Advertisement

Aberration Correctors, Monochromators, Spectrometers

Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

After four decades of attempts to correct the primary spherical and chromatic aberrations of electron lenses that led to no improvement in resolution, success was at last achieved in the 1990s with both quadrupole-octupole and sextupole correctors. The successful correctors focused on three aspects of aberration correction: primary aberrations, parasitic aberrations, and overall stability. They quickly demonstrated resolution improvement in the microscopes they were built into, and in the early 2000s, they advanced the attainable resolution to \(<{\mathrm{1}}\,{\mathrm{\AA{}}}\)—a level not achievable by uncorrected electron microscopes. Subsequent generations of correctors included further multipoles and corrected aberrations up to the fifth order, enabling resolution of better than \({\mathrm{0.5}}\,{\mathrm{\AA{}}}\) to be reached at \({\mathrm{300}}\,{\mathrm{kV}}\) primary voltage, and around \({\mathrm{1}}\,{\mathrm{\AA{}}}\) at \({\mathrm{30}}\,{\mathrm{kV}}\). The effect of chromatic aberration was reduced by the use of hybrid quadrupoles or by incorporating a monochromator in the microscope column.

After a brief summary of the optics of multipoles, the various types of correctors are examined in detail: quadrupole–octopole correctors, which first improved the performance of a scanning electron microscope and, soon after, that of scanning transmission electron microscopes; and sextupole correctors, which first increased the resolving power of conventional (fixed-beam) transmission electron microscopes, and were later used in scanning transmission electron microscopes as well. Ways of combating chromatic aberration are then described, including mirror correctors employed in low-energy-electron and photoemission microscopes ( and PEEM). A section is devoted to studies of aberrations beyond the third order and of parasitic aberrations.

Electron spectrometers and imaging filters are routine accessories of electron microscopes, and they too must be carefully designed, especially when attached to aberration-corrected instruments. A section covers these devices, and much of the reasoning also applies to monochromators. Separate paragraphs are devoted to post-column and in-column spectrometers and monochromators, and the attainable energy resolution is discussed. Practical aspects of the correction process are described, notably autotuning and aberration measurement. We conclude with a survey of current performance limits and comments on the problems to be overcome if further progress is to be made.

Keywords

quadrupole correctors sextupole correctors monochromators in-column spectrometers post-column spectrometers geometrical aberrations chromatic aberrations parasitic aberrations 

References

  1. O. Scherzer: Über einige Fehler von Elektronenlinsen, Z. Phys. 101, 593–603 (1936)Google Scholar
  2. O. Scherzer: Sphärische und chromatische Korrektur von Elektronenlinsen, Optik 2, 114–132 (1947)Google Scholar
  3. A. Septier: The struggle to overcome spherical aberration in electron optics, Adv. Opt. Electron Microsc. 1, 204–274 (1966)Google Scholar
  4. A. Septier: The struggle to overcome spherical aberration in electron optics, Adv. Imaging Electron Phys. 202, 75–147 (2017)Google Scholar
  5. P.W. Hawkes: Methods of computing optical properties and combating aberrations for low-intensity beams, Adv. Electron. Electron Phys. Suppl. 13A, 45–157 (1980)Google Scholar
  6. P.W. Hawkes, E. Kasper: Principles of Electron Optics, 2nd edn. (Academic Press, Kidlington 2018)Google Scholar
  7. M. Marko, H. Rose: The contributions of Otto Scherzer (1909–1982) to the development of the electron microscope, Microsc. Microanal. 16, 366–374 (2010)Google Scholar
  8. J. Orloff (Ed.): Handbook of Charged Particle Optics, 2nd edn. (CRC, Boca Raton 2009)Google Scholar
  9. E. Munro: Computational techniques for design of charged particle optical systems. In: Handbook of Charged Particle Optics, ed. by J. Orloff (CRC, Boca Raton 1997) pp. 1–76Google Scholar
  10. K. Tsuno: Magnetic lenses for electron microscopy. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 129–159Google Scholar
  11. B. Lencová: Electrostatic lenses. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 161–208Google Scholar
  12. P.W. Hawkes: Aberrations. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 209–340Google Scholar
  13. H. Rose: Geometrical Charged-Particle Optics, 2nd edn. (Springer, Heidelberg 2012)Google Scholar
  14. H. Rose: Advances in electron optics. In: High-Resolution Imaging and Spectrometry of Materials, ed. by F. Ernst, M. Rühle (Springer, Berlin 2003) pp. 189–270Google Scholar
  15. P.W. Hawkes: Quadrupoles in Electron Lens Design, Adv. Electron. Electron Phys. Suppl. 7 (Academic Press, Cambridge 1970)Google Scholar
  16. L.A. Baranova, S.Ya. Yavor: The optics of round and multipole electrostatic lenses, Adv. Electron. Electron Phys. 76, 1–207 (1989)Google Scholar
  17. A.D. Dymnikov, S.Ya. Yavor: Four quadrupole lenses as an analogue of an axially symmetric system, Zh. Tekh. Fiz. 33, 851–858 (1963)Google Scholar
  18. A.D. Dymnikov, S.Ya. Yavor: Four quadrupole lenses as an analogue of an axially symmetric system, Sov. Phys. Tech. Phys. 8, 639–643 (1963)Google Scholar
  19. H. Rose: Theory of electron-optical achromats and apochromats, Ultramicroscopy 93, 293–303 (2002)Google Scholar
  20. S. Uhlemann, M. Haider: Residual wave aberrations in the first spherical aberration corrected transmission electron microscope, Ultramicroscopy 72, 109–119 (1998)Google Scholar
  21. M. Haider, H. Müller, S. Uhlemann, J. Zach, U. Loebau, R. Hoeschen: Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM, Ultramicroscopy 108, 167–178 (2008)Google Scholar
  22. M. Haider, P. Hartel, U. Loebau, R. Hoeschen, H. Müller, S. Uhlemann, F. Kahl, F. Zach: Progress on the development of a Cc/Cs corrector for TEAM, Microsc. Microanal. 14(Suppl. 2), 800–801 (2008)Google Scholar
  23. M. Haider, H. Müller, S. Uhlemann: Present and future hexapole aberration correctors for high resolution electron microscopy, Adv. Imaging Electron Phys. 153, 43–120 (2008)Google Scholar
  24. M. Haider, S. Uhlemann, J. Zach: Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM, Ultramicroscopy 81, 163–175 (2000)Google Scholar
  25. O.L. Krivanek, N. Dellby, M.F. Murfitt: Aberration correction in electron microscopy. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 601–640Google Scholar
  26. O.L. Krivanek, N. Dellby, A.R. Lupini: Towards sub-Å electron beams, Ultramicroscopy 78, 1–11 (1999)Google Scholar
  27. H. Sawada: Aberration correction in STEM. In: Scanning Transmission Electron Microscopy of Nanomaterials, ed. by N. Tanaka (Imperial College Press, London 2015) pp. 283–305Google Scholar
  28. H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, K. Takayanagi: Measurement method of aberration from Ronchigram by autocorrelation function, Ultramicroscopy 108, 1467–1475 (2008)Google Scholar
  29. H. Sawada, M. Watanabe, E. Okunishi, Y. Kondo: Auto-tuning of aberrations using high-resolution STEM images by auto-correlation function, Microsc. Microanal. 17(Suppl. 2), 1308–1309 (2011)Google Scholar
  30. H. Sawada, F. Hosokawa, T. Sasaki, T. Kaneyama, Y. Kondo, K. Suenaga: Aberration correctors developed under the Triple C project, Adv. Imaging Electron Phys. 168, 297–336 (2011)Google Scholar
  31. O.L. Krivanek: Three-fold astigmatism in high-resolution transmission electron microscopy, Ultramicroscopy 55, 419–433 (1994)Google Scholar
  32. O.L. Krivanek, G.Y. Fan: Complete HREM autotuning using automated diffractogram analysis, Proc. Annu. Meet. EMSA 50(1), 96–97 (1992)Google Scholar
  33. O.L. Krivanek, G.Y. Fan: Application of slow-scan charge-coupled device (CCD) cameras to on-line microscope control, Scanning Microsc. Suppl. 6, 105–114 (1992)Google Scholar
  34. O.L. Krivanek, M.L. Leber: Three-fold astigmatism: An important TEM aberration. In: Proc. 51st Annu. Meet. Microsc. Soc. Am, ed. by G.W. Bailey, C.L. Rieder (San Francisco Press, San Francisco 1993) pp. 972–973Google Scholar
  35. O.L. Krivanek, M.L. Leber: Autotuning for 1 Å resolution. In: Proc. 13th Int. Conf. Electron Microsc., Paris, Vol. 1, ed. by B. Jouffrey, C. Colliex, J.-P. Chevalier, F. Glas, P.W. Hawkes, D. Hernandez-Verdun, J. Schrevel, D. Thomas (Editions de Physique, Les Ulis 1994) pp. 157–158Google Scholar
  36. O.L. Krivanek, P.A. Stadelmann: Effect of three-fold astigmatism on high-resolution electron micrographs, Ultramicroscopy 60, 103–113 (1995)Google Scholar
  37. W.O. Saxton: Observation of lens aberrations for very high resolution electron microscopy I: Theory, J. Microsc. (Oxford) 179, 201–213 (1995)Google Scholar
  38. W.O. Saxton: Simple prescriptions for measuring three-fold astigmatism, Ultramicroscopy 58, 239–243 (1995)Google Scholar
  39. W.O. Saxton: A new way of measuring aberrations, Ultramicroscopy 81, 41–45 (2000)Google Scholar
  40. W.O. Saxton: Observation of lens aberrations for very high resolution electron microscopy. II. Simple expressions for optimal estimates, Ultramicroscopy 151, 168–177 (2015)Google Scholar
  41. W.O. Saxton, G. Chand, A.I. Kirkland: Accurate determination and compensation of lens aberrations in high resolution EM. In: Proc. 13th Int. Conf. Electron Microsc., Paris, Vol. 1, ed. by B. Jouffrey, C. Colliex, J.-P. Chevalier, F. Glas, P.W. Hawkes, D. Hernandez-Verdun, J. Schrevel, D. Thomas (Editions de Physique, Les Ulis 1994) pp. 203–204Google Scholar
  42. G. Chand, W.O. Saxton, A.I. Kirkland: Aberration measurement and automated alignment of the TEM. In: Electron Microscopy and Analysis, ed. by D. Cherns (Institute of Physics, Bristol 1995) pp. 297–300Google Scholar
  43. K. Ishizuka: Coma-free alignment of a high-resolution electron microscope with three-fold astigmatism, Ultramicroscopy 55, 407–418 (1994)Google Scholar
  44. R. Meyer, A.I. Kirkland, W.O. Saxton: A new method for the determination of the wave aberration function for high resolution TEM. I. Measurement of the symmetric aberrations, Ultramicroscopy 92, 89–109 (2002)Google Scholar
  45. R. Meyer, A.I. Kirkland, W.O. Saxton: A new method for the determination of the wave aberration function for high resolution TEM. II. Measurement of the antisymmetric aberrations, Ultramicroscopy 99, 115–123 (2004)Google Scholar
  46. A.R. Lupini: The electron Ronchigram. In: Scanning Transmission Electron Microscopy. Imaging and Analysis, ed. by S.J. Pennycook, P.D. Nellist (Springer, New York 2011) pp. 117–161Google Scholar
  47. A.R. Lupini, M. Chi, S. Jesse: Rapid aberration measurement with pixelated detectors, J. Microsc. (Oxford) 263, 43–50 (2016)Google Scholar
  48. F. Zemlin, K. Weiss, P. Schiske, W. Kunath, K.-H. Herrmann: Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms, Ultramicroscopy 3, 49–60 (1978)Google Scholar
  49. F. Zemlin: A practical procedure for alignment of a high resolution electron microscope, Ultramicroscopy 4, 241–224 (1979)Google Scholar
  50. O.L. Krivanek: EM contrast transfer functions for tilted illumination imaging. In: Proc. 9th Int. Electron Microsc. Congr, Vol. 1, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 168–169Google Scholar
  51. W. Glaser: Über elektronenoptische Abbildung bei gestörter Rotationssymmetrie, Z. Phys. 120, 1–15 (1942)Google Scholar
  52. P.A. Sturrock: The aberrations of magnetic electron lenses due to asymmetries. In: Proc. First Conf. Electron Microsc., 1949, ed. by A.L. Houwink, J.B. Le Poole, W.A. Le Rütte (Hoogland, Delft 1950) pp. 89–93Google Scholar
  53. P.A. Sturrock: The aberrations of magnetic electron lenses due to asymmetries, Philos. Trans. Royal Soc. A 243, 387–429 (1951)Google Scholar
  54. G.D. Archard: Magnetic electron lens aberrations due to mechanical defects, J. Sci. Instrum. 30, 352–358 (1953)Google Scholar
  55. W. Glaser, P. Schiske: Bildstörungen durch Polschuhasymmetrien bei Elektronenlinsen, Z. Angew. Phys. 5, 329–339 (1953)Google Scholar
  56. G.V. Der-Shvarts: Influence of imperfections of the rotational symmetry of the focusing fields on the resolution of the magnetic objectives of electron microscopes, Zh. Tekh. Fiz. 24, 859–870 (1954)Google Scholar
  57. P.A. Stoyanov: The effect of departures of the geometrical shape of the polepieces of an objective from circular symmetry on the resolving power of the electron microscope, Zh. Tekh. Fiz. 25, 625–635 (1955)Google Scholar
  58. K.-H. Herrmann, P. Schiske, F. Zemlin: Einfluß und Nachweis des dreizähligen Astigmatismus in der Hochauflösungsmikroskopie, Mikroskopie 32, 235 (1976)Google Scholar
  59. M.I. Yavor: Methods for calculation of parasitic aberrations and machining tolerances in electron optical systems, Adv. Electron. Electron Phys. 86, 225–281 (1993)Google Scholar
  60. P.W. Hawkes: Aberration correction. In: Science of Microscopy, ed. by P.W. Hawkes, J.C.H. Spence (Springer, New York 2007) pp. 696–750Google Scholar
  61. P.W. Hawkes: Aberration correction past and present, Philos. Trans. Royal Soc. A 367, 3637–3664 (2009)Google Scholar
  62. P.W. Hawkes: The correction of electron lens aberrations, Ultramicroscopy 156, A1–A64 (2015)Google Scholar
  63. H. Rose: Historical aspects of aberration correction, J. Electron Microsc. 58, 77–85 (2009)Google Scholar
  64. R. Erni: Aberration-corrected Imaging in Transmission Electron Microscopy: An Introduction, 2nd edn. (Imperial College Press, London 2015)Google Scholar
  65. P.W. Hawkes (Ed.): Aberration-corrected electron microscopy, Adv. Imaging Electron Phys. 153 (2008)Google Scholar
  66. R. Brydson (Ed.): Aberration-Corrected Analytical Electron Microscopy (Wiley and the Royal Microscopical Society, Chichester, Oxford 2011)Google Scholar
  67. B. Lencová, M. Lenc: Computation of multi-lens focusing systems, Nucl. Instrum. Methods Phys. Res. A 298, 45–55 (1990)Google Scholar
  68. B. Lencová, M. Lenc: Computation of properties of electrostatic lenses, Optik 97, 121–126 (1994)Google Scholar
  69. B. Lencová, M. Lenc: Third order geometrical and first order chromatic aberrations of electrostatic lenses, Optik 105, 121–128 (1997)Google Scholar
  70. H. Rose: Über die Korrigierbarkeit von Linsen für schnelle Elektronen, Optik 26, 289–298 (1967)Google Scholar
  71. D. Preikszas, H. Rose: Procedures for minimizing the aberrations of electromagnetic compound lenses, Optik 100, 179–187 (1995)Google Scholar
  72. W. Glaser: Über ein von sphärischer Aberration freies Magnetfeld, Z. Phys. 116, 19–33 (1940)Google Scholar
  73. A. Recknagel: Über die sphärische Aberration bei elektronenoptischer Abbildung, Z. Phys. 117, 67–73 (1941)Google Scholar
  74. S. Nomura: Aberration-free electron microscope composed of round lenses. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa (2004) pp. 34–35Google Scholar
  75. S. Nomura: Design of an apochromatic TEM composed of usual round lenses. In: Proc. 14th Eur. Microsc. Congr., Aachen, Vol. 1, ed. by M. Luysberg, K. Tillmann (Springer, Berlin 2008) pp. 41–42Google Scholar
  76. P.W. Hawkes: Can the Nomura lens be free of spherical aberration?, J. Microsc. (Oxford) 234, 325 (2009)Google Scholar
  77. W. Tretner: Existenzbereiche rotationssymmetrischer Elektronenlinsen, Optik 16, 155–184 (1959)Google Scholar
  78. W.D. Riecke: Practical lens design. In: Magnetic Electron Lenses, ed. by P.W. Hawkes (Springer, Berlin-Heidelberg 1982) pp. 163–357Google Scholar
  79. T. Yanaka, A. Yonezawa, A. Oosawa, T. Iwaki, S. Suzuki, O. Nakamura, M. Watanabe: Development of ultra-high resolution analytical electron microscope ISI-EM-002A, Proc. Annu. Meet. EMSA 41, 312–313 (1982)Google Scholar
  80. O. Scherzer: The theoretical resolution limit of the electron microscope, J. Appl. Phys. 20, 20–29 (1949)Google Scholar
  81. O.L. Krivanek, M.F. Chisholm, N. Dellby, M.F. Murfitt: Atomic-resolution STEM at low primary energies. In: Scanning Transmission Electron Microscopy: Imaging and Analysis, ed. by S.J. Pennycook, P.D. Nellist (Springer, Berlin-Heidelberg 2011) pp. 613–656Google Scholar
  82. H. Ichinose, H. Sawada, E. Takuma, M. Osaki: Atomic resolution HVEM and environmental noise, J. Electron Microsc. 48, 887–889 (1999)Google Scholar
  83. P.W. Hawkes: Signposts in electron optics, Adv. Imaging Electron Phys. 123, 1–28 (2002)Google Scholar
  84. R. Seeliger: Versuche zur sphärischen Korrektur von Elektronenlinsen mittels nicht rotationssymmetrischer Abbildungselemente, Optik 5, 490–496 (1949)Google Scholar
  85. R. Seeliger: Die sphärische Korrektur von Elektronenlinsen mittels nicht-rotationssymmetrischer Abbildungselemente, Optik 8, 311–317 (1951)Google Scholar
  86. G. Möllenstedt: Elektronenmikroskopische Bilder mit einem nach O. Scherzer sphärisch korrigierten Objektiv, Optik 13, 209–215 (1956)Google Scholar
  87. G.D. Archard: Requirements contributing to the design of devices used in correcting electron lenses, Brit. J. Appl. Phys. 5, 294–299 (1954)Google Scholar
  88. J.C. Burfoot: Correction of electrostatic lenses by departure from rotational symmetry, Proc. Phys. Soc. B 66, 775–792 (1953)Google Scholar
  89. J.M.H. Deltrap: Correction of spherical aberration with combined quadrupole–octopole units. In: Proc. 3rd Eur. Reg. Conf. Electron. Microsc., Vol. A, ed. by M. Titlbach (Czechoslovak Academy of Sciences, Prague 1964) pp. 45–46Google Scholar
  90. D.F. Hardy: Combined Magnetic and Electrostatic Quadrupole Electron Lenses, Ph.D. Thesis (University of Cambridge, Cambridge 1967)Google Scholar
  91. M. Haider: Towards sub-ångstrom point resolution by correction of spherical aberration. In: Proc. 12th Eur. Congr. Electron Microsc, Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.145–I.148Google Scholar
  92. H. Müller, S. Uhlemann, P. Hartel, M. Haider: Aberration-corrected optics: From an idea to a device, Phys. Procedia 1, 167–178 (2008)Google Scholar
  93. D. Gabor: The Electron Microscope (Hulton, London 1945)Google Scholar
  94. M. Linck, P.A. Ercius, J.S. Pierce, B.J. McMorran: Aberration corrected STEM by means of diffraction gratings, Ultramicroscopy 182, 36–43 (2017)Google Scholar
  95. A. Khursheed, W.K. Ang: On-axis electrode aberration correctors for scanning electron/ion microscopes, Microsc. Microanal. 21, 106–111 (2015)Google Scholar
  96. A. Khursheed, W.K. Ang: Annular focused electron/ion beams for combining high spatial resolution with high probe current, Microsc. Microanal. 22, 948–954 (2016)Google Scholar
  97. T. Kawasaki, T. Ishida, M. Tomita, T. Kodama, T. Matsutani, T. Ikuta: Development of a new electrostatic Cs-corrector consisted of annular and circular electrodes. In: Proc. 16th Eur. Microsc. Congr., Lyon, Vol. 1, ed. by O. Stéphan, M. Hÿtch, B. Satiat-Jeunemaître, C. Venien-Bryan, P. Bayle-Guillemaud, T. Epicier (Wiley-VCH, Weinheim 2016) pp. 430–432Google Scholar
  98. T. Kawasaki, R. Yoshida, T. Kato, T. Nomaguchi, T. Agemura, T. Kodama, M. Tomita, T. Ikuta: Development of compact Cs/Cc corrector with annular and circular electrodes, Microsc. Microanal. 23(Suppl. 1), 466–467 (2017)Google Scholar
  99. G.D. Archard: A possible chromatic aberration system for electron lenses, Proc. Phys. Soc. B 68, 817–829 (1955)Google Scholar
  100. V.M. Kel'man, S.Ya. Yavor: Achromatic quadrupole electron lenses, Zh. Tekh. Fiz. 31, 1439–1442 (1961)Google Scholar
  101. V.M. Kel'man, S.Ya. Yavor: Achromatic quadrupole electron lenses, Sov. Phys. Tech. Phys. 6, 1052–1054 (1961)Google Scholar
  102. A. Septier: Lentille quadrupolaire magneto-électrique corrigée de l’aberration chromatique. Aberration d’ouverture de ce type de lentilles, C. R. Acad. Sci. Paris 256, 2325–2328 (1963)Google Scholar
  103. P.W. Hawkes: The paraxial chromatic aberrations of quadrupole systems. In: Proc. 3rd Eur. Reg. Conf. Electron Microsc., Vol. A, ed. by M. Titlbach (Czechoslovak Academy of Sciences, Prague 1964) pp. 5–6Google Scholar
  104. P.W. Hawkes: The paraxial chromatic aberrations of rectilinear orthogonal systems, Optik 22, 543–551 (1965)Google Scholar
  105. H. Rose: Inhomogeneous Wien filter as a corrector for the chromatic and spherical aberration of low-voltage electron microscopes, Optik 84, 91–107 (1990)Google Scholar
  106. K. Tsuno, D. Ioanoviciu, G. Martínez: Aberration corrected Wien filter as a monochromator of high spatial and high energy resolution electron microscopes, Microsc. Microanal. 9(Suppl. 2), 944–945 (2003)Google Scholar
  107. G. Schönhense, H. Spiecker: Correction of chromatic and spherical aberration in electron microscopy utilizing the time structure of pulsed electron sources, J. Vac. Sci. Technol. B 20, 2526–2534 (2002)Google Scholar
  108. A. Khursheed: A method of dynamic chromatic correction in low-voltage scanning electron microscopes, Ultramicroscopy 103, 255–260 (2005)Google Scholar
  109. G. Schönhense, H. Spiecker: Chromatic and spherical correction using time-dependent acceleration and lens fields, Microsc. Microanal. 9(Suppl. 3), 34–35 (2003)Google Scholar
  110. G.F. Rempfer: A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics, J. Appl. Phys. 67, 6027–6040 (1990)Google Scholar
  111. G.F. Rempfer, M.S. Mauck: Correction of chromatic aberration with an electron mirror, Optik 92, 3–8 (1992)Google Scholar
  112. R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Degenhardt, R. Wichtendahl, H. Kuhlenbeck, W. Erlebach, K. Ihmann, R. Schlögl, H.-J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner: SMART: A planned ultrahigh-resolution spectromicroscope for BESSY II, J. Electron Spectrosc. Relat. Phenom. 84, 231–250 (1997)Google Scholar
  113. R. Wichtendahl, R. Fink, H. Kuhlenbeck, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Schlögl, H.-J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner, E. Umbach: SMART: An aberration-corrected XPEEM/LEEM with energy filter, Surf. Rev. Lett. 5, 1249–1256 (1998)Google Scholar
  114. H. Müller, D. Preikszas, H. Rose: A beam separator with small aberrations, J. Electron Microsc. 48, 191–204 (1999)Google Scholar
  115. P. Hartel, D. Preikszas, R. Spehr, H. Rose: Performance of the mirror corrector for an ultrahigh-resolution spectromicroscope. In: Proc. 12th Eur. Congr. Electron Microsc, Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.153–I.154Google Scholar
  116. P. Hartel, D. Preikszas, R. Spehr, H. Müller, H. Rose: Mirror corrector for low-voltage electron microscopes, Adv. Imaging Electron Phys. 120, 41–133 (2002)Google Scholar
  117. D. Preikszas, P. Hartel, R. Spehr, H. Rose: SMART electron optics. In: Proc. 12th Eur. Congr. Electron Microsc, Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.181–I.184Google Scholar
  118. W. Wan, J. Feng, H.A. Padmore, D.S. Robin: Simulation of a mirror corrector for PEEM, Nucl. Instrum. Methods Phys. Res. A 519, 222–229 (2004)Google Scholar
  119. Y.K. Wu, D.S. Robin, E. Forest, R. Schleuter, S. Anders, J. Feng, H. Padmore, D.H. Wei: Design and analysis of beam separator magnets for third generation aberration compensated PEEMs, Nucl. Instrum. Methods Phys. Res. A 519, 230–241 (2004)Google Scholar
  120. R.M. Tromp, J.B. Hannon, A.W. Ellis, W. Wan, A. Berghaus, O. Schaff: A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design, Ultramicroscopy 110, 852–861 (2010)Google Scholar
  121. R.M. Tromp, J.B. Hannon, W. Wan, A. Berghaus, O. Schaff: A new aberration-corrected, energy-filtered LEEM/PEEM instrument II. Operation and results, Ultramicroscopy 127, 25–39 (2013)Google Scholar
  122. R.M. Tromp: Measuring and correcting aberrations of a cathode objective lens, Ultramicroscopy 111, 273–281 (2011)Google Scholar
  123. H. Rose, D. Preikszas: Outline of a versatile corrected LEEM, Optik 92, 31–44 (1992)Google Scholar
  124. H. Dohi, P. Kruit: Design for an aberration corrected scanning electron microscope using miniature electron mirrors, Ultramicroscopy 189, 1–23 (2018)Google Scholar
  125. G.D. Archard: An unconventional electron lens, Proc. Phys. Soc. B 72, 135–137 (1958)Google Scholar
  126. M. Reichenbach, H. Rose: Entwurf eines korrigierten magnetischen Objektivs, Optik 28, 475–487 (1968)Google Scholar
  127. H. Rose: Berechnung eines elektronenoptischen Apochromaten, Optik 32, 144–164 (1970)Google Scholar
  128. H. Rose: Abbildungseigenschaften sphärisch korrigierter elektronenoptischer achromate, Optik 33, 1–24 (1971)Google Scholar
  129. H. Rose: Elektronenoptische Aplanate, Optik 34, 285–311 (1971)Google Scholar
  130. B. Bastian, K. Spengler, D. Typke: An electric–magnetic octupole element to correct spherical and chromatic aberrations of electron lenses, Optik 33, 591–596 (1971)Google Scholar
  131. W. Pöhner: Ein in dritter und fünfter Ordnung sphärisch korrigierter elektronenoptischer Aplanat, Optik 45, 443–454 (1976)Google Scholar
  132. W. Pöhner: Ein sphärisch korrigierter elektronenoptischer Apochromat, Optik 47, 283–297 (1977)Google Scholar
  133. W. Bernhard, H. Koops: Kompensation der Farbabhängigkeit der Vergrößerung und der Farbabhängigkeit der Bilddrehung eines Elektronenmikroskops, Optik 47, 55–64 (1977)Google Scholar
  134. H. Koops, G. Kuck, O. Scherzer: Erprobung eines elektronenoptischen Achromators, Optik 48, 225–236 (1977)Google Scholar
  135. H. Koops: Aberration correction in electron microscopy. In: Proc. 9th Int. Congr. Electron Microsc., Vol. 3, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 185–196Google Scholar
  136. H. Koops: Erprobung eines chromatisch korrigierten elektronenmikroskopischen Objektives, Optik 52, 1–18 (1978)Google Scholar
  137. H. Koops, W. Bernhard: An objective lens for an electron microscope with compensated axial chromatic aberration. In: Proc. 9th Int. Congr. Electron Microsc., Vol. 1, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 36–37Google Scholar
  138. W. Pejas: Magnetische Abschirmung eines korrigierten Elektronenmikroskops, Optik 50, 61–72 (1978)Google Scholar
  139. G. Kuck: Erprobung eines elektronenoptischen Korrektivs für Farb- und Öffnungsfehler, Ph.D. Thesis (Technical University of Darmstadt, Darmstadt 1979)Google Scholar
  140. W. Bernhard: Erprobung eines sphärisch und chromatisch korrigierten Elektronenmikroskops, Optik 57, 73–94 (1980)Google Scholar
  141. G. Fey: Elektrische Versorgung eines elektronenoptischen Korrektivs, Optik 55, 55–65 (1980)Google Scholar
  142. H. Hely: Messungen an einem verbesserten korrigierten Elektronenmikroskop, Optik 60, 353–370 (1982)Google Scholar
  143. H. Hely: Technologische Voraussetzungen für die Verbesserung der Korrektur von Elektronenlinsen, Optik 60, 307–326 (1982)Google Scholar
  144. O. Scherzer: Limitations for the resolving power of electron microscopes. In: Proc. 9th Int. Congr. Electron Microsc., Vol. 3, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 123–129Google Scholar
  145. A.V. Crewe, D. Cohen, P. Meads: A multipole element for the correcting of spherical aberration. In: Proc. 4th Reg. Conf. Electron. Microsc., Vol. I, ed. by D.S. Bocciarelli (Tipographia Poliglotta Vaticana, Rome 1968) p. 183Google Scholar
  146. M.G.R. Thomson: The primary aberrations of a quadrupole corrector system, Optik 34, 528–534 (1972)Google Scholar
  147. V. Beck, A.V. Crewe: A quadrupole octupole corrector for a 100 kV STEM, Proc. Annu. Meet. EMSA 32, 426–427 (1974)Google Scholar
  148. V. Beck, A.V. Crewe: Progress in aberration correction in a STEM, Proc. Annu. Meet. EMSA 34, 578–579 (1976)Google Scholar
  149. V. Beck: Experiments with a quadrupole–octupole corrector in a STEM, Proc. Annu. Meet. EMSA 35, 90–91 (1977)Google Scholar
  150. A.V. Crewe: Is there a future for the STEM? In: Proc. 9th Int. Congr. Electron. Microsc., Vol. 3, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 197–204Google Scholar
  151. A.V. Crewe: The work of Albert Victor Crewe on the scanning transmission electron microscope and related topics, Adv. Imaging Electron Phys. 159, 1–61 (2009)Google Scholar
  152. J. Zach: Design of a high-resolution low-voltage scanning electron microscope, Optik 83, 30–40 (1989)Google Scholar
  153. J. Zach: Aspects of aberration correction in LVSEM. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.169–I.172Google Scholar
  154. J. Zach, M. Haider: Correction of spherical and chromatic aberration in a low-voltage SEM, Optik 98, 112–118 (1995)Google Scholar
  155. J. Zach, M. Haider: Aberration correction in a low voltage SEM by a multipole corrector, Nucl. Instrum. Methods Phys. Res. A 363, 316–325 (1995)Google Scholar
  156. K. Honda, S. Uno, N. Nakamura, M. Matsuya, B. Achard, J. Zach: An automatic geometrical aberration correction system of scanning electron microscopes. In: Proc. 13th Eur. Microsc. Congr., Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 43–44Google Scholar
  157. K. Honda, S. Uno, N. Nakamura, M. Matsuya, J. Zach: An automatic geometrical aberration correction system of scanning electron microscopes. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 44–45Google Scholar
  158. H. Kazumori, K. Honda, M. Matsuya, M. Date, C. Nielsen: Field emission SEM with a spherical and chromatic aberration corrector, Microsc. Microanal. 10(Suppl. 2), 1370–1371 (2004)Google Scholar
  159. H. Kazumori, K. Honda, M. Matuya, M. Date: Field emission SEM with a spherical and chromatic aberration corrector. In: Proc. 8th Asia–Pac. Conf. Electron. Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 52–53Google Scholar
  160. S. Uno, K. Honda, N. Nakamura, M. Matsuya, B. Achard, J. Zach: An automated aberration correction method in scanning electron microscopes. In: Proc. 13th Eur. Microsc. Congr., Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 37–38Google Scholar
  161. S. Uno, K. Honda, N. Nakamura, M. Matsuya, J. Zach: Probe shape extraction and automatic aberration correction in scanning electron microscopes. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 46–47Google Scholar
  162. S. Uno, K. Honda, N. Nakamura, M. Matsuya, J. Zach: Aberration correction and its automatic control in scanning electron microscopes, Optik 16, 438–448 (2005)Google Scholar
  163. O.L. Krivanek, N. Dellby, A.J. Spence, A. Camps, L.M. Brown: Aberration correction in the STEM. In: Proc. EMAG 1997, ed. by J.M. Rodenburg (Institute of Physics, Bristol 1997) pp. 35–39Google Scholar
  164. O.L. Krivanek, N. Dellby, A.J. Spence, R.A. Camps, L.M. Brown: On-line aberration measurement and correction in STEM, Microsc. Microanal. 3(Suppl. 2), 1171–1172 (1997)Google Scholar
  165. O.L. Krivanek, N. Dellby, L.M. Brown: Spherical aberration corrector for a dedicated STEM. In: Proc. EUREM-11, 11th Eur. Conf. Electron. Microsc., Dublin 1996, Vol. I, ed. by CESEM (CESEM, Brussels 1998) pp. 352–353Google Scholar
  166. O.L. Krivanek, N. Dellby, A.R. Lupini: STEM without spherical aberration, Microsc. Microanal. 5(Suppl. 2), 670–671 (1999)Google Scholar
  167. O.L. Krivanek, N. Dellby, A.R. Lupini: Advances in Cs-corrected STEM. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp.  I.149–I.150Google Scholar
  168. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini: Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177–185 (2001)Google Scholar
  169. P.E. Batson, N. Dellby, O.L. Krivanek: Sub-ångstrom resolution using aberration corrected optics, Nature 418, 617–620 (2002)Google Scholar
  170. P.E. Batson: Aberration correction results in the IBM STEM instrument, Ultramicroscopy 96, 239–249 (2003)Google Scholar
  171. P.D. Nellist, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z. Szilagyi, A.R. Lupini, S.J. Pennycook: Towards sub 0.5 angstrom beams through aberration corrected STEM. In: Proc. EMAG 2003, ed. by S. McVitie, D. McComb (Institute of Physics Publishing, Bristol and Philadelphia 2004) pp. 159–164Google Scholar
  172. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, S.J. Pennycook: Direct sub-angstrom imaging of a crystal lattice, Science 305, 1741 (2004)Google Scholar
  173. O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi: Towards sub-0.5 Å beams, Ultramicroscopy 96, 229–237 (2003)Google Scholar
  174. O.L. Krivanek, G.J. Corbin, N. Dellby, M. Murfitt, K. Nagesha, P.D. Nellist, Z. Szilagyi: Nion UltraSTEM: A new STEM for sub-0.5 Å imaging and sub-0.5 eV analysis. In: Proc. 13th Eur. Microsc. Congr., Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 35–36Google Scholar
  175. N. Dellby, O.L. Krivanek, M.F. Murfitt, P.D. Nellist: Design and testing of a quadrupole/octupole C3/C5 aberration corrector, Microsc. Microanal. 11(Suppl. 2), 2130–2131 (2005)Google Scholar
  176. N. Dellby, O.L. Krivanek, M.F. Murfitt: Optimized quadrupole-octupole C3/C5 aberration corrector for STEM, Phys. Procedia 1, 179–183 (2008)Google Scholar
  177. N. Dellby, G.J. Corbin, Z. Dellby, T.C. Lovejoy, Z.S. Szilagyi, M.F. Chisholm, O.L. Krivanek: Tuning high order geometric aberrations in quadrupole-octupole correctors, Microsc. Microanal. 20(Suppl. 3), 928–929 (2014)Google Scholar
  178. S.A.M. Mentink, M.J. van der Zande, C. Kok, T.L. van Rooy: Development of a Cs corrector for a Tecnai 20 FEG STEM/TEM. In: Proc. EMAG 2003, ed. by S. McVitie, D. McComb (Institute of Physics Publishing, Bristol 2004) pp. 165–168Google Scholar
  179. P.W. Hawkes: The geometrical aberrations of general electron optical systems, I and II, Philos. Trans. Royal Soc. A 257, 479–552 (1965)Google Scholar
  180. V.D. Beck: A hexapole spherical aberration corrector, Optik 53, 241–255 (1979)Google Scholar
  181. H. Rose: Correction of aperture aberrations in magnetic systems with threefold symmetry, Nucl. Instrum. Methods 187, 187–199 (1981)Google Scholar
  182. A.V. Crewe: Studies on sextupole correctors, Optik 57, 313–327 (1980)Google Scholar
  183. A.V. Crewe: A system for the correction of axial aperture aberrations in electron lenses, Optik 60, 271–281 (1982)Google Scholar
  184. A.V. Crewe, D. Kopf: A sextupole system for the correction of spherical aberration, Optik 55, 1–10 (1980)Google Scholar
  185. A.V. Crewe, D. Kopf: Limitations of sextupole correctors, Optik 56, 391–399 (1980)Google Scholar
  186. M. Haider, W. Bernhardt, H. Rose: Design and test of an electric and magnetic dodecapole lens, Optik 63, 9–23 (1982)Google Scholar
  187. M. Haider, G. Braunshausen, E. Schwan: Correction of the spherical aberration of a 200 kV TEM by means of a hexapole-corrector, Optik 99, 167–179 (1995)Google Scholar
  188. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)Google Scholar
  189. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban: Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electron Microsc. 47, 395–405 (1998)Google Scholar
  190. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban: A spherical-aberration-corrected 200 kV transmission electron microscope, Ultramicroscopy 75, 53–60 (1998)Google Scholar
  191. H. Rose: Outline of a spherically corrected semiaplanatic medium-voltage TEM, Optik 85, 19–24 (1990)Google Scholar
  192. H. Rose: Correction of aberrations, a promising method for improving the performance of electron microscopes. In: Proc. 10th Eur. Congr. Electron Microsc., Vol. 1, ed. by A. Ríos, J.M. Arias, L. Megías-Megías, A. López-Galindo (Secretariado de Publicaciones de la Universidad de Granada, Granada 1992) pp. 47–48Google Scholar
  193. H. Rose: Correction of aberrations – past, present and future, Microsc. Microanal. 8(Suppl. 2), 6–7 (2002)Google Scholar
  194. M. Haider, S. Uhlemann: Seeing is not believing: Reduction of artefacts by an improved point resolution with a spherical aberration corrected 200 kV transmission electron microscope, Microsc. Microanal. 3(Suppl. 2), 1179–1180 (1997)Google Scholar
  195. M. Haider: Correctors for electron microscopes: Tools or toys for scientists? In: Proc. 11th Eur. Conf. Electron Microsc., Dublin 1996, Vol. I (CESEM, Brussels 1998) pp. 363–364Google Scholar
  196. M. Haider: Current and future developments in order to approach a point resolution of dpr ∼ 0.5 Å with a TEM, Microsc. Microanal. 9(Suppl. 2), 930–931 (2003)Google Scholar
  197. M. Foschepoth, H. Kohl: Amplitude contrast—A way to obtain directly interpretable high-resolution images in a spherical-aberration-corrected transmission electron microscope, Phys. Status Solidi (a) 166, 357–366 (1998)Google Scholar
  198. S. Uhlemann, M. Haider, E. Schwan, H. Rose: Towards a resolution enhancement in the corrected TEM. In: Proc. EUREM-11, 11th Eur. Conf. Electron Microsc., Dublin 1996, Vol. I (CESEM, Brussels 1998) pp. 365–366Google Scholar
  199. K. Urban, B. Kabius, M. Haider, H. Rose: A way to higher resolution: Spherical-aberration correction in a 200 kV transmission electron microscope, J. Electron Microsc. 48, 821–826 (1999)Google Scholar
  200. H. Müller, S. Uhlemann, M. Haider: Benefits and possibilities for Cc-correction in TEM/STEM, Microsc. Microanal. 8(Suppl. 2), 12–13 (2002)Google Scholar
  201. H. Müller, M. Haider, P. Hartel, S. Uhlemann, J. Zach: Improved aberration correctors for the conventional and the scanning transmission electron microscope, Recent Trends Charged Part. Opt. Surf. Phys. Instrum. 12, 39–40 (2010)Google Scholar
  202. H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach, M. Haider: Aplanatic imaging systems for the transmission electron microscope, Nucl. Instrum. Methods Phys. Res. A 645, 20–27 (2011)Google Scholar
  203. H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach, M. Haider: Practical aspects of an aplanatic transmission electron microscope, Recent Trends Charged Part. Opt. Surf. Phys. Instrum. 13, 47–48 (2012)Google Scholar
  204. B. Kabius, M. Haider, S. Uhlemann, E. Schwan, K. Urban, H. Rose: First application of a spherical-aberration corrected transmission electron microscope in materials science, J. Electron Microsc. 51, S51–S58 (2002)Google Scholar
  205. M. Lentzen, B. Jahnen, C.L. Jia, A. Thust, K. Tillmann, K. Urban: High-resolution imaging with an aberration-corrected transmission electron microscope, Ultramicroscopy 92, 233–242 (2002)Google Scholar
  206. H. Liu, E. Munro, J. Rouse, X. Zhu: Simulation methods for multipole imaging systems and aberration correctors, Ultramicroscopy 93, 271–291 (2002)Google Scholar
  207. G. Benner, A. Orchowski, M. Haider, P. Hartel: State of the first aberration-corrected, monochromatized 200 kV FEG-TEM, Microsc. Microanal. 9(Suppl. 3), 938–939 (2003)Google Scholar
  208. G. Benner, E. Essers, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen: Performance of monochromized and aberration-corrected TEMs, Microsc. Microanal. 10(Suppl. 2), 108–109 (2004)Google Scholar
  209. G. Benner, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen, M. Haider, P. Hartel: Sub-ångstrom and sub-eV resolution with the analytical SATEM, Microsc. Microanal. 10(Suppl. 3), 6–7 (2004)Google Scholar
  210. L.Y. Chang, F.R. Chen, A.I. Kirkland, J.J. Kai: Calculations of spherical aberration-corrected imaging behaviour, J. Electron Microsc. 52, 359–364 (2003)Google Scholar
  211. F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider: A spherical aberration-corrected 200 kV TEM, J. Electron Microsc. 52, 3–10 (2003)Google Scholar
  212. F. Hosokawa, T. Sannomiya, H. Sawada, T. Kaneyama, Y. Kondo, M. Hori, S. Yuasa, M. Kawazoe, Y. Nakamichi, T. Tanishiro, N. Yamamoto, K. Takayanagi: Design and development of Cs correctors for 300 kV TEM and STEM. In: Proc. 16th Int. Microsc. Conf., Sapporo, Vol. 2, ed. by H. Ichinose, T. Sasaki (2006) p. 582Google Scholar
  213. F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi, K. Suenaga: Development of Cs and Cc correctors for transmission electron microscopy, Microscopy 62, 23–41 (2013)Google Scholar
  214. C.L. Jia, M. Lentzen, K. Urban: Atomic-resolution imaging of oxygen in perovskite ceramics, Science 299, 870–873 (2003)Google Scholar
  215. H. Sawada, T. Tomita, T. Kaneyama, F. Hosokawa, M. Naruse, T. Honda, P. Hartel, M. Haider, N. Tanaka, C.J.D. Hetherington, R.C. Doole, A.I. Kirkland, J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne: Cs corrector for imaging, Microsc. Microanal. 10(Suppl. 2), 978–979 (2004)Google Scholar
  216. H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, C.J.D. Hetherington, R.C. Doole, A.I. Kirkland, J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne: Cs corrector for illumination, Microsc. Microanal. 10(Suppl. 2), 1004–1005 (2004)Google Scholar
  217. H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, C.J.D. Hetherington, R.C. Doole, A.I. Kirkland, J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne: 200 kV TEM with Cs correctors for illumination and imaging. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 20–21Google Scholar
  218. H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto, K. Suenaga: Correction of higher order geometrical aberration by triple 3-fold astigmatism field, J. Electron Microsc. 58, 341–347 (2009)Google Scholar
  219. H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Takayanagi: STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun, J. Electron Microsc. 58, 357–361 (2009)Google Scholar
  220. H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto, K. Suenaga: Higher-order aberration corrector for an image-forming system in a transmission electron microscope, Ultramicroscopy 110, 958–961 (2010)Google Scholar
  221. M. Haider, M. Müller, P. Hartel: Present state and future trends of aberration correction. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 16–17Google Scholar
  222. M. Haider, P. Hartel, H. Müller, S. Uhlemann, J. Zach: Current and future aberration correctors for the improvement of resolution in electron microscopy, Philos. Trans. Royal Soc. A 367, 3665–3682 (2009)Google Scholar
  223. P. Hartel, H. Müller, S. Uhlemann, M. Haider: Residual aberrations of hexapole-type Cs–correctors. In: Proc. 13th Eur. Microsc. Congr. Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 41–42Google Scholar
  224. J.M. Titchmarsh, D.J.H. Cockayne, R.C. Doole, C.J.D. Hetherington, J.L. Hutchison, A.I. Kirkland, H. Sawada: A versatile double aberration-corrected, energy-filtered HREM/STEM for materials science. In: Proc. 13th Eur. Microsc. Congr., Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 27–28Google Scholar
  225. J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, R.C. Doole, C.J.D. Hetherington, A.I. Kirkland, H. Sawada: A versatile double aberration-corrected energy filtered HREM/STEM for materials science, Ultramicroscopy 103, 7–15 (2005)Google Scholar
  226. H. Sawada: Ronchigram and geometrical aberrations in STEM. In: Scanning Transmission Electron Microscopy of Nanomaterials, ed. by N. Tanaka (Imperial College, London 2015) pp. 461–485Google Scholar
  227. S. Morishita, Y. Kohno, F. Hosokawa, K. Suenaga, H. Sawada: Evaluation of residual aberrations in higher-order geometrical aberration correctors, Microscopy 67, 156–163 (2017)Google Scholar
  228. T. Sasaki, S. Morishita, Y. Kohno, M. Mukai, K. Kimotao, K. Suenaga: Performance of low-kV aberration-corrected STEM with delta-corrector and CFEG in ultrahigh vacuum environment, Microsc. Microanal. 23(Suppl. 1), 468–469 (2017)Google Scholar
  229. G. Benner, E. Essers, B. Huber, A. Orchowski: Design and first results of SESAM, Microsc. Microanal. 9(Suppl. 3), 66–67 (2003)Google Scholar
  230. R. Nishi, H. Ito, S. Hoque: Wire corrector for aberration corrected electron optics. In: Proc. 18th Int. Microsc. Conf., Prague (2014), IT-1-P2984Google Scholar
  231. S. Hoque, H. Ito, R. Nishi, A. Takaoka, E. Munro: Spherical aberration correction with threefold symmetric line currents, Ultramicroscopy 161, 74–82 (2016)Google Scholar
  232. R. Nishi, S. Hoque, H. Ito, A. Takaoka: Higher order aberration analysis and optimization of N-SYLC spherical aberration corrector by differential algebra method, Kenbikyo 52(Suppl. 1), 23 (2017)Google Scholar
  233. S. Hoque, H. Ito, A. Takaoka, R. Nishi: Axial geometrical aberration correction up to 5th order with N-SYLC, Ultramicroscopy 182, 68–80 (2017)Google Scholar
  234. R. Janzen: Concept for electrostatic correctors for reduction of aberrations within miniaturized columns. In: Proc. MC-2011, Kiel (2011) IM1.p104Google Scholar
  235. R. Janzen, S. Burkhardt, P. Fehlner, T. Späth, M. Haider: The SPANOCH method: A key to establish aberration correction in miniaturized (multi)column systems? In: Proc. Microsc. Conf., Regensburg, Vol. 1, ed. by R. Rachel, J. Schröder, R. Witzgall, J. Zweck (2013) pp. 107–108Google Scholar
  236. C. Weißbäcker, H. Rose: Electrostatic correction of the chromatic and spherical aberration of charged particle lenses. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp.  I.157–I.158Google Scholar
  237. C. Weißbäcker, H. Rose: Electrostatic correction of the chromatic and the spherical aberration of charged-particle lenses I, J. Electron Microsc. 50, 383–390 (2001)Google Scholar
  238. C. Weißbäcker, H. Rose: Electrostatic correction of the chromatic and the spherical aberration of charged-particle lenses, II, J. Electron Microsc. 51, 45–51 (2002)Google Scholar
  239. D.J. Maas, A. Henstra, M.P.C.M. Krijn, S.A.M. Mentink: Electrostatic correction in LV-SEM, Microsc. Microanal. 6(Suppl. 2), 746–747 (2000)Google Scholar
  240. D.J. Maas, S. Henstra, M. Krijn, S. Mentink: Electrostatic aberration correction in low-voltage SEM, Proceedings SPIE 4510, 205–217 (2001)Google Scholar
  241. D. Maas, S. Mentink, A. Henstra: Electrostatic aberration correction in low-voltage SEM, Microsc. Microanal. 9(Suppl. 3), 24–25 (2003)Google Scholar
  242. A. Henstra, M.P.C.M. Krijn: An electrostatic achromat. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp.  I.155–I.156Google Scholar
  243. K. Bajo, S. Itose, M. Matsuya, M. Ishihara, K. Uchino, M. Kudo, I. Sakaguchi, H. Yurimoto: High spatial resolution imaging of helium isotope by TOF-SNMS, Surf. Interface Anal. 48, 1190–1193 (2016)Google Scholar
  244. M. Linck, P. Hartel, S. Uhlemann, F. Kahl, H. Müller, J. Zach, M. Haider, M. Niestadt, M. Bischoff, J. Biskupek, Z. Lee, T. Lehnert, F. Börr-nert, H. Rose, U. Kaiser: Chromatic aberration correction for atomic resolution TEM Imaging from 20 to 80 kV, Phys. Rev. Lett. 117, 076101 (2016)Google Scholar
  245. M. Linck, P. Hartel, S. Uhlemann, F. Kahl, H. Müller, J. Zach, J. Biskupek, M. Niestadt, U. Kaiser, M. Haider: Status of the SALVE-microscope: Cc-correction for atomic-resolution TEM imaging at 20 kV. In: Proc. 16th Eur. Microsc. Congr., Lyon, Vol. 1, ed. by D.J. Stokes, W.M. Rainforth (2016) pp. 314–315Google Scholar
  246. H. Rose, A. Nejati, H. Müller: Cc/Cs-corrector compensating for the chromatic aberration and the spherical aberration of electron lenses, Ultramicroscopy 203, 139–144 (2019)Google Scholar
  247. S.A.M. Mentink, T. Steffen, P.C. Tiemeijer, M.P.C.M. Krijn: Simplified aberration corrector for low-voltage SEM. In: Proc. EMAG 1999, ed. by C.J. Kiely (Institute of Physics Publishing, Bristol 1999) pp. 83–86Google Scholar
  248. T. Steffen, P.C. Tiemeijer, M.P.C.M. Krijn, S.A.M. Mentink: Correction of chromatic and spherical aberration using a Wien filter. In: Proc. 12th Eur. Congr. Electron Microsc, Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.151–I.152Google Scholar
  249. G. Hottenroth: Über Elektronenspiegel, Z. Phys. 103, 460–462 (1936)Google Scholar
  250. G. Hottenroth: Untersuchungen über Elektronenspiegel, Ann. Phys. (Leipzig) 30, 689–712 (1937)Google Scholar
  251. A. Recknagel: Zur Theorie des Elektronenspiegels, Z. Phys. 104, 381–394 (1937)Google Scholar
  252. V.K. Zworykin, G.A. Morton, E.G. Ramberg, J. Hillier, A.W. Vance: Electron Optics and the Electron Microscope (Wiley, New York 1945)Google Scholar
  253. E.G. Ramberg: Aberration correction with an electron mirror, J. Appl. Phys. 20, 183–186 (1949)Google Scholar
  254. E. Kasper: Die Korrektur des Öffnungs- und Farbfehlers im Elektronenmikroskop durch Verwendung eines Elektronenspiegels mit überlagertem Magnetfeld, Optik 28, 54–64 (1968)Google Scholar
  255. D. Preikszas, H. Rose: Correction properties of electron mirrors, J. Electron Microsc. 46, 1–9 (1997)Google Scholar
  256. H. Rose, P. Hartel, D. Preikszas: Outline of the mirror corrector for SMART and PEEM3, Microsc. Microanal. 10(Suppl. 3), 28–29 (2004)Google Scholar
  257. Z. Shao, X.D. Wu: A study on hyperbolic mirrors as correctors, Optik 84, 51–54 (1990)Google Scholar
  258. G.F. Rempfer, D.M. Desloge, W.P. Skoczylas, O.H. Griffith: Simultaneous correction of spherical and chromatic aberrations with an electron mirror, Microsc. Microanal. 3, 14–27 (1997)Google Scholar
  259. Z. Shao, X.D. Wu: Adjustable four-electrode electron mirror as an aberration corrector, Appl. Phys. Lett. 55, 2696–2697 (1989)Google Scholar
  260. Z. Shao, X.D. Wu: Properties of a four-electrode adjustable electron mirror as an aberration corrector, Rev. Sci. Instrum. 61, 1230–1235 (1990)Google Scholar
  261. T. Schmidt, H. Marchetto, P.L. Lévesque, U. Groh, F. Maier, D. Preikszas, P. Hartel, R. Spehr, G. Lilienkamp, W. Engel, R. Fink, E. Bauer, H. Rose, E. Umbach, H.-J. Freund: Double aberration correction in a low-energy electron microscope, Ultramicroscopy 110, 1358–1361 (2010)Google Scholar
  262. M. Mankos, K. Shadman: A monochromatic, aberration-corrected, dual-beam low energy electron microscope, Ultramicroscopy 130, 13–28 (2013)Google Scholar
  263. H. Rose: Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses, Microsc. Microanal. 9(Suppl. 3), 32–33 (2003)Google Scholar
  264. H. Rose: Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses, Nucl. Instrum. Methods Phys. Res. A 519, 12–27 (2004)Google Scholar
  265. H. Rose: Prospects for aberration-free microscopy, Ultramicroscopy 103, 1–6 (2005)Google Scholar
  266. C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Krippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E.A. Olson, T. Donchev, E.A. Kenik, A.R. Lupini, J. Bentley, S.J. Pennycook, I.M. Anderson, A.M. Minor, A.K. Schmid, T. Duden, V. Radmilovic, Q.M. Ramasse, M. Watanabe, R. Erni, E.A. Stach, P. Denes, U. Dahmen: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5 Å information limit, Microsc. Microanal. 14, 469–477 (2008)Google Scholar
  267. U. Dahmen, R. Erni, V. Radmilovic, C. Kisielowski, M.-D. Rossell, P. Denes: Background, status and future of the transmission electron aberration-corrected microscope project, Philos. Trans. Royal Soc. A 367, 3795–3808 (2009)Google Scholar
  268. U. Kaiser, A. Chuvilin, J. Meyer, J. Biskupek: Microscopy at the bottom. In: Proc. Microsc. Conf. MC-2009, Vol. 3, ed. by W. Grogger, F. Hofer, P. Pölt (Verlag der Technischen Universität, Graz 2009) pp. 1–6Google Scholar
  269. U. Kaiser, J. Biskupek, J.C. Meyer, J. Leschner, L. Lechner, H. Rose, M. Stöger-Pollach, A.N. Khlobystov, P. Hartel, H. Müller, M. Haider, S. Eyhusen, G. Benner: Transmission electron microscopy at 20 kV for imaging and spectroscopy, Ultramicroscopy 111, 1239–1246 (2011)Google Scholar
  270. H. Rose, U. Kaiser: Prospects and first results of sub-angstroem low-voltage electron microscopy–the SALVE project, Recent Trends Charged Part. Opt. Surf. Phys. Instrum. 13, 65–66 (2012)Google Scholar
  271. H. Müller, M. Linck, P. Hartel, F. Kahl, J. Zach, S. Uhlemann, J. Biskupek, F. Börrnert, Z. Lee, M. Mohn, U. Kaiser, M. Haider: Correction of the chromatic and spherical aberration in low-voltage transmission electron microcopy, Recent Trends Charged Part. Opt. Surf. Phys. Instrum. 15, 38–39 (2016)Google Scholar
  272. U. Kaiser: Adv. Imaging Electron Phys (2019) in preparationGoogle Scholar
  273. Z. Shao: On the fifth order aberration in a sextupole corrected probe forming system, Rev. Sci. Instrum. 59, 2429–2437 (1988)Google Scholar
  274. H. Müller, S. Uhlemann, P. Hartel, M. Haider: Advancing the hexapole Cs—Corrector for the scanning transmission electron microscope, Microsc. Microanal. 12, 442–455 (2006)Google Scholar
  275. H. Rose, W. Pejas: Optimization of imaging magnetic filters free of second-order aberrations, Optik 54, 235–250 (1979)Google Scholar
  276. H. Shuman: Correction of the second-order aberrations of uniform field magnetic sectors, Ultramicroscopy 5, 45–53 (1980)Google Scholar
  277. O.L. Krivanek, P.R. Swann: An advanced electron energy loss spectrometer. In: Quantitative Microanalysis with High Spatial Resolution, ed. by G.W. Lorimer, M.H. Jacobs, P. Doig (Metals Society, London 1981) pp. 136–140Google Scholar
  278. H. Rose, D. Krahl: Electron optics of imaging energy filters. In: Energy-Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Berlin 1995) pp. 43–149Google Scholar
  279. R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, Berlin-Heidelberg 2011)Google Scholar
  280. M. Haider: A corrected double-deflection electron spectrometer equipped with a parallel recording system, Ultramicroscopy 28, 190–200 (1989)Google Scholar
  281. O.L. Krivanek, C.C. Ahn, R.B. Keeney: Parallel detection electron spectrometer using quadrupole lenses, Ultramicroscopy 22, 103–115 (1987)Google Scholar
  282. O.L. Krivanek, A.J. Gubbens, N. Dellby: Developments in EELS instrumentation for spectroscopy and imaging, Microsc. Microanal. Microstruct. 2, 315–332 (1991)Google Scholar
  283. O.L. Krivanek, A.J. Gubbens, N. Dellby, C.E. Meyer: Design and first applications of a post-column imaging filter, Microsc. Microanal. Microstruct. 3, 187–199 (1992)Google Scholar
  284. A.J. Gubbens, H.A. Brink, M.K. Kundmann, S.L. Friedman, O.L. Krivanek: A post-column imaging energy filter with a 20482 pixel slow-scan CCD camera, Micron 29, 81–87 (1988)Google Scholar
  285. H.A. Brink, M.M.G. Barfels, R.P. Burgner, B.N. Edwards: A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs, Ultramicroscopy 96, 367–384 (2003)Google Scholar
  286. A.J. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, N. Menon, B. Kraus, C. Mao, B. McGinn: The GIF Quantum, a next generation post-column imaging energy filter, Ultramicroscopy 110, 962–970 (2010)Google Scholar
  287. N.E. Webster, M. Haider, H. Houf: Design and construction of a multipole element control unit, Rev. Sci. Instrum. 59, 999–1001 (1988)Google Scholar
  288. O.L. Krivanek, T.C. Lovejoy, N. Dellby, R.W. Carpenter: Monochromated STEM with a 30 meV-wide, atom-sized electron probe, Microscopy 62, 3–21 (2013)Google Scholar
  289. T.C. Lovejoy, G.C. Corbin, N. Dellby, M.V. Hoffman, O.L. Krivanek: Advances in ultra-high energy resolution STEM–EELS, Microsc. Microanal. 24(Suppl. 1), 446–447 (2018)Google Scholar
  290. O.L. Krivanek, G.C. Corbin, N. Dellby, M. Hoffman, T.C. Lovejoy: Monochromator and spectrometer design for ultra-high energy resolution EELS. In: Proc. 19th Int. Microsc. Congr., Sydney (2018) pp. 1530–1531Google Scholar
  291. O.L. Krivanek, N. Dellby, J.A. Hachtel, J.-C. Idrobo, M.T. Hotz, B. Plotkin-Swing, N.J. Bacon, A.L. Bleloch, G.J. Corbin, M.V. Hoffman, C.E. Meyer, T.C. Lovejoy: Progress in ultrahigh energy resolution EELS, Ultramicroscopy 203, 60–67 (2019)Google Scholar
  292. R. Castaing, L. Henry: Filtrage magnétique des vitesses en microscopie électronique, C. R. Acad. Sci. Paris B 255, 76–86 (1962)Google Scholar
  293. A.J.F. Metherell: Energy analyzing and energy selecting electron microscopes, Adv. Opt. Electron Microsc. 4, 263–360 (1971)Google Scholar
  294. A.J.F. Metherell: Energy analyzing and energy selecting electron microscopes, Adv. Imaging Electron Phys. 204, 147–230 (2017)Google Scholar
  295. S. Senoussi: Etude d'un Dispositif de Filtrage des Vitesses Purement Magnétique Adaptable à un Microscope Électronique à Très Haute Tension Thèse de 3e Cycle (Univ. Paris, Orsay 1971)Google Scholar
  296. S. Senoussi, L. Henry, R. Castaing: Etude d’un analyseur filtre de vitesses purement magnétique adaptable aux microscopes électroniques très haute tension, J. Microsc. (Paris) 11, 19 (1971)Google Scholar
  297. H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators, Optik 40, 336–341 (1974)Google Scholar
  298. G. Zanchi, J.-P. Perez, J. Sevely: Adaptation of a magnetic filtering device on a one megavolt electron microscope, Optik 43, 495–501 (1975)Google Scholar
  299. H. Rose: Aberration correction of homogeneous magnetic deflection systems, Optik 51, 15–38 (1978)Google Scholar
  300. S. Lanio, H. Rose, D. Krahl: Test and improved design of a corrected imaging magnetic energy filter, Optik 73, 56–68 (1986)Google Scholar
  301. S. Lanio: High-resolution imaging magnetic filters with simple structure, Optik 73, 99–107 (1986)Google Scholar
  302. S. Kujawa, D. Krahl: Comparison between A-type and B-type imaging Ω-filters. In: Proc. 14th Int. Congr. Electron Microsc., Cancún, Vol. 1, ed. by H.A. Calderón Benavides, M.J. Yacamán (Institute of Physics Publishing, Bristol 1998) pp. 241–242Google Scholar
  303. S. Uhlemann, H. Rose: The MANDOLINE filter—A new high-performance imaging filter for sub-eV EFTEM, Optik 96, 163–178 (1994)Google Scholar
  304. E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, R. Höschen: Energy resolution of an omega-type monochromator and imaging properties of the mandoline filter, Ultramicroscopy 110, 971–980 (2010)Google Scholar
  305. P.C. Tiemeijer, J.H.A. van Lin, B.H. Freitag, A.F. de Jong: Monochromized 200 kV (S)TEM, Microsc. Microanal. 8(Suppl. 2), 70–71 (2002)Google Scholar
  306. F. Kahl: Design eines Monochromators für Elektronenquellen, Ph.D. Thesis (Technical University of Darmstadt, Darmstadt 1999)Google Scholar
  307. O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M.F. Murfitt, C.S. Own, Z.S. Szilagyi: High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy, Philos. Trans. Royal Soc. A 367, 3683–3697 (2009)Google Scholar
  308. M. Mukai, E. Okunishi, M. Ashino, K. Omoto, T. Fukuda, A. Ikeda, K. Somehara, T. Kaneyama, T. Saitoh, T. Hirayama, T. Ikuhara: Development of a monochromator for aberration-corrected scanning transmission electron microscopy, Microscopy 64, 151–158 (2015)Google Scholar
  309. E. Plies: Proposal for an electrostatic energy filter and a monochromator. In: Proc. 9th Int. Congr. Electron Microsc., Toronto, Vol. 1, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 50–51Google Scholar
  310. A. Huber, J. Bärtle, E. Plies: Initial experiences with an electrostatic Ω-monochromator for electrons, Nucl. Instrum. Methods Phys. Res. A 519, 320–324 (2004)Google Scholar
  311. P.C. Tiemeijer: Operation modes of a TEM monochromator. In: Proc. EMAG 1999, ed. by C.J. Kiely (Institute of Physics Publishing, Bristol 1999) pp. 191–194Google Scholar
  312. P.C. Tiemeijer: Measurement of Coulomb interactions in an electron beam monochromator, Ultramicroscopy 78, 53–62 (1999)Google Scholar
  313. P.C. Tiemeijer, M. Bischoff, B. Freitag, C. Kisielowski: Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part I: Creating highly coherent monochromated illumination, Ultramicroscopy 114, 72–81 (2012)Google Scholar
  314. P.C. Tiemeijer, M. Bischoff, B. Freitag, C. Kisielowski: Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part II: Application to focal series reconstruction, Ultramicroscopy 118, 35–43 (2012)Google Scholar
  315. B. Freitag, P.C. Tiemeijer: Sub 30 meV energy resolution in the monochromated Themis transmission electron microscope. In: Proc. MC-2017, Lausanne (2017) p. 467Google Scholar
  316. H.W. Mook, P. Kruit: On the monochromatisation of high brightness sources for electron microscopy, Ultramicroscopy 78, 43–51 (1999)Google Scholar
  317. M. Mukai, J.S. Kim, K. Omoto, H. Sawada, A. Kimura, A. Ikeda, J. Zhou, T. Kaneyama, N.P. Young, J.H. Warner, P.D. Nellist, A.I. Kirkland: The development of a 200 kV monochromated field emission electron source, Ultramicroscopy 140, 37–43 (2018)Google Scholar
  318. M. Mukai, K. Omoto, T. Sasaki, Y. Kohno, S. Morishita, A. Kimura, A. Ikeda, K. Somehara, H. Sawada, K. Kimoto, K. Suenaga: Design of a monochromator for aberration-corrected low-voltage (S)TEM. In: Proc. 18th Int. Microsc. Conf., Prague (2014), IT-1-P-2578Google Scholar
  319. K. Kimoto: Practical aspects of monochromators developed for transmission electron microscopy, Microscopy 63, 337–344 (2014)Google Scholar
  320. M. Mankos, K. Shadman, V. Kolařík: Novel electron monochromator for high resolution imaging and spectrometry, J. Vac. Sci. Technol. B 34, 06KP01 (2016)Google Scholar
  321. H. Boersch, J. Geiger, W. Stickel: Das Auflösungsvermögen des elektrostatisch-magnetischen Energieanalysators für schnelle Elektronen, Z. Phys. 180, 415–424 (1964)Google Scholar
  322. J. Geiger: Inelastic electron scattering with energy losses in the meV-region, Proc. Annu. Meet. EMSA 39, 182–185 (1981)Google Scholar
  323. M. Terauchi, M. Tanaka, K. Tsuno, M. Ishida: Development of a high-energy resolution electron energy-loss spectroscopy microscope, J. Microsc. (Oxford) 194, 203–209 (1999)Google Scholar
  324. S. Uhlemann, H. Müller, P. Hartel, J. Zach, M. Haider: Thermal magnetic field noise limits resolution in transmission electron microscopy, Phys. Rev. Lett. 111, 046101 (2013)Google Scholar
  325. J. Johnson: Thermal agitation of electricity in conductors, Phys. Rev. 32, 97–109 (1928)Google Scholar
  326. H. Nyquist: Thermal agitation of electric charge in conductors, Phys. Rev. 32, 110–113 (1928)Google Scholar
  327. O.L. Krivanek, N. Dellby, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi: Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy, Adv. Imaging Electron Phys. 153, 121–160 (2008)Google Scholar
  328. H. Sawada, T. Sasaki, F. Hosokawa, K. Suenaga: Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle, Phys. Rev. Lett. 114, 166102 (2015)Google Scholar
  329. J.M. Cowley: Image contrast in a scanning transmission electron microscope, Appl. Phys. Lett. 15, 58–59 (1969)Google Scholar
  330. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy, I, Optik 31, 258–280 (1970)Google Scholar
  331. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy, II, Optik 31, 359–366 (1970)Google Scholar
  332. F.F. Krause, A. Rosenauer: Reciprocity relations in transmission electron microscopy: A rigorous derivation, Micron 92, 1–5 (2017)Google Scholar
  333. H. Sawada, M. Watanabe, I. Chiyo: Ad hoc auto-tuning of aberrations using high-resolution STEM images by autocorrelation function, Microsc. Microanal. 18, 705–710 (2012)Google Scholar
  334. S. Lazar, P. Tiemeijer, S. Henstra, T. Dennemans, J. Ringnalda, B. Freitag: High performance in low voltage HR-STEM applications enabled by fast automatic tuning of the combination of a monochromator and probe Cs-corrector, Microsc. Microanal. 22(Suppl. 3), 980–981 (2016)Google Scholar
  335. R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen: Atomic-resolution imaging with a sub-50-pm electron probe, Phys. Rev. Lett. 102, 096101 (2009)Google Scholar
  336. S. Morishita, R. Ishikawa, Y. Kohno, H. Sawada, N. Shibata, Y. Ikuhara: Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector, Microscopy 67, 46–50 (2018)Google Scholar
  337. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 464, 571–574 (2010)Google Scholar
  338. P.D. Nellist, S.J. Pennycook: Subångstrom resolution by underfocused incoherent transmission electron microscopy, Phys. Rev. Lett. 81, 4156–4159 (1998)Google Scholar
  339. B. Freitag, S. Kujawa, P.M. Mul, P.C. Tiemeijer, E. Snoeck: First experimental proof of spatial resolution improvement in a monochromized and Cs-corrected TEM. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 18–19Google Scholar
  340. B. Freitag, S. Kujawa, P.M. Mul, P.C. Tiemeijer: First experimental proof of spatial resolution improvement in a monochromized and Cs-corrected TEM, Microsc. Microanal. 10(Suppl. 3), 4–5 (2004)Google Scholar
  341. B. Freitag, S. Kujawa, P.M. Mul, J. Ringnalda, P.C. Tiemeijer: Breaking the spherical and chromatic aberration barrier in transmission electron microscopy, Ultramicroscopy 102, 209–214 (2005)Google Scholar
  342. A.L. Bleloch, N.J. Bacon, N. Dellby, T.C. Lovejoy, C. Shi, O.L. Krivanek: Overcoming the STEM chromatic aberration resolution limit by monochromatization. In: Proc. IMC19, Sydney (2018) pp. 948–949Google Scholar
  343. O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi: Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy 110, 935–945 (2010)Google Scholar
  344. M. Sato: Resolution. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 391–435Google Scholar
  345. P.D. Nellist: Scanning transmission electron microscopy. In: Science of Microscopy, Vol. 2007, ed. by P.W. Hawkes, J.C.H. Spence (Springer, Berlin-Heidelberg 2007) pp. 65–132Google Scholar
  346. O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff: An electron microscope for the aberration-corrected era, Ultramicroscopy 108, 179–195 (2008)Google Scholar
  347. O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J. Zhu, P.E. Batson, M. Lagos, R.F. Egerton, P.A. Crozier: Vibrational spectroscopy in the electron microscope, Nature 514, 209–212 (2014)Google Scholar
  348. T. Miyata, M. Fukuyama, A. Hibara, E. Okunishi, M. Mukai, T. Mizoguchi: Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy–electron energy loss spectroscopy, Microscopy 63, 377–382 (2014)Google Scholar
  349. J.A. Hachtel, J. Huang, I. Popovs, S. Jansone-Popova, J.K. Keum, J. Jakowski, T.C. Lovejoy, N. Dellby, O.L. Krivanek, J.C. Idrobo: Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope, Science 363, 525–528 (2019)Google Scholar
  350. P. Rez, T. Aoki, K. March, D. Gur, O.L. Krivanek, N. Dellby, T.C. Lovejoy, S.G. Wolf, H. Cohen: Damage-free vibrational spectroscopy of biological materials in the electron microscope, Nat. Commun. 7, 10945 (2016)Google Scholar
  351. J.R. Jokisaari, J. Hachtel, X. Hu, A. Mukherjee, C. Wang, A. Konecna, J. Aizpurua, T.C. Lovejoy, N. Dellby, O.L. Krivanek, J.-C. Idrobo, R.F. Klie: Vibrational spectroscopy of liquid water at high spatial resolution, Adv. Mater. 30, 1802702 (2018)Google Scholar
  352. J.M. Rodenburg: Ptychography and related diffractive imaging methods, Adv. Imaging Electron Phys. 150, 87–184 (2008)Google Scholar
  353. A.M. Maiden, J.M. Rodenburg: An improved ptychographical phase retrieval algorithm for diffractive imaging, Ultramicroscopy 109, 1256–1262 (2009)Google Scholar
  354. Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M.W. Tate, J. Park, S.M. Gruner, V. Elser, D.A. Muller: Electron ptychography of 2D materials to deep sub-ångström resolution, Nature 559, 343–349 (2018)Google Scholar
  355. C. Dwyer, T. Aoki, P. Rez, S.L.Y. Chang, T.C. Lovejoy, O.L. Krivanek: Electron-beam mapping of vibrational modes with nanometer spatial resolution, Phys. Rev. Lett. 117, 256101 (2016)Google Scholar
  356. F.S. Hage, D.M. Kepaptsoglou, Q.M. Ramasse, L.J. Allen: Phonon spectroscopy at atomic resolution, Phys. Rev. Lett. 122, 016103 (2019)Google Scholar
  357. K. Venkatraman, B.D.A. Levin, K. March, P. Rez, P.A. Crozier: Vibrational spectroscopy at atomic resolution with electron impact scattering, https://arxiv.org/abs/1812.08895 (2018)
  358. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hadju: Potential for biomolecular imaging with femtosecond x-ray pulses, Nature 406, 752–757 (2000)Google Scholar
  359. H.N. Chapman, P. Fromme, A. Barty, et al.: Femtosecond x-ray protein nanocrystallography, Nature 470, 73–77 (2011)Google Scholar
  360. R.F. Egerton: Outrun radiation damage with electrons?, Adv. Struct. Chem. Imaging 1, 5–15 (2015)Google Scholar
  361. R.F. Egerton, R.K. Li, Y. Zhu: Diffract-before-destroy with electrons? In: Proc. 18th Int. Microsc. Conf., Prague, ed. by P. Hozak (2014), IT-8-O-1901Google Scholar
  362. J.C.H. Spence: Outrunning damage: Electrons vs. x-rays—Timescales and mechanisms, Struct. Dyn. 4, 044027 (2017)Google Scholar
  363. J.C.H. Spence, G. Subramanian, P. Musumeci: Hollow cone illumination for fast TEM, and outrunning damage with electrons, J. Phys. B 48, 214003 (2015)Google Scholar
  364. J.-M. Zuo, J. Tao: Scanning electron nanodiffraction and diffraction imaging. In: Scanning Transmission Electron Microscopy: Imaging and Analysis, ed. by S.J. Pennycook, P.D. Nellist (Springer, Berlin-Heidelberg 2011) pp. 393–427Google Scholar
  365. M.W. Tate, P. Purohit, D. Chamberlain, K.X. Nguyen, R. Hovden, C.S. Chang, P. Deb, E. Turgut, J.T. Heron, D.G. Schlom, D.C. Ralph, G.D. Fuchs, K.S. Shanks, H.T. Philipp, D.A. Muller, S.M. Gruner: High dynamic range pixel array detector for scanning transmission electron microscopy, Microsc. Microanal. 22, 237–249 (2016)Google Scholar
  366. M. Krajnak, D. McGrouther, D. Maneuski, V. O'Shea, S. McVitie: Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast, Ultramicroscopy 165, 42–50 (2016)Google Scholar
  367. J.A. Mir, R. Clough, R. MacInnes, C. Gough, R. Plackett, I. Shipsey, H. Sawada, I. MacLaren, R. Ballabriga, D. Maneuski, V. O'Shea, D. McGrouther, A.I. Kirkland: Characterisation of the Medipix3 detector for 60 and 80 keV electrons, Ultramicroscopy 182, 44–53 (2017)Google Scholar
  368. F. Ernst, M. Rühle (Eds.): High-resolution Imaging and Spectrometry of Materials (Springer, Berlin 2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CEMES-CNRSToulouseFrance
  2. 2.Nion CoKirkland, WAUSA

Personalised recommendations