Advertisement

Model-Based Electron Microscopy

Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

The growing interest in materials design and control of nanostructures explains the need for precise determination of the atomic arrangement of non-periodic structures. This includes, for example, locating atomic column positions with a precision in the picometer range, a precise determination of the chemical composition of materials, and counting the number of atoms with single atom sensitivity. In order to extract these quantitative measurements from atomic resolution (scanning) transmission electron microscopy () images, statistical analysis methods are needed. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are purely considered as data planes, from which structure parameters have to be determined using a parametric model describing the images. This chapter summarizes the underlying theory and highlights some of the recent applications of quantitative model-based (S)TEM.

model-based parameter estimation quantitative structure determination maximum likelihood estimation experiment design precision resolution probability of error atomic column position measurement composition analysis atom counting 

Notes

Acknowledgements

The author would like to acknowledge all colleagues who contributed to this work over the years, in particular S. Bals, K.J. Batenburg, A. De Backer, A. De wael, R. Erni, A.J. den Dekker, J. Gonnissen, L. Jones, G.T. Martinez, P.D. Nellist, A. Rosenauer, M.D. Rossell, D. Schryvers, J. Sijbers, K. van den Bos, D. Van Dyck, G. Van Tendeloo, and J. Verbeeck. The author also expresses many thanks for all fruitful and enlightening theoretical discussions, as well as all the shared experimental expertise and knowledge. Sincere thanks are due to A. van den Bos, who unfortunately passed away too soon, for his enthusiastic and expert guidance in the author's understanding of statistical parameter estimation theory.

References

  1. D. Zanchet, B.D. Hall, D. Ugarte: X-ray characterization of nanoparticles. In: Characterization of Nanophase Materials, ed. by Z.L. Wang (Wiley, Weinheim 2001) pp. 13–36Google Scholar
  2. J.C.H. Spence: The future of atomic resolution electron microscopy for materials science, Mater. Sci. Eng. 26(1/2), 1–49 (1999)Google Scholar
  3. R. Henderson: The potential and limitations of neutrons, electrons and x-rays for atomic resolution microscopy of unstained biological molecules, Q. Rev. Biophys. 28, 171–193 (1995)Google Scholar
  4. J.P. Locquet, J. Perret, J. Fompeyrine, E. Machler, J.W. Seo, G. Van Tendeloo: Doubling the critical temperature of La1.9Sr0.1CuO4, Nature 394, 453–456 (1998)Google Scholar
  5. D.A. Muller, M.J. Mills: Electron microscopy: Probing the atomic structure and chemistry of grain boundaries, interfaces and defects, Mater. Sci. Eng. A 260, 12–28 (1999)Google Scholar
  6. M. Springborg: Methods of Electronic-Structure Calculations: From Molecules to Solids (Wiley, Hoboken 2000)Google Scholar
  7. G.B. Olson: Designing a new material world, Science 288, 993–998 (2000)Google Scholar
  8. D.A. Muller: Why changes in bond lengths and cohesion lead to core-level shifts in metals, and consequences for the spatial difference method, Ultramicroscopy 78, 163–174 (1999)Google Scholar
  9. C. Kisielowski, E. Principe, B. Freitag, D. Hubert: Benefits of microscopy with super resolution, Physica B 308–310, 1090–1096 (2001)Google Scholar
  10. Y. Wada: Atom electronics: A proposal of nano-scale device based on atom/molecule switching, Microelectron. Eng. 30, 375–382 (1996)Google Scholar
  11. G.B. Olson: Computational design of hierarchically structured materials, Science 277, 1237–1242 (1997)Google Scholar
  12. M.A. Reed, J.M. Tour: Computing with molecules, Sci. Am. 282, 68–75 (2000)Google Scholar
  13. N.D. Browning, I. Arslan, P. Moeck, T. Topuria: Atomic resolution scanning transmission electron microscopy, Phys. Status Solidi (b) 227, 229–245 (2001)Google Scholar
  14. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)Google Scholar
  15. K. Urban: Studying atomic structures by aberration-corrected transmission electron microscopy, Science 321, 506–510 (2008)Google Scholar
  16. C.L. Jia, S.B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse: Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films, Nat. Mater. 7, 57–61 (2008)Google Scholar
  17. C.L. Jia, S.B. Mi, M. Faley, U. Poppe, J. Schubert, K. Urban: Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy, Phys. Rev. B 79, 081405 (2009)Google Scholar
  18. R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen: Atomic resolution imaging with a sub-50 pm electron probe, Phys. Rev. Lett. 102, 096101 (2009)Google Scholar
  19. D. Van Dyck, S. Van Aert, A.J. den Dekker, A. van den Bos: Is atomic resolution transmission electron microscopy able to resolve and refine amorphous structures?, Ultramicroscopy 98(1), 27–42 (2003)Google Scholar
  20. N. Shibata, Y. Kohno, S.D. Findlay, H. Sawada, Y. Kondo, Y. Ikuhara: New area detector for atomic-resolution scanning transmission electron microscopy, J. Electron Microsc. 59(6), 473–479 (2010)Google Scholar
  21. R. Hovden, D.A. Muller: Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope, Ultramicroscopy 109, 59–65 (2012)Google Scholar
  22. J. Gonnissen, A. De Backer, A.J. den Dekker, G.T. Martinez, A. Rosenauer, J. Sijbers, S. Van Aert: Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images, Appl. Phys. Lett. 105, 063116 (2014)Google Scholar
  23. A. De Backer, A. De wael, J. Gonnissen, S. Van Aert: Optimal experimental design for nano-particle atom-counting from high-resolution STEM images, Ultramicroscopy 151, 46–55 (2015)Google Scholar
  24. H. Yang, T.J. Pennycook, P.D. Nellist: Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions, Ultramicroscopy 151, 232–239 (2015)Google Scholar
  25. R. Ishikawa, A.R. Lupini, S.D. Findlay, S.J. Pennycook: Quantitative annular dark field electron microscopy using single electron signals, Microsc. Microanal. 20, 99–110 (2014)Google Scholar
  26. A.J. den Dekker, S. Van Aert, D. Van Dyck, A. van den Bos: Maximum likelihood estimation of structure parameters from high resolution electron microscopy image. Part I: A theoretical framework, Ultramicroscopy 104(2), 83–106 (2005)Google Scholar
  27. S. Van Aert, A.J. den Dekker, A. van den Bos, D. Van Dyck, J.H. Chen: Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part II: A practical example, Ultramicroscopy 104(2), 107–125 (2005)Google Scholar
  28. S. Van Aert, A. De Backer, G.T. Martinez, A.J. den Dekker, D. Van Dyck, S. Bals, G. Van Tendeloo: Advanced electron crystallography through model-based imaging, IUCrJ 3, 71–83 (2016)Google Scholar
  29. A. van den Bos: Parameter Estimation for Scientists and Engineers (Wiley, Hoboken 2007)Google Scholar
  30. A.J. den Dekker, J. Gonnissen, A. De Backer, J. Sijbers, S. Van Aert: Estimation of unknown structure parameters from high-resolution (S)TEM images: What are the limits?, Ultramicroscopy 134, 34–43 (2013)Google Scholar
  31. A. van den Bos, A.J. den Dekker: Resolution reconsidered—Conventional approaches and an alternative, Adv. Imaging Electron Phys. 117, 241–360 (2001)Google Scholar
  32. G.A.F. Seber, C.J. Wild: Nonlinear Regression (Wiley, Hoboken 1989)Google Scholar
  33. H. Cramér: Mathematical Methods of Statistics (Princeton Univ. Press, Princeton 1946)Google Scholar
  34. P.D. Nellist, S.J. Pennycook: The principles and interpretation of annular dark-field Z-contrast imaging, Adv. Imaging Electron Phys. 113, 147–203 (2000)Google Scholar
  35. D. Van Dyck: High-resolution electron microscopy, Adv. Imaging Electron Phys. 123, 105–171 (2002)Google Scholar
  36. A. De Backer, K.H.W. van den Bos, W. Van den Broek, J. Sijbers, S. Van Aert: StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images, Ultramicroscopy 171, 104–116 (2016)Google Scholar
  37. A.J. den Dekker, J. Sijbers, D. Van Dyck: How to optimize the design of a quantitative HREM experiment so as to attain the highest precision?, J. Microsc. 194, 95–104 (1999)Google Scholar
  38. E. Bettens, D. Van Dyck, A.J. den Dekker, J. Sijbers, A. van den Bos: Model-based two-object resolution from observations having counting statistics, Ultramicroscopy 77, 37–48 (1999)Google Scholar
  39. A.J. den Dekker, S. Van Aert, D. Van Dyck, A. van den Bos, P. Geuens: Does a monochromator improve the precision in quantitative HRTEM?, Ultramicroscopy 89, 275–290 (2001)Google Scholar
  40. S. Van Aert, A.J. den Dekker, D. Van Dyck, A. van den Bos: High-resolution electron microscopy and electron tomography: Resolution versus precision, J. Struct. Biol. 138, 21–33 (2002)Google Scholar
  41. S. Van Aert, A.J. den Dekker, A. van den Bos, D. Van Dyck: High resolution electron microscopy: From imaging toward measuring, IEEE Trans. Instrum. Meas. 51(4), 611–615 (2002)Google Scholar
  42. S. Van Aert, A.J. den Dekker, D. Van Dyck, A. van den Bos: Optimal experimental design of STEM measurement of atom column positions, Ultramicroscopy 90(4), 273–289 (2002)Google Scholar
  43. S. Van Aert, D. Van Dyck, A.J. den Dekker: Resolution of coherent and incoherent imaging systems reconsidered—Classical criteria and a statistical alternative, Opt. Express 14, 3830–3839 (2006)Google Scholar
  44. A. Wang, S. Van Aert, P. Goos, D. Van Dyck: Precision of 3-D atomic scale measurements for HRTEM images: What are the limits?, Ultramicroscopy 114, 20–30 (2012)Google Scholar
  45. W. Van den Broek, S. Van Aert, P. Goos, D. Van Dyck: Throughput maximization of particle radius measurements through balancing size versus current of the electron probe, Ultramicroscopy 111, 940–947 (2011)Google Scholar
  46. S.M. Kay: Detection Theory, Fundamentals of Statistical Signal Processing, Vol. 2 (Prentice-Hall, Upper Saddle River 2009)Google Scholar
  47. J. Gonnissen, A. De Backer, A.J. den Dekker, J. Sijbers, S. Van Aert: Atom-counting in high resolution electron microscopy: TEM or STEM – That's the question, Ultramicroscopy 174, 112–120 (2017)Google Scholar
  48. R.I. Jennrich: An Introduction to Computational Statistics—Regression Analysis (Prentice-Hall, Upper Saddle River 1995)Google Scholar
  49. A. Stuart, K. Ord: Kendall's Advanced Theory of Statistics (Arnold, London 1994)Google Scholar
  50. B.R. Frieden: Physics from Fisher Information—A Unification (Cambridge Univ. Press, Cambridge 1998)Google Scholar
  51. Lord Rayleigh: Wave theory of light. In: Scientific Papers, Vol. 3, ed. by J.W. Strutt (Cambridge Univ. Press, Cambridge 1902) pp. 47–189Google Scholar
  52. M.A. O'Keefe: “Resolution” in high-resolution electron microscopy, Ultramicroscopy 47, 282–297 (1992)Google Scholar
  53. J. Gonnissen, A. De Backer, A.J. den Dekker, J. Sijbers, S. Van Aert: Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design, Ultramicroscopy 170, 128–138 (2016)Google Scholar
  54. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe: Direct imaging of hydrogen-atom columns in a crystal by annular bright field electron microscopy, Nat. Mater. 10, 278–281 (2011)Google Scholar
  55. A. Rosenauer, M. Schowalter: STEM SIM—A new software tool for simulation of STEM HAADF Z-contrast imaging. In: Microscopy of Semiconducting Materials, Springer Proceedings in Physics, Vol. 120, ed. by A.G. Cullis, P.A. Midgley (Springer, Dorchester 2008) pp. 170–172Google Scholar
  56. D. Van Dyck, W. Coene: A new procedure for wave function restoration in high resolution electron microscopy, Optik 77, 125–128 (1987)Google Scholar
  57. H. Lichte: Electron holography approaching atomic resolution, Ultramicroscopy 20, 293–304 (1986)Google Scholar
  58. D. Van Dyck, M. Op de Beeck, W. Coene: A new approach to object wave function reconstruction in electron microscopy, Optik 93, 103–107 (1993)Google Scholar
  59. A.I. Kirkland, W.O. Saxton, K.L. Chau, K. Tsuno, M. Kawasaki: Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM, Ultramicroscopy 57, 355–374 (1995)Google Scholar
  60. S. Haigh, H. Sawada, A.I. Kirkland: Optimal tilt magnitude determination for aberration-corrected super resolution exit wave reconstruction, Philos. Trans. R. Soc. A 367, 3755–3771 (2009)Google Scholar
  61. W. Coene, G. Janssen: Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy, Phys. Rev. Lett. 69(26), 3743–3746 (1992)Google Scholar
  62. C. Kisielowski, C.J.D. Hetherington, Y.C. Wang, R. Kilaas, M.A. O'Keefe, A. Thust: Imaging columns of light elements carbon, nitrogen and oxygen with sub Ångstom resolution, Ultramicroscopy 89, 243–263 (2001)Google Scholar
  63. C.L. Jia, A. Thust: Investigation of atomic displacements at a Σ3 {111} twin boundary in BaTiO3 by means of phase-retrieval electron microscopy, Phys. Rev. Lett. 82(25), 5052–5055 (1999)Google Scholar
  64. J. Ayache, C. Kisielowski, R. Kilaas, G. Passerieux, S. Lartigue-Korinek: Determination of the atomic structure of a Σ13 SrTiO3 grain boundary, J. Mater. Sci. 40, 3091–3100 (2005)Google Scholar
  65. S. Bals, S. Van Aert, G. Van Tendeloo, D. Ávila-Brande: Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range, Phys. Rev. Lett. 96, 096106 (2006)Google Scholar
  66. S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van Tendeloo, E.K.H. Salje: Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy, Adv. Mater. 24, 523–527 (2012)Google Scholar
  67. L. Goncalves-Ferreira, S.A.T. Redfern, E. Artacho, E.K.H. Salje: Ferrielectric twin walls in CaTiO3, Phys. Rev. Lett. 101, 097602 (2008)Google Scholar
  68. C.L. Jia, M. Lentzen, K. Urban: Atomic-resolution imaging of oxygen in perovskite ceramics, Science 299, 870–873 (2003)Google Scholar
  69. C.L. Jia, L. Houben, A. Thust, J. Barthel: On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM, Ultramicroscopy 110, 500–505 (2010)Google Scholar
  70. C.L. Jia, S.B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse: Effect of a single dislocation in a heterostructure layer on the local polarization of a ferroelectric layer, Phys. Rev. Lett. 102, 117601 (2009)Google Scholar
  71. S. Van Aert, J. Verbeeck, R. Erni, S. Bals, M. Luysberg, D. Van Dyck, G. Van Tendeloo: Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy, Ultramicroscopy 109, 1236–1244 (2009)Google Scholar
  72. M. Retsky: Observed single atom elastic cross sections in a scanning electron microscope, Optik 41, 127 (1974)Google Scholar
  73. K.E. MacArthur, T.J. Pennycook, E. Okunishi, A.J. D'Alfonso, N.R. Lugg, L.J. Allen, P.D. Nellist: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images, Ultramicroscopy 133, 109–119 (2013)Google Scholar
  74. G.T. Martinez, A. De Backer, A. Rosenauer, J. Verbeeck, S. Van Aert: The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images, Micron 63, 57–63 (2014)Google Scholar
  75. K.E. MacArthur, A.J. D'Alfonso, D. Ozkaya, L.J. Allen, P.D. Nellist: Optimal ADF STEM imaging parameters for tilt-robust image quantification, Ultramicroscopy 156, 1–8 (2015)Google Scholar
  76. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer: Quantitative atomic resolution scanning transmission electron microscopy, Phys. Rev. Lett. 100, 206101 (2008)Google Scholar
  77. A. Rosenauer, K. Gries, K. Müller, A. Pretorius, M. Schowalter, A. Avramescu, K. Engl, S. Lutgen: Measurement of specimen thickness and composition in AlxGa1-xN/GaN using high-angle annular dark field images, Ultramicroscopy 109, 1171–1182 (2009)Google Scholar
  78. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer: Standardless atom counting in scanning transmission electron microscopy, Nano Lett. 10, 4405–4408 (2010)Google Scholar
  79. G.T. Martinez, A. Rosenauer, A. De Backer, J. Verbeeck, S. Van Aert: Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy, Ultramicroscopy 137, 12–19 (2014)Google Scholar
  80. T. Grieb, K. Müller, R. Fritz, M. Schowalter, N. Neugebohrn, N. Knaub, K. Volz, A. Rosenauer: Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis, Ultramicroscopy 117, 15–23 (2012)Google Scholar
  81. G. McLachlan, D. Peel: Finite Mixture Models, Probability and Statistics (Wiley, Hoboken 2000)Google Scholar
  82. S. Van Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G. Van Tendeloo: Three dimensional atomic imaging of crystalline nanoparticles, Nature 470, 374–377 (2011)Google Scholar
  83. A. De Backer, G.T. Martinez, A. Rosenauer, S. Van Aert: Atom counting in HAADF STEM using a statistical model-based approach: Methodology, possibilities, and inherent limitations, Ultramicroscopy 134, 23–33 (2013)Google Scholar
  84. S. Van Aert, A. De Backer, G.T. Martinez, B. Goris, S. Bals, G. Van Tendeloo, A. Rosenauer: Procedure to count atoms with trustworthy single-atom sensitivity, Phys. Rev. B 87, 064107 (2013)Google Scholar
  85. A. De Backer, G.T. Martinez, K.E. MacArthur, L. Jones, A. Béché, P.D. Nellist, S. Van Aert: Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting, Ultramicroscopy 151, 56–61 (2015)Google Scholar
  86. A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, P.V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, S. Lutgen: Composition mapping in InGaN by scanning transmission electron microscopy, Ultramicroscopy 111, 1316–1327 (2011)Google Scholar
  87. A. De wael, A. De Backer, L. Jones, P.D. Nellist, S. Van Aert: Hybrid statistics-simulations based method for atom-counting from ADF STEM images, Ultramicroscopy 177, 69–77 (2017)Google Scholar
  88. K.H.W. van den Bos, A. De Backer, G.T. Martinez, N. Winckelmans, S. Bals, P.D. Nellist, S. Van Aert: Unscrambling mixed elements using high angle annular dark field scanning transmission electron microscopy, Phys. Rev. Lett. 116, 246101 (2016)Google Scholar
  89. D. Van Dyck, M. Op de Beeck: A simple intuitive theory for electron diffraction, Ultramicroscopy 64, 99–107 (1996)Google Scholar
  90. J.M. Cowley, J.C.H. Spence, V.V. Smirnov: The enhancement of electron microscope resolution by use of atomic focusers, Ultramicroscopy 68, 135–148 (1997)Google Scholar
  91. Z. Saghi, X. Xu, G. Möbus: Model based atomic resolution tomography, J. Appl. Phys. 106, 024304 (2009)Google Scholar
  92. J.R. Jinscheck, K.J. Batenburg, H.A. Calderon, R. Kilaas, V. Radmilovic, C. Kisielowski: 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography, Ultramicroscopy 108, 589–604 (2008)Google Scholar
  93. S. Bals, M. Casavola, M.A. van Huis, S. Van Aert, K.J. Batenburg, G. Van Tendeloo, D. Vanmaekelbergh: 3-D atomic imaging of colloidal core-shell nanocrystals, Nano Lett. 11(8), 3420–3424 (2011)Google Scholar
  94. S. Bals, S. Van Aert, C.P. Romero, K. Lauwaet, M.J. Van Bael, B. Schoeters, B. Partoens, E. Yücelen, P. Lievens, G. Van Tendeloo: Atomic scale dynamics of ultrasmall germanium clusters, Nat. Commun. 3, 897 (2012)Google Scholar
  95. Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnston, J. Jiang, J. Yuan: 3-D atomic-scale structure of size-selected gold nanoclusters, Nature 451, 46–48 (2008)Google Scholar
  96. L. Jones, K.E. MacArthur, V.T. Fauske, A.T.J. van Helvoort, P.D. Nellist: Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy, Nano Lett. 14, 6336–6341 (2014)Google Scholar
  97. J.J. Geuchies, C. van Overbeek, W.H. Evers, B. Goris, A. de Backer, A.P. Gantapara, F.T. Rabouw, J. Hilhorst, J.L. Peters, O. Konovalov, A.V. Petukhov, M. Dijkstra, L.D.A. Siebbeles, S. Van Aert, S. Bals, D. Vanmaekelbergh: In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals, Nat. Mater. 15, 1248–1254 (2016)Google Scholar
  98. M. Yu, A.B. Yankovich, A. Kaczmarowski, D. Morgan, P.M. Voyles: Integrated computational and experimental structure refinement for nanoparticles, ACS Nano 10, 4031–4038 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Electron Microscopy for Materials Research (EMAT)University of AntwerpAntwerpBelgium

Personalised recommendations