Advertisement

Ion Microscopy

  • Gregor HlawacekEmail author
Chapter
  • 5.1k Downloads
Part of the Springer Handbooks book series (SHB)

Abstract

Helium ion microscopy () is a relatively young imaging and nanofabrication technique, which is based on a gas field ion source (). It rasters a narrow beam of helium ions across the surface of the specimen, to obtain high-resolution surface-sensitive images. Usually, secondary particles such as electrons are collected for image formation but also photons, backscattered atoms or sputtered sample atoms can be used for image formation. Thanks to the very high brightness of the source, a lateral resolution of \({\mathrm{0.5}}\,{\mathrm{nm}}\) can be achieved. The method is in particular suitable for obtaining high-resolution images of insulating samples (such as ceramic materials and biological samples) as the built-in charge compensation allows us to observe such specimens without any additional conductive coatings. In this chapter, I will introduce the method and briefly sketch the underlying physics. In the remainder of the chapter, a number of imaging modes will be discussed and selected examples will be presented. Finally, an outlook is presented on the ongoing efforts to add analytical capabilities to the method.

Notes

Acknowledgements

This work is based on the input and hard work of many other people, in particular Vasilisa Veligura (University of Twente, Enschede, The Netherlands) and Nico Klingner (Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany) who worked on IL and TOF, respectively; but also Raoul van Gastel and Bene Poelsema—from the University of Twente in Enschede, the Netherlands—who brought me into the field of HIM. Further, I want acknowledge help from my colleagues Rene Heller, Lothar Bischoff and Stefan Facsko.

References

  1. R.P. Feynman: There's plenty of room at the bottom, Eng. Sci. 23(5), 22–36 (1960)Google Scholar
  2. M. Knoll, E. Ruska: Das Elektronenmikroskop, Z. Phys. 78(5/6), 318–339 (1932)Google Scholar
  3. H. Boersch: Über hochauflösende Abbildung mittels Ionenstrahlen. (Ionen-Übermikroskopie.), Naturwissenschaften 30(46/47), 711–712 (1942)Google Scholar
  4. C. Magnan: The proton microscope, Nucleonics 4(4), 52–66 (1949)Google Scholar
  5. P. Chanson, C. Magnan: Sur les premieres images obtenues avec un microscope protonique, C.R. Hebd. Seances Acad. Sci. 233(23), 1436–1438 (1951)Google Scholar
  6. P. Chanson, C. Magnan: Sur le contraste des images en microscopie protonique du a la diffusion elastique et inelastique des protons dans les elements legers, C.R. Hebd. Seances Acad. Sci. 238(17), 1701–1703 (1954)Google Scholar
  7. W.H. Escovitz, T.R. Fox, R. Levi-Setti: Hydrogen ion neutralization: A new contrast mechanism in the scanning transmission ion microscope, Ultramicroscopy 1(3/4), 271–274 (1976)Google Scholar
  8. R. Levi-Setti: Proton scanning microscopy: Feasibility and promise, Scanning Electron Microsc. 7, 125–134 (1974)Google Scholar
  9. W.H. Escovitz, T.R. Fox, R. Levi-Setti: Scanning transmission ion microscope with a field ion source, Proc. Natl. Acad. Sci. U.S.A. 72(5), 1826–1828 (1975)Google Scholar
  10. J.H. Orloff, L.W. Swanson: Study of a field-ionization source for microprobe applications, J. Vac. Sci. Technol. 12(6), 1209 (1975)Google Scholar
  11. R.L. Seliger, J.W. Ward, V. Wang, R.L. Kubena: A high-intensity scanning ion probe with submicrometer spot size, Appl. Phys. Lett. 34(5), 310 (1979)Google Scholar
  12. J. Morgan, J.A. Notte, R. Hill, B.W. Ward: An introduction to the helium ion microscope, Microsc. Today 14(4), 24–31 (2006)Google Scholar
  13. B.W. Ward, J.A. Notte, N.P. Economou: Helium ion microscope: A new tool for nanoscale microscopy and metrology, J. Vac. Sci. Technol. B 24(6), 2871 (2006)Google Scholar
  14. J.A. Notte, F. Rahman, S.M. McVey, S. Tan, R.H. Livengood: The neon gas field ion source-stability and lifetime, Microsc. Microanal. 16(S2), 28–29 (2010)Google Scholar
  15. R.H. Livengood, S. Tan, R. Hallstein, J.A. Notte, S. McVey, F.H.M. Rahman: The neon gas field ion source—A first characterization of neon nanomachining properties, Nucl. Instrum. Methods Phys. Res. A 645(1), 136–140 (2011)Google Scholar
  16. D.C. Bell: Contrast mechanisms and image formation in helium ion microscopy, Microsc. Microanal. 15(02), 147–153 (2009)Google Scholar
  17. G. Hlawacek, V. Veligura, R. van Gastel, B. Poelsema: Helium ion microscopy, J. Vac. Sci. Technol. B 32(2), 020801 (2014)Google Scholar
  18. D.C. Joy: Helium Ion Microscopy, Springer Briefs in Materials (Springer, New York 2013) p. 64Google Scholar
  19. G. Hlawacek, A. Gölzhäuser (Eds.): Helium Ion Microscopy, Nano Science and Technology (Springer, Basel 2016) p. 633Google Scholar
  20. M. Miller, A. Cerezo, M. Hetherington, G. Smith: Atom Probe Field Ion Microscopy (Oxford Univ. Press, Oxford 2006)Google Scholar
  21. J.J. Hren, S. Ranganathan (Eds.): Field-Ion Microscopy (Springer, New York 1968) p. 258Google Scholar
  22. E.W. Müller: Das Feldionenmikroskop, Z. Phys. 131(1), 136–142 (1951)Google Scholar
  23. J.L. Pitters, R. Urban, C. Vesa, R.A. Wolkow: Tip apex shaping of gas field ion sources, Ultramicroscopy 131, 56–60 (2013)Google Scholar
  24. V.N. Tondare: Quest for high brightness, monochromatic noble gas ion sources, J. Vac. Sci. Technol. A 23(6), 1498 (2005)Google Scholar
  25. J.H. Orloff, L.W. Swanson: Angular intensity of a gas-phase field ionization source, J. Appl. Phys. 50(9), 6026 (1979)Google Scholar
  26. K. Horiuchi, T. Itakura, H. Ishikawa: Emission characteristics and stability of a helium field ion source, J. Vac. Sci. Technol. B 6(3), 937 (1988)Google Scholar
  27. M. Sato: Current–Pressure characteristics of Ar field ion source at high pressures, Jpn. J. Appl. Phys. 31(Part 2, No. 3A), L291–L292 (1992)Google Scholar
  28. K. Horiuchi, T. Itakura, H. Ishikawa: Fine pattern lithography using a helium field ion source, J. Vac. Sci. Technol. B 6(1), 241 (1988)Google Scholar
  29. T. Itakura, K. Horiuchi, S. Yamamoto: Focusing column for helium field ion source, Microelectron. Eng. 3(1–4), 153–160 (1985)Google Scholar
  30. H.-W. Fink: Mono-atomic tips for scanning tunneling microscopy, IBM J. Res. Dev. 30(5), 460–465 (1986)Google Scholar
  31. T.T. Tsong: Atom-Probe Field Ion Microscopy (Cambridge Univ. Press, Cambridge 1990) p. 400Google Scholar
  32. R. Börret, K. Jousten, K. Böhringer, S. Kalbitzer: Long time current stability of a gas field ion source with a supertip, J. Phys. D 21(12), 1835–1837 (1988)Google Scholar
  33. V.T. Binh, J. Marien: Characterization of microtips for scanning tunneling microscopy, Surf. Sci. 202(1/2), L539–L549 (1988)Google Scholar
  34. V.G. Butenko, Y.A. Vlasov, O.L. Golubev, V.N. Shrednik: Point sources of electrons and ions using microprotrusion on the top of a tip, Surf. Sci. 266(1–3), 165–169 (1992)Google Scholar
  35. A. Szczepkowicz: Oxygen-covered tungsten crystal shape: Time effects, equilibrium, surface energy and the edge-rounding temperature, Surf. Sci. 605(17/18), 1719–1725 (2011)Google Scholar
  36. H. Wengelnik, H. Neddermeyer: Oxygen-induced sharpening process of W(111) tips for scanning tunneling microscope use, J. Vac. Sci. Technol. A 8(1), 438–440 (1990)Google Scholar
  37. C. Vesa, R. Urban, J.L. Pitters, R.A. Wolkow: Robustness of tungsten single atom tips to thermal treatment and air exposure, Appl. Surf. Sci. 300, 16–21 (2014)Google Scholar
  38. C.-C. Chang, H.-S. Kuo, I.-S. Hwang, T.T. Tsong: A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter, Nanotechnology 20(11), 115401 (2009)Google Scholar
  39. T.-Y. Fu, L.-C. Cheng, C.-H. Nien, T.T. Tsong: Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation, Phys. Rev. B 64(11), 113401 (2001)Google Scholar
  40. J.L. Pitters, R. Urban, R.A. Wolkow: Creation and recovery of a W(111) single atom gas field ion source, J. Chem. Phys. 136(15), 154704 (2012)Google Scholar
  41. R. Urban, J.L. Pitters, R.A. Wolkow: Gas field ion source current stability for trimer and single atom terminated W(111) tips, Appl. Phys. Lett. 100(26), 263105 (2012)Google Scholar
  42. R. Urban, R.A. Wolkow, J.L. Pitters: Single atom gas field ion sources for scanning ion microscopy. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 31–61Google Scholar
  43. S. Kalbitzer: Optimised operation of gas field ion source, Appl. Phys. A 79(8), 1901–1905 (2004)Google Scholar
  44. S. Nagai, T. Iwata, R. Okawa, K. Kajiwara, K. Hata: Investigation of stability and charge state of Ne and Ar gas field ion source by time-of-flight mass spectrometry, Jpn. J. Appl. Phys. 53(5), 058004 (2014)Google Scholar
  45. E.W. Müller, S.B. McLane, J.A. Panitz: Field adsorption and desorption of helium and neon, Surf. Sci. 17(2), 430–438 (1969)Google Scholar
  46. E.W. Müller, S.V. Krishnaswamy, S.B. Mclane: Atom-probe FIM analysis of the interaction of the imaging gas with the surface, Surf. Sci. 23, 112 (1970)Google Scholar
  47. H.-S. Kuo, I.S. Hwang, T.-Y. Fu, Y.C. Lin, C.C. Chang, T.T. Tsong: Noble metal/W(111) single-atom tips and their field electron and ion emission characteristics, Jpn. J. Appl. Phys. 45(11), 8972–8983 (2006)Google Scholar
  48. J.A. Notte, J. Huang: The helium ion microscope. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 3–30Google Scholar
  49. E.W. Müller, T.T. Tsong: Field Ion Microscopy, Principles and Applications (Elsevier, New York 1969) p. 380Google Scholar
  50. E.A. Mason, E.W. McDaniel: Appendix III: Tables of properties useful in the estimation of ionneutral interaction energies. In: Transport Properties of Ions in Gases (Wiley-VCH, Weinheim 2005) pp. 531–539Google Scholar
  51. F. Aramaki, T. Kozakai, O. Matsuda, O. Takaoka, Y. Sugiyama, H. Oba, K. Aita, A. Yasaka: Photomask repair technology by using gas field ion source, Proc. SPIE 8441, 84410D (2012)Google Scholar
  52. F. Aramaki, T. Ogawa, O. Matsuda, T. Kozakai, Y. Sugiyama: Development of new FIB technology for EUVL mask repair, Proc. SPIE 7969, 79691C (2011)Google Scholar
  53. M.E. Schmidt, A. Yasaka, M. Akabori, H. Mizuta: Nitrogen gas field ion source (GFIS) focused ion beam (FIB) secondary electron imaging: A first look, Microsc. Microanal. 23(4), 758–768 (2017)Google Scholar
  54. H.-S. Kuo, I.-S. Hwang, T.-Y. Fu, Y.-H. Lu, C.-Y. Lin, T.T. Tsong: Gas field ion source from an Ir/W\(\langle\)111\(\rangle\) single-atom tip, Appl. Phys. Lett. 92(6), 063106 (2008)Google Scholar
  55. H. Shichi, S. Matsubara, T. Hashizume: Characteristics of krypton ion emission from a gas field ionization source with a single atom tip, Jpn. J. Appl. Phys. 56(6S1), 06GC01 (2017)Google Scholar
  56. J.E. Barth, P. Kruit: Addition of different contributions to the charged particle probe size, Optik 101, 101–109 (1996)Google Scholar
  57. R. Hill, F.H.M. Rahman: Advances in helium ion microscopy, Nucl. Instrum. Methods Phys. Res. A 645(1), 96–101 (2011)Google Scholar
  58. N. Ernst, G. Bozdech, H. Schmidt, W.A. Schmidt, G.L. Larkins: On the full-width-at-half-maximum of field ion energy distributions, Appl. Surf. Sci. 67(1–4), 111–117 (1993)Google Scholar
  59. J.A. Notte, B.W. Ward, N.P. Economou, R. Hill, R. Percival, L. Farkas, S. McVey: An introduction to the helium ion microscope, AIP Conf. Proc. 931, 489–496 (2007)Google Scholar
  60. F.W. Martin: A proposal for improved helium microscopy, Microsc. Microanal. 20(5), 1619–1622 (2014)Google Scholar
  61. F.W. Martin: Particle-beam column corrected for both chromatic and spherical aberration, US Patent 9275817B2 (2013)Google Scholar
  62. N. Klingner, R. Heller, G. Hlawacek, J. von Borany, J.A. Notte, J. Huang, S. Facsko: Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry, Ultramicroscopy 162, 91–97 (2016)Google Scholar
  63. D.C. Bell, M.C. Lemme, L.A. Stern, C.M. Marcus: Precision material modification and patterning with He ions, J. Vac. Sci. Technol. B 27(6), 2755 (2009)Google Scholar
  64. R. van Gastel, L. Barriss, C.A. Sanford, G. Hlawacek, L. Scipioni, A. Merkle, D. Voci, C. Fenner, H.J.W. Zandvliet, B. Poelsema: Design and performance of a ear ultra high vacuum helium ion Microscope, Microsc. Microanal. 17(S2), 928–929 (2011)Google Scholar
  65. V. Veligura, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Channeling in helium ion microscopy: Mapping of crystal orientation, Beilstein J. Nanotechnol. 3, 501–506 (2012)Google Scholar
  66. L. Bischoff, P. Mazarov, L. Bruchhaus, J. Gierak: Liquid metal alloy ion sources—An alternative for focussed ion beam technology, Appl. Phys. Rev. 3(2), 021101 (2016)Google Scholar
  67. B. Knuffman, A.V. Steele, J.J. McClelland: Cold atomic beam ion source for focused ion beam applications, J. Appl. Phys. 114(4), 044303 (2013)Google Scholar
  68. G. Jacob, K. Groot-Berning, S. Wolf, S. Ulm, L. Couturier, S.T. Dawkins, U.G. Poschinger, F. Schmidt-Kaler, K. Singer: Transmission microscopy with nanometer resolution using a deterministic single ion source, Phys. Rev. Lett. 117(4), 1–6 (2016)Google Scholar
  69. D.A. MacLaren, B. Holst, D.J. Riley, W. Allison: Focusing elements and design considerations for a scanning helium microscope (SHeM), Surf. Rev. Lett. 10(02n03), 249–255 (2003)Google Scholar
  70. M. Koch, S. Rehbein, G. Schmahl, T. Reisinger, G. Bracco, W.E. Ernst, B. Holst: Imaging with neutral atoms—A new matter-wave microscope, J. Microsc. 229(1), 1–5 (2008)Google Scholar
  71. M. Barr, A. Fahy, A. Jardine, J. Ellis, D. Ward, D.A. MacLaren, W. Allison, P.C. Dastoor: A design for a pinhole scanning helium microscope, Nucl. Instrum. Methods Phys. Res. B 340, 76–80 (2014)Google Scholar
  72. A. Fahy, M. Barr, J. Martens, P.C. Dastoor: A highly contrasting scanning helium microscope, Rev. Sci. Instrum. 86(2), 023704 (2015)Google Scholar
  73. B. Poelsema, G. Comsa: Scattering of Thermal Energy Atoms, Springer Tracts in Modern Physics, Vol. 115 (Springer, Berlin, Heidelberg 1989)Google Scholar
  74. F. Traeger: Helium atom scattering from oxide surfaces, ChemPhysChem 7(5), 1006–1013 (2006)Google Scholar
  75. A.P. Jardine, J. Ellis, W. Allison: Quasi-elastic helium-atom scattering from surfaces: Experiment and interpretation, J. Phys. Condens. Matter 14(24), 315 (2002)Google Scholar
  76. M. Barr, A. Fahy, J. Martens, A.P. Jardine, D.J. Ward, J. Ellis, W. Allison, P.C. Dastoor: Unlocking new contrast in a scanning helium microscope, Nat. Commun. 7, 10189 (2016)Google Scholar
  77. J.F. Ziegler, J.P. Biersack, M.D. Ziegler: SRIM, The Stopping and Range of Ions in Matter (SRIM, Chester 2008)Google Scholar
  78. H. Demers, N. Poirier-Demers, A.R. Couture, D. Joly, M. Guilmain, N. de Jonge, D. Drouin: Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software, Scanning 33(3), 135–146 (2011)Google Scholar
  79. R. Ramachandra, B.J. Griffin, D.C. Joy: A model of secondary electron imaging in the helium ion scanning microscope, Ultramicroscopy 109(6), 748–757 (2009)Google Scholar
  80. K. Ohya, T. Yamanaka, K. Inai, T. Ishitani: Comparison of secondary electron emission in helium ion microscope with gallium ion and electron microscopes, Nucl. Instrum. Methods Phys. Res. B 267(4), 584–589 (2009)Google Scholar
  81. H.D. Hagstrum: Theory of auger ejection of electrons from metals by ions, Phys. Rev. 96(2), 336–365 (1954)Google Scholar
  82. J. Ferrón, E. Alonso, R.A. Baragiola, A. Oliva-Florio: Dependence of ion-electron emission from clean metals on the incidence angle of the projectile, Phys. Rev. B 24(8), 4412–4419 (1981)Google Scholar
  83. H.A. Bethe: Minutes of the Washington, D.C., Meeting May 1–3, 1941, Phys. Rev. 59(11), 913–945 (1941)Google Scholar
  84. K. Ohya, K. Inai, A. Nisawa, A. Itoh: Emission statistics of x-ray induced photoelectrons and its comparison with electron- and ion-induced electron emissions, Nucl. Instrum. Methods Phys. Res. B 266(4), 541–548 (2008)Google Scholar
  85. M. Rösler: Theory of ion-induced kinetic electron emission from solids. In: Ionization of Solids by Heavy Particles, ed. by R.A. Baragiora (Plenum, Boston 1993) pp. 27–58Google Scholar
  86. H. Kudo: Ion-Induced Electron Emission from Crystalline Solids, Springer Tracts in Modern Physics, Vol. 175 (Springer, Berlin, Heidelberg 2002)Google Scholar
  87. Y. Lin, D.C. Joy: A new examination of secondary electron yield data, Surf. Interface Anal. 37(11), 895–900 (2005)Google Scholar
  88. K. Buchholt, P. Eklund, J. Jensen, J. Lu, A.L. Spetz, L. Hultman: Step-flow growth of nanolaminate Ti3SiC2 epitaxial layers on 4H-SiC(0001), Scr. Mater. 64(12), 1141–1144 (2011)Google Scholar
  89. G. Hlawacek, M. Jankowski, H. Wormeester, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Visualization of steps and surface reconstructions in helium ion microscopy with atomic precision, Ultramicroscopy 162, 17–24 (2015)Google Scholar
  90. Y.V. Petrov, O.F. Vyvenko, A.S. Bondarenko: Scanning helium ion microscope: Distribution of secondary electrons and ion channeling, J. Surf. Investig. 4(5), 792–795 (2010)Google Scholar
  91. Y. Petrov, O. Vyvenko: Secondary electron emission spectra and energy selective imaging in helium ion microscope, Proc. SPIE 8036, 80360O (2011)Google Scholar
  92. P. Riccardi, P. Barone, A. Bonanno, A. Oliva, R.A. Baragiola: Angular studies of potential electron emission in the interaction of slow ions with Al surfaces, Phys. Rev. Lett. 84(2), 378–381 (2000)Google Scholar
  93. G. Hlawacek, I. Ahmad, M.A. Smithers, E.S. Kooij: To see or not to see: Imaging surfactant coated nano-particles using HIM and SEM, Ultramicroscopy 135C, 89–94 (2013)Google Scholar
  94. Y.V. Petrov, O.F. Vyvenko: Secondary electron generation in the helium ion microscope: Basics and imaging. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 119–146Google Scholar
  95. R. Ramachandra: A Study of Helium Ion Induced Secondary Electron Production, Ph.D. Thesis (Univ. Tennessee, Knoxville 2009)Google Scholar
  96. R. Timilsina, P.D. Rack: Monte Carlo simulations of focused ion beam induced processing. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 89–118Google Scholar
  97. R. Ramachandra, B.J. Griffin, D.C. Joy: Modeling for metrology with a helium beam, Proc. SPIE 6922, 69221W–69221W–8 (2008)Google Scholar
  98. S.A. Boden: Introduction to imaging techniques in the HIM. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 149–172Google Scholar
  99. G. Behan, D. Zhou, M. Boese, R.M. Wang, H. Zhang: An investigation of nickel cobalt oxide nanorings using transmission electron, scanning electron and helium ion microscopy, J. Nanosci. Nanotechnol. 12(2), 1094–1098 (2012)Google Scholar
  100. D.S. Fox, Y. Zhou, A. O'Neill, S. Kumar, J.J. Wang, J.N. Coleman, G.S. Duesberg, J.F. Donegan, H. Zhang, A. O'Neill: Helium ion microscopy of graphene: Beam damage, image quality and edge contrast, Nanotechnology 24(33), 335702 (2013)Google Scholar
  101. A. Gölzhäuser: Helium ion microscopy of carbon nanomembranes. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 225–244Google Scholar
  102. A. Beyer, H. Vieker, R. Klett, H.M. zu Theenhausen, P. Angelova, A. Gölzhäuser: Imaging of carbon nanomembranes with helium ion microscopy, Beilstein J. Nanotechnol. 6(1), 1712–1720 (2015)Google Scholar
  103. G. Behan, J.F. Feng, H. Zhang, P.N. Nirmalraj, J.J. Boland: Effect of sample bias on backscattered ion spectroscopy in the helium ion microscope, J. Vac. Sci. Technol. A 28(6), 1377 (2010)Google Scholar
  104. D.-E. Arafah, J. Meyer, H. Sharabati, A. Mahmoud: Charge-state measurements of backscattered ions from Au films, Phys. Rev. A 39(8), 3836–3841 (1989)Google Scholar
  105. T.M. Buck, G.H. Wheatley, L.C. Feldman: Charge states of 25–150 keV H and 4He backscattered from solid surfaces, Surf. Sci. 35, 345–361 (1973)Google Scholar
  106. W. Eckstein, M. Mayer: Rutherford backscattering from layered structures beyond the single scattering model, Nucl. Instrum. Methods Phys. Res. B 153(1–4), 337–344 (1999)Google Scholar
  107. P. Bauer, E. Steinbauer, J.P. Biersack: Rutherford backscattering beyond the single scattering model, Nucl. Instrum. Methods Phys. Res. B 79(1–4), 443–445 (1993)Google Scholar
  108. E. Steinbauer, P. Bauer, J. Biersack: Monte Carlo simulation of RBS spectra: Comparison to experimental and empirical results, Nucl. Instrum. Methods Phys. Res. B 45(1–4), 171–175 (1990)Google Scholar
  109. A. Weber, H. Mommsen: Background in Rutherford backscattering spectra: A simple formula, Nucl. Instrum. Methods Phys. Res. 204, 559–563 (1983)Google Scholar
  110. A. Weber, H. Mommsen, W. Sarter, A. Weller: Double scattering in Rutherford backscattering spectra, Nucl. Instrum. Methods Phys. Res. 198, 527–533 (1982)Google Scholar
  111. N. Klingner: Ionenstrahlanalytik im Helium-Ionen-Mikroskop, Ph.D. Thesis (TU Dresden, Dresden 2016)Google Scholar
  112. S. Sijbrandij, J.A. Notte, L. Scipioni, C. Huynh, C.A. Sanford: Analysis and metrology with a focused helium ion beam, J. Vac. Sci. Technol. B 28(1), 73 (2010)Google Scholar
  113. R. van Gastel, G. Hlawacek, H.J.W. Zandvliet, B. Poelsema: Subsurface analysis of semiconductor structures with helium ion microscopy, Microelectron. Reliab. 52(9/10), 2104–2109 (2012)Google Scholar
  114. R. Heller, N. Klingner, G. Hlawacek: Backscattering spectrometry in the helium ion microscope: Imaging elemental compositions on the nm scale. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 265–295Google Scholar
  115. C. Kerkdijk, E.W. Thomas: Light emission induced by H+ and He+ impact on a clean copper surface, Physica 63(3), 577–598 (1973)Google Scholar
  116. W. Baird, M. Zivitz, E. Thomas: Excited–state formation as H+ and He+ ions scatter from metal surfaces, Phys. Rev. A 12(3), 876–884 (1975)Google Scholar
  117. W.F. van der Weg, P.K. Rol: On the excited state of sputtered particles, Nucl. Instrum. Methods Phys. Res. 38, 274–276 (1965)Google Scholar
  118. C.W.W. White: Ion induced optical emission for surface and depth profile analysis, Nucl. Instrum. Methods Phys. Res. 149(1–3), 497–506 (1978)Google Scholar
  119. N.H. Tolk, I.S.T. Tsong, C.W. White: In situ spectrochemical analysis of solid surfaces by ion beam sputtering, Anal. Chem. 49(1), 16A–30A (1977)Google Scholar
  120. D. Ghose, R. Hippier: Ionoluminescence. In: Luminescence of Solids, ed. by D.R. Vij (Springer, New York 1998) pp. 189–220Google Scholar
  121. U. Scherz: Grundlagen der Festkörperphysik. In: Lehrbuch der Experimentalphysik, 2nd edn., ed. by R. Kassing (De Gruyter, Berlin 1992)Google Scholar
  122. G.M. Filippelli, M.L. Delaney: The effects of manganese(II) and iron(II) on the cathodoluminescence signal in synthetic apatite, SEPM J. Sediment. Res. 63, 167–173 (1993)Google Scholar
  123. K. Schwartz: Excitons and radiation damage in alkali halides. In: Atomic Physics Methods in Modern Research, Lecture Notes in Physics, Vol. 1, ed. by K.P. Jungmann, J. Kowalski, I. Reinhard, F. Träer (Springer, Berlin, Heidelberg 1997) pp. 351–366Google Scholar
  124. V. Veligura, G. Hlawacek, U. Jahn, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Creation and physical aspects of luminescent patterns using helium ion microscopy, J. Appl. Phys. 115(18), 183502 (2014)Google Scholar
  125. S.A. Boden, T.M.W. Franklin, L. Scipioni, D.M. Bagnall, H.N. Rutt: Ionoluminescence in the helium ion microscope, Microsc. Microanal. 18(6), 1253–1262 (2012)Google Scholar
  126. V. Veligura, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Investigation of ionoluminescence of semiconductor materials using helium ion microscopy, J. Lumin. 157, 321–326 (2015)Google Scholar
  127. V. Veligura, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: A high resolution ionoluminescence study of defect creation and interaction, J. Phys. Condens. Matter 26(16), 165401 (2014)Google Scholar
  128. J.I. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Springer, Berlin 2003)Google Scholar
  129. A.J. Pearson, S.A. Boden, D.M. Bagnall, D.G. Lidzey, C. Rodenburg: Imaging the bulk nanoscale morphology of organic solar cell blends using helium ion microscopy, Nano Lett. 11(10), 4275–4281 (2011)Google Scholar
  130. Z.-Y. Tian, P. Mountapmbeme, P.M. Kouotou, A. El Kasmi, P.H. Tchoua Ngamou, K. Kohse-Höinghaus, H. Vieker, A. Beyer, A. Gölzhäuser: Low-temperature deep oxidation of olefins and DME over cobalt fernite, Proc. Combust. Inst. 35, 2207 (2015)Google Scholar
  131. P.M. Kouotou, H. Vieker, Z.-Y. Tian, P.T. Ngamou, A.E. Kasmi, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus: Structure-activity relation of spinal-type Co-Fe oxides for low-temperature CO oxidation, Catal. Sci. Technol. 4, 3359 (2014)Google Scholar
  132. P.M. Kouotou, Z.-Y. Tian, H. Vieker, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus: Selective synthesis of \(\alpha\)-Fe2O3 thin films and effect of the deposition temperature and lattice oxygen on the catalytic combustion of propene, J. Mater. Chem. A 1, 10495 (2013)Google Scholar
  133. H. Vieker, A. Beyer: HIM applications in combustion science: Imaging of catalyst surfaces and nascent soot. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 187–203Google Scholar
  134. S.A. Boden, A. Asadollahbaik, H.N. Rutt, D.M. Bagnall: Helium ion microscopy of Lepidoptera scales, Scanning 34(2), 107–120 (2012)Google Scholar
  135. H. Guo, H. Itoh, C. Wang, H. Zhang, D. Fujita: Focal depth measurement of scanning helium ion microscope, Appl. Phys. Lett. 023105(2014), 1–5 (2014)Google Scholar
  136. M.S. Joens, C. Huynh, J.M. Kasuboski, D.C. Ferranti, Y.J. Sigal, F. Zeitvogel, M. Obst, C.J. Burkhardt, K.P. Curran, S.H. Chalasani, L.A. Stern, B. Goetze, J.A.J. Fitzpatrick: Helium ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution, Sci. Rep. 3, 3514 (2013)Google Scholar
  137. Y. Zhou, D.S. Fox, H. Zhang: Helium ion microscopy for two-dimensional materials. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 245–262Google Scholar
  138. H. Guo, J. Gao, N. Ishida, M. Xu, D. Fujita: Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy, Appl. Phys. Lett. 104(3), 031607 (2014)Google Scholar
  139. G. Nanda, S. Goswami, K. Watanabe, T. Taniguchi, P.F.A. Alkemade: Defect control and n-doping of encapsulated graphene by helium-ion-beam irradiation, Nano Lett. 15(6), 4006–4012 (2015)Google Scholar
  140. R. Zan, Q.M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, K.S. Novoselov: Control of radiation damage in MoS 2 by graphene encapsulation, ACS Nano 7(11), 10167–10174 (2013)Google Scholar
  141. G. Algara-Siller, S. Kurasch, M. Sedighi, O. Lehtinen, U. Kaiser: The pristine atomic structure of MoS 2 monolayer protected from electron radiation damage by graphene, Appl. Phys. Lett. 103(20), 203107 (2013)Google Scholar
  142. M. Kalbac, O. Lehtinen, A.V. Krasheninnikov, J. Keinonen: Ion-irradiation-induced defects in isotopically-labeled two layered graphene: Enhanced in-situ annealing of the damage, Adv. Mater. 25(7), 1004–1009 (2013)Google Scholar
  143. L. Scipioni, C.A. Sanford, J.A. Notte, B. Thompson, S. McVey: Understanding imaging modes in the helium ion microscope, J. Vac. Sci. Technol. B 27(6), 3250 (2009)Google Scholar
  144. L. Scipioni, D.C. Ferranti, V.S. Smentkowski, R.A. Potyrailo: Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope, J. Vac. Sci. Technol. B 28(6), C6P18 (2010)Google Scholar
  145. J. Yang, D.C. Ferranti, L.A. Stern, C.A. Sanford, J. Huang, Z. Ren, L.-C. Qin, A.R. Hall: Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection, Nanotechnology 22(28), 285310 (2011)Google Scholar
  146. A.R. Hall: Solid-state nanopores: From fabrication to application, Microsc. Today 20(05), 24–29 (2012)Google Scholar
  147. O.K. Zahid, A.R. Hall: Helium ion microscope fabrication of solid-state nanopore devices for biomolecule analysis. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 447–470Google Scholar
  148. T.J. Woehl, R.M. White, R.R. Keller: Dark-field scanning transmission ion microscopy via detection of forward-scattered helium ions with a microchannel plate, Microsc. Microanal. 22(3), 544–550 (2016)Google Scholar
  149. J.A. Notte, R. Hill, S.M. McVey, R. Ramachandra, B.J. Griffin, D.C. Joy: Diffraction imaging in a He+ on beam scanning transmission microscope, Microsc. Microanal. 16(05), 599–603 (2010)Google Scholar
  150. J. Wang, S.H.Y. Huang, C. Herrmann, S.A. Scott, F. Schiettekatte, K.L. Kavanagh: Focussed helium ion channeling through Si nanomembranes, J. Vac. Sci. Technol. B 36(2), 021203 (2018)Google Scholar
  151. Y.V. Petrov, O.F. Vyvenko: Scanning reflection ion microscopy in a helium ion microscope, Beilstein J. Nanotechnol. 6, 1125–1137 (2015)Google Scholar
  152. T. Wirtz, D. Dowsett, P. Philipp: SIMS on the helium ion microscope: A powerful tool for high-resolution high-sensitivity nano-analytics. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 297–323Google Scholar
  153. S. Sijbrandij, J.A. Notte, B. Thompson, C. Huynh, C.A. Sanford, L. Scipioni: A new detector for backscattered helium ions in the 30 keV energy range, Microsc. Microanal. 15(S2), 220–221 (2009)Google Scholar
  154. S. Sijbrandij, B. Thompson, J.A. Notte, B.W. Ward, N.P. Economou: Elemental analysis with the helium ion microscope, J. Vac. Sci. Technol. B 26(6), 2103 (2008)Google Scholar
  155. R. van Gastel, G. Hlawacek, S. Dutta, B. Poelsema: Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications, Nucl. Instrum. Methods Phys. Res. B 344, 44–49 (2015)Google Scholar
  156. M. Mayer: SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, AIP Conf. Proc. 475, 541–544 (1999)Google Scholar
  157. N.P. Barradas, C. Jeynes, R.P. Webb: Simulated annealing analysis of Rutherford backscattering data, Appl. Phys. Lett. 71(2), 291–293 (1997)Google Scholar
  158. P. Sigmund: Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184(2), 383–416 (1969)Google Scholar
  159. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara: Energy dependence of the ion-induced sputtering yields of monatomic solids, At. Data Nucl. Data Tables 31(1), 1–80 (1984)Google Scholar
  160. Y. Yamamura, H. Tawara: Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence, At. Data Nucl. Data Tables 62(2), 149–253 (1996)Google Scholar
  161. L. Pillatsch, N. Vanhove, D. Dowsett, S. Sijbrandij, J.A. Notte, T. Wirtz: Study and optimisation of SIMS performed with He+ and Ne+ bombardment, Appl. Surf. Sci. 282, 908–913 (2013)Google Scholar
  162. D. Dowsett, T. Wirtz, N. Vanhove, L. Pillatsch, S. Sijbrandij, J.A. Notte: Secondary ion mass spectrometry on the helium ion microscope: A feasibility study of ion extraction, J. Vac. Sci. Technol. B 30(6), 06F602 (2012)Google Scholar
  163. T. Wirtz, P. Philipp, J.-N. Audinot, D. Dowsett, S. Eswara: High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2-D and 3-D imaging to correlative microscopy, Nanotechnology 26(43), 434001 (2015)Google Scholar
  164. V. Veligura, G. Hlawacek, R.P. Berkelaar, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Digging gold: keV He+ ion interaction with Au, Beilstein J. Nanotechnol. 4, 453–460 (2013)Google Scholar
  165. S. Ogawa, T. Iijima, S. Awata, R. Sugie, N. Kawasaki, Y. Otsuka: Characterization of damage in SiO2 during helium ion microscope observation by luminescence and TEM-EELS, Microsc. Microanal. 18(S2), 814–815 (2012)Google Scholar
  166. V. Veligura, G. Hlawacek: Ionoluminescence. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 325–351Google Scholar
  167. V. Veligura: Material Characterization and Modification Using Helium Ion Microscopy: Various Examples, Ph.D. Thesis (Univ. Twente, Enschede 2014)Google Scholar
  168. T.M.W. Franklin: Scanning Ionoluminescence Microscopy with a Helium Ion Microscope, Ph.D. Thesis (Univ. Southampton, Southampton 2012), p. 198Google Scholar
  169. I. Stensgaard: Surface studies with high-energy ion beams, Rep. Prog. Phys. 55(7), 989–1033 (1992)Google Scholar
  170. L.C. Feldman, J.W. Mayer, S.T.A. Picraux: Materials Analysis by Ion Channeling: Submicron Crystallography (Academic Press, New York 1982) p. 300Google Scholar
  171. J. Lindhard: Influence of crystal lattice on motion of energetic charged particles, Mat. Fys. Medd. Dan. Vidensk. Selsk. 34(14), 1–64 (1965)Google Scholar
  172. A.A. van Gorkum: Channeling computations for low energy (25–2500 eV) helium in tungsten, Phys. Lett. A 75(1/2), 134–136 (1979)Google Scholar
  173. M. Nastasi, J. Mayer, Y. Wang: Ion Beam Analysis (CRC, Boca Raton 2014) p. 472Google Scholar
  174. G.D. Magnuson, C.E. Carlston: Electron ejection from metals due to 1- to 10-keV noble gas ion bombardment. I. Polycrystalline Materials, Phys. Rev. 129(6), 2403–2408 (1963)Google Scholar
  175. M.T. Robinson: Theoretical aspects of monocrystal sputtering. In: Sputtering by Particle Bombardment, ed. by R. Behrisch (Springer, Berlin 1981) pp. 73–144Google Scholar
  176. U. Von Gemmingen: Ion induced secondary electron emission from single crystal surfaces, Surf. Sci. 120(2), 334–345 (1982)Google Scholar
  177. G. Hlawacek, V. Veligura, R. van Gastei, B. Poelsema: Channeling and backscatter imaging. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 205–224Google Scholar
  178. M.A. Karolewski, R.G. Cavell: Modelling the directional and energy dependence of 5-10 keV Ar+ ion-induced secondary electron yields from Cu crystals, Surf. Sci. 605(19/20), 1842–1851 (2011)Google Scholar
  179. M. Nègre, J. Mischler, N. Bénazeth, C. Noguera, D. Spanjaard: Diffraction effects in the angular distribution of secondary electrons emitted under ionic bombardment of a (111) surface of silver: Experimental results and theoretical model, Surf. Sci. 78(1), 174–180 (1978)Google Scholar
  180. C. Langlois, T. Douillard, H. Yuan, N.P. Blanchard, A. Descamps-Mandine, B. Van de Moortèle, C. Rigotti, T. Epicier: Crystal orientation mapping via ion channeling: An alternative to EBSD, Ultramicroscopy 157, 65–72 (2015)Google Scholar
  181. M. Jankowski, H. Wormeester, H.J.W. Zandvliet, B. Poelsema: Temperature-dependent formation and evolution of the interfacial dislocation network of Ag/Pt(111), Phys. Rev. B 89(23), 235402 (2014)Google Scholar
  182. G. Hlawacek, V. Veligura, S. Lorbek, T.F. Mocking, A. George, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism, Beilstein J. Nanotechnol. 3, 507–512 (2012)Google Scholar
  183. M.G. Stanford, B.B. Lewis, K. Mahady, J.D. Fowlkes, P.D. Rack: Review article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams, J. Vac. Sci. Technol. B 35(3), 030802 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Ion Beam Physics & Materials ResearchHelmholtz Zentrum Dresden RossendorfDresdenGermany

Personalised recommendations