741 (2011)Google Scholar
  86. N. Rolland, D.J. Larson, B.P. Geiser, S. Duguay, F. Vurpillot, D. Blavette: An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials, Ultramicroscopy 159, 195–201 (2015)Google Scholar
  87. F. Vurpillot, W. Lefebvre, J.M. Cairney, C. Oberdorfer, B.P. Geiser, K. Rajan: Advanced volume reconstruction and data mining methods in atom probe tomography, MRS Bulletin 41, 46–51 (2016)Google Scholar
  88. F. Vurpillot, B. Gault, B.P. Geiser, D.J. Larson: Reconstructing atom probe data: A review, Ultramicroscopy 132, 19–30 (2013)Google Scholar
  89. D. Beinke, C. Oberdorfer, G. Schmitz: Towards an accurate volume reconstruction in atom probe tomography, Ultramicroscopy 165, 34–41 (2016)Google Scholar
  90. B. Loberg, H. Norden: Observations of the field-evaporation end form of tungsten, Ark. Fys. 39, 383–395 (1968)Google Scholar
  91. J.M. Walls, H.N. Southworth: Magnification in the field-ion microscope, J. Phys. D 12, 657–667 (1979)Google Scholar
  92. G.S. Gipson, H.C. Eaton: The electric field distribution in the field ion microscope as a function of specimen shank, J. Appl. Phys. 51, 5537–5539 (1980)Google Scholar
  93. F. Vurpillot, A. Bostel, D. Blavette: The shape of field emitters and the ion trajectories in three-dimensional atom probes, J. Microsc. 196, 332–336 (1999)Google Scholar
  94. E.A. Marquis, B.P. Geiser, T.J. Prosa, D.J. Larson: Evolution of tip shape during field evaporation of complex multilayer structures, J. Microsc. 241, 225–233 (2011)Google Scholar
  95. S. Du, T. Burgess, S.T. Loi, B. Gault, Q. Gao, P. Bao, L. Li, X. Cui, W.K. Yeoh, H.H. Tan, C. Jagadish, S.P. Ringer, R. Zheng: Full tip imaging in atom probe tomography, Ultramicroscopy 124, 96–101 (2013)Google Scholar
  96. J.H. Lee, B.H. Lee, Y.T. Kim, J.J. Kim, S.Y. Lee, K.P. Lee, C.G. Park: Study of vertical Si/SiO2 interface using laser-assisted atom probe tomography and transmission electron microscopy, Micron 58, 32–37 (2014)Google Scholar
  97. F. Vurpillot: Private Communication, Université de Rouen (2016)Google Scholar
  98. T.F. Kelly, M.K. Miller, K. Rajan, S.P. Ringer: Atomic-scale tomography: A 2020 vision, Microsc. Microanal. 19, 652–664 (2013)Google Scholar
  99. W. Lefebvre, D. Hernandez-Maldonado, F. Moyon, F. Cuvilly, C. Vaudolon, D. Shinde, F. Vurpillot: HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy, Ultramicroscopy 159, 403–412 (2015)Google Scholar
  100. T.F. Kelly: Atomic-scale analytical tomography, Microsc. Microanal. 23, 34–45 (2017)Google Scholar
  101. B.P. Geiser, T.F. Kelly, D.J. Larson, J. Schneir, J.P. Roberts: Spatial distribution maps for atom probe tomography, Microsc. Microanal. 13, 437–447 (2007)Google Scholar
  102. B. Gault, W. Yang, K.R. Ratinac, R. Zheng, F. Braet, S.P. Ringer: Atom probe microscopy of self-assembled monolayers: Preliminary results, Langmuir 26, 5291–5294 (2010)Google Scholar
  103. A. Breen, M.P. Moody, B. Gault, A.V. Ceguerra, K.Y. Xie, S. Du, S.P. Ringer: Spatial decomposition of molecular ions within 3-D atom probe reconstructions, Ultramicroscopy 132, 92–99 (2013)Google Scholar
  104. T. Boll, T. Al-Kassab, Y. Yuan, Z.G. Liu: Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic, Ultramicroscopy 107, 796–801 (2007)Google Scholar
  105. T.F. Kelly, B.P. Geiser, D.J. Larson: Definition of spatial resolution in atom probe tomography, Microsc. Microanal. 13, 1604–1605 (2007)Google Scholar
  106. T.F. Kelly, E. Voelkl, B.P. Geiser: Practical determination of spatial resolution in atom probe tomography, Microsc. Microanal. 15, 12–13 (2009)Google Scholar
  107. B. Gault, M.P. Moody, F. De Geuser, D. Haley, L.T. Stephenson, S.P. Ringer: Origin of the spatial resolution in atom probe microscopy, Appl. Phys. Lett. 95, 034103 (2009)Google Scholar
  108. F. Vurpillot, G. Da Costa, A. Menand, D. Blavette: Structural analyses in three-dimensional atom probe: A fourier transform approach, J. Microsc. 203, 295–302 (2001)Google Scholar
  109. L.T. Stephenson, M.P. Moody, P.V. Liddicoat, S.P. Ringer: New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data, Microsc. Microanal. 13, 448–463 (2007)Google Scholar
  110. G.C. Hilton, J.M. Martinis, D.A. Wollman, K.D. Irwin, L.L. Dulcie, D. Gerber, P.M. Gillevet, D. Twerenbold: Impact energy measurement in time-of-flight mass spectrometry with cryogenic microcalorimeters, Nature 391, 672–675 (1998)Google Scholar
  111. T.F. Kelly: Kinetic-energy discrimination for atom probe tomography, Micros. Microanal. 17, 1–14 (2011)Google Scholar
  112. J.R. Suttle, T.F. Kelly, R.F. McDermott: A superconducting ion detection scheme for atom probe tomography. In: Atom Probe Tomogr. Microsc., Gyeongju (2016)Google Scholar
  113. T.J. Prosa, B.P. Geiser, D. Lawrence, D. Olson, D.J. Larson: Developing detection efficiency standards for atom probe tomography, Proc. SPIE 9173, 917307 (2014)Google Scholar
  114. B. Gault, D.W. Saxey, M.W. Ashton, S.B. Sinnott, A.N. Chiaramonti, M.P. Moody, D.K. Schreiber: Behavior of molecules and molecular ions near a field emitter, New J. Phys. 18, 033031 (2016)Google Scholar
  115. D.W. Saxey: Correlated ion analysis and the interpretation of atom probe mass spectra, Ultramicroscopy 111, 473–479 (2011)Google Scholar
  116. A.J. Melmed: The art and science and other aspects of making sharp tips, J. Vac. Sci. Technol. B 9, 601–609 (1991)Google Scholar
  117. W. Lefebvre, F. Vurpillot, X. Sauvage: Atom Probe Tomography: Put Theory into Practice (Academic Press, London 2016)Google Scholar
  118. A.R. Waugh, S. Payne, G.M. Worrall, G.D.W. Smith: In situ ion milling of field ion specimens using a liquid metal ion source, J. Phys. Colloq. 45, 207–209 (1984)Google Scholar
  119. K.B. Alexander, P. Angelini, M.K. Miller: Precision ion milling of field-ion specimens, J. Phys. Colloq. 50, 549–554 (1989)Google Scholar
  120. D.J. Larson, M.K. Miller, R.M. Ulfig, R.J. Matyi, P.P. Camus, T.F. Kelly: Field ion specimen preparation from near-surface regions, Ultramicroscopy 73, 273–278 (1998)Google Scholar
  121. D.J. Larson, R.L. Martens, T.F. Kelly, M.K. Miller, N. Tabat: Atom probe analysis of planar multilayer structures, J. Appl. Phys. 87, 5989–5991 (2000)Google Scholar
  122. M.K. Miller, K.F. Russell, G.B. Thompson: Strategies for fabricating atom probe specimens with a dual beam FIB, Ultramicroscopy 102, 287–298 (2005)Google Scholar
  123. M.K. Miller, K.F. Russell: Atom probe specimen preparation with a dual beam SEM/FIB miller, Ultramicroscopy 107, 761–766 (2007)Google Scholar
  124. M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, D.J. Larson: Review of atom probe FIB-based specimen preparation methods, Microsc. Microanal. 13, 428–436 (2007)Google Scholar
  125. K. Thompson, D.J. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B. Gorman: In-situ site-specific specimen preparation for atom probe tomography, Ultramicroscopy 107, 131–139 (2007)Google Scholar
  126. T.J. Prosa, D.J. Larson: Modern focused-ion-beam-based site-specific specimen preparation for atom probe tomography, Microsc. Microanal. 23, 194–209 (2017)Google Scholar
  127. D.J. Larson, T.J. Prosa, D. Lawrence, B.P. Geiser, C.M. Jones, T.F. Kelly: Atom probe tomography for microelectronics. In: Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, ed. by R. Haight, F. Ross, J. Hannon (World Scientific, London 2011) pp. 407–477Google Scholar
  128. M. Kuzmina, M. Herbig, D. Ponge, S. Sandlobes, D. Raabe: Linear complexions: Confined chemical and structural states at dislocations, Science 349, 1080–1083 (2015)Google Scholar
  129. K.P. Rice, Y. Chen, T.J. Prosa, D.J. Larson: Implementing transmission electron backscatter diffraction for atom probe tomography, Microsc. Microanal. 22, 583–588 (2016)Google Scholar
  130. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim, D.N. Seidman: Analysis of three-dimensional atom-probe data by the proximity histogram, Microsc. Microanal. 6, 437–444 (2000)Google Scholar
  131. M. Tang, W.C. Carter, R.M. Cannon: Grain boundary transitions in binary alloys, Phys. Rev. Lett. 97, 075502 (2006)Google Scholar
  132. B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer: Atom probe crystallography, Mater. Today 15, 378–386 (2012)Google Scholar
  133. D.R. Diercks, J. Tong, H. Zhu, R. Kee, G. Baure, J.C. Nino, R. O'Hayre, B.P. Gorman: Three-dimensional quantification of composition and electrostatic potential at individual grain boundaries in doped ceria, J. Mater. Chem. A 4, 5167–5175 (2016)Google Scholar
  134. S.A. Wilde, J.W. Valley, W.H. Peck, C.M. Graham: Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago, Nature 409, 175–178 (2001)Google Scholar
  135. J. Valley, A.J. Cavosie, T. Ushikubo, D.A. Reinhard, D. Snoeyenbos, D. Lawrence, D.J. Larson, P.H. Clifton, T.F. Kelly, A. Strickland, S. Wilde, D. Moser: Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography, Nat. Geosci. 219, 219–223 (2014)Google Scholar
  136. T.F. Kelly, D.J. Larson, K. Thompson, R.L. Alvis, J.H. Bunton, J.D. Olson, B.P. Gorman: Atom probe tomography of electronic materials, Annu. Rev. Mater. Res. 37, 681–727 (2007)Google Scholar
  137. D.J. Larson, D. Lawrence, W. Lefebvre, D. Olson, T.J. Prosa, D.A. Reinhard, R.M. Ulfig, P.H. Clifton, J.H. Bunton, D. Lenz, L. Renaud, I. Martin, T.F. Kelly: Toward atom probe tomography of microelectronic devices, J. Phys. Conf. Ser. 326, 012030 (2011)Google Scholar
  138. D. Blavette, S. Duguay: Atom probe tomography in nanoelectronics, Eur. Phys. J. Appl. Phys. 68, 10101 (2014)Google Scholar
  139. M.A. Khan, S.P. Ringer, R. Zheng: Atom probe tomography on semiconductor devices, Adv. Mater. Interfaces 3, 1500713 (2016)Google Scholar
  140. K. Inoue, H. Takamizawa, K. Kitamoto, J. Kato, T. Miyagi, Y. Nakagawa, N. Kawasaki, N. Sugiyama, H. Hashimoto, Y. Shimizu, T. Toyama, Y. Nagai, A. Karen: Three-dimensional elemental analysis of commercial 45 nm node device with high-k/metal gate stack by atom probe tomography, Appl. Phys. Express 4, 116601 (2011)Google Scholar
  141. K. Inoue, A.K. Kambham, D. Mangelinck, D. Lawrence, D.J. Larson: Atom-probe-tomographic studies on silicon-based semiconductor devices, Microsc. Today 20, 38–44 (2012)Google Scholar
  142. K. Inoue, H. Takamizawa, Y. Shimizu, F. Yano, T. Toyama, A. Nishida, T. Mogami, K. Kitamoto, T. Miyagi, J. Kato, S. Akahori, N. Okada, M. Kato, H. Uchida, Y. Nagai: Three-dimensional dopant characterization of actual metal–oxide–semiconductor devices of 65 nm node by atom probe tomography, Appl. Phys. Express 6, 046502 (2013)Google Scholar
  143. L. Rigutti, L. Mancini, D. Hernández-Maldonado, W. Lefebvre, E. Giraud, R. Butté, J.F. Carlin, N. Grandjean, D. Blavette, F. Vurpillot: Statistical correction of atom probe tomography data of semiconductor alloys combined with optical spectroscopy: The case of Al0.25Ga0.75N, J. Appl. Phys. 119, 105704 (2016)Google Scholar
  144. E.W. Müller: Sichtbarmachung der Phthalocyaninmolekel mit dem Feldelektronenmikroscop, Naturwissenschaften 37, 333 (1950)Google Scholar
  145. E.W. Müller: Die Sichbarmachung einzelner Atome und Moleküle im Feldelektronenmikroskop, Z. Naturforsch. 5, 473 (1950)Google Scholar
  146. E.W. Müller: Feldemission. In: Springer Tracts in Modern Physics, Vol. 27, ed. by F. Hund, P. Harteck, W. Bothe (Springer, Berlin, Heidelberg 1953) pp. 290–360Google Scholar
  147. J.A. Panitz, I. Giaever: Ferritin deposition on field-emitter tips, Ultramicroscopy 6, 3–6 (1981)Google Scholar
  148. J.A. Panitz: Point-projection imaging of unstained ferritin clusters, Ultramicroscopy 7, 241–248 (1982)Google Scholar
  149. T.F. Kelly, O. Nishikawa, J.A. Panitz, T.J. Prosa: Prospects for nanobiology with atom-probe tomography, MRS Bulletin 34, 744–749 (2009)Google Scholar
  150. L.M. Gordon, D. Joester: Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth, Nature 469, 194–197 (2011)Google Scholar
  151. L.M. Gordon, L. Tran, D. Joester: Atom probe tomography of apatites and bone-type mineralized tissues, ACS Nano 6, 10667–10675 (2012)Google Scholar
  152. L.M. Gordon, D. Joester: Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel, Front. Physiol. 6, 57 (2015)Google Scholar
  153. T.J. Prosa, M. Greene, T.F. Kelly, J. Fu, K. Narayan, S. Subramaniam: Atom probe tomography of mammalian cells: Advances in specimen preparation, Microsc. Microanal. 16, 482–483 (2010)Google Scholar
  154. T.J. Prosa, S.K. Keeney, T.F. Kelly: Field evaporation of octadecanethiol, Microsc. Microanal. 15(S2), 300–301 (2009)Google Scholar
  155. T.J. Prosa, S.K. Keeney, T.F. Kelly: Atom probe tomography analysis of poly(3-alkylthiophene)s, J. Microsc. 237, 155–167 (2010)Google Scholar
  156. D.E. Perea, J. Liu, J. Bartrand, Q. Dicken, S.T. Thevuthasan, N.D. Browning, J.E. Evans: Atom probe tomographic mapping directly reveals the atomic distribution of phosphorus in resin embedded ferritin, Sci. Rep. 6, 22321 (2016)Google Scholar
  157. T.J. Prosa, T.F. Kelly: Development of a Cryo-Transport System for Introduction of Frozen Specimens into a LEAP, Internal Report (CAMECA Instruments, Madison 2007)Google Scholar
  158. I. Arslan, E.A. Marquis, M. Homer, M.A. Hekmaty, N.C. Bartelt: Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography, Ultramicroscopy 108, 1579–1585 (2008)Google Scholar
  159. N. Kawase, M. Kato, H. Nishioka, H. Jinnai: Transmission electron microtomography without the ‘‘missing wedge'' for quantitative structural analysis, Ultramicroscopy 107, 8–15 (2007)Google Scholar
  160. W. Guo, B.T. Sneed, L. Zhou, W. Tang, M.J. Kramer, D.A. Cullen, J.D. Poplawsky: Correlative energy-dispersive x-ray spectroscopic tomography and atom probe tomography of the phase separation in an alnico 8 alloy, Microsc. Microanal. 22, 1251–1260 (2016)Google Scholar
  161. H.S. von Harrach, P. Dona, B. Freitag, H. Soltau, A. Niculae, M. Rohde: An integrated multiple silicon drift detector system for transmission electron microscopes, J. Phys. Conf. Ser. 241, 012015 (2010)Google Scholar
  162. T.F. Kelly, M.K. Miller, K. Rajan, S.P. Ringer, A.Y. Borisevich, N. Dellby, O.L. Krivanek: Toward atomic-scale tomography: The ATOM project, Microsc. Microanal. 17(S2), 708–709 (2011)Google Scholar
  163. B.P. Gorman, J.D. Shepard, R. Kirchhofer, J.D. Olson, T.F. Kelly: Development of atom probe tomography with in-situ STEM imaging and diffraction, Microsc. Microanal. 17, 710–711 (2011)Google Scholar
  164. M.K. Miller, T.F. Kelly, K. Rajan, S.P. Ringer: The future of atom probe tomography, Mater. Today 15, 158–165 (2012)Google Scholar
  165. D. Haley, T. Petersen, S.P. Ringer, G.D.W. Smith: Atom probe trajectory mapping using experimental tip shape measurements, J. Microsc. 244, 170–180 (2011)Google Scholar
  166. T.C. Petersen, S.P. Ringer: An electron tomography algorithm for reconstructing 3-D morphology using surface tangents of projected scattering interfaces, Comput. Phys. Commun. 181, 676–682 (2010)Google Scholar
  167. T.C. Petersen, S.P. Ringer: Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology, J. Appl. Phys. 105, 103518 (2009)Google Scholar
  168. D. Haley, M.P. Moody, G.D.W. Smith: Level set methods for modelling field evaporation in atom probe, Microsc. Microanal. 19, 1709–1717 (2013)Google Scholar
  169. D. Haley, P.A.J. Bagot, M.P. Moody: Extending continuum models for atom probe simulation, Mater. Charact. 146, 299–306 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Steam Instruments, Inc.Madison, WIUSA

Personalised recommendations