Photoemission Electron Microscopy

Part of the Springer Handbooks book series (SHB)


Photoemission electron microscopy (PEEM) is a cathode lens electron microscopy technique. This specialized electron microscopy technique excels in studying the morphology, electronic and chemical properties and the magnetic structure of surfaces and thin film materials with nanometer-scale spatial resolution. In this chapter, we describe X-PEEM instrumentation and a typical X-PEEM optical system, discuss aberrations that limit the optical performance of X-PEEM microscopes, describe contrast mechanisms, and present several examples that cover some of the common use cases for X-PEEM, in particular the magnetic and time-resolved microscopy of nanostructures.

PEEM electron mirror aberration correction XMCD magnetic microscopy resolution time-resolved microscopy spectromicroscopy 



We would like to thank our collaborators E. Folven, Y. Takamura, J. Grepstad, A. Farhan, B. Leung, A.P. Hitchcock, and P.U.P.A. Gilbert, whose ALS work is discussed in this chapter. The chapter was copyedited by C.E. Scholl. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231.


  1. E. Bauer: Low energy electron microscopy, Rep. Prog. Phys. 57, 895–938 (1994)Google Scholar
  2. A. Einstein: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Phys. 17, 132 (1905)Google Scholar
  3. E. Brüche: Electron microscope image with photo-electrons, Z. Phys. 86, 448–450 (1933)Google Scholar
  4. E. Brüche, H. Johannson: Kinematographische Elektronenmikroskopie von Oxydkathoden, Ann. Phys. 407, 145–166 (1932)Google Scholar
  5. M. Knoll, F.G. Houtermans, W. Schulze: Untersuchung der Emissionsverteilung an Glühkathoden mit dem magnetischen Elektronenmikroskop, Z. Phys. 78, 340–362 (1932)Google Scholar
  6. D.B. Langmuir: Theoretical limitations of cathode-ray tubes, Proc. Inst. Radio Eng. 25, 977–991 (1937)Google Scholar
  7. A. Recknagel: Theorie des elektrischen Elektronenmikroskops für Selbststrahler, Z. Phys. 117, 689–708 (1941)Google Scholar
  8. W. Engel: Emission microscopy with different kinds of electron emission. In: Proc. 6th Int. Congr. Electron Microsc., Kyoto, Japan (Maruzen, Tokyo 1966)Google Scholar
  9. L. Wegmann: Photoemission electron-microscope: its technique and applications, J. Microsc. 96(1), 1–23 (1972)Google Scholar
  10. O.H. Griffith, G.E. Rempfer: Photoelectron imaging: Photoelectron microscopy and related techniques, Adv. Opt. Electron Microsc. 10, 269–337 (1987)Google Scholar
  11. O.H. Griffith, W. Engel: Historical-perspective and current trends in emission microscopy, mirror electron-microscopy and low-energy electron-microscopy—An introduction to the Proceedings of the 2nd International-Symposium and Workshop on Emission Microscopy and Related Techniques, Ultramicroscopy 36, 1–28 (1991)Google Scholar
  12. E. Bauer: Surface electron-microscopy—The first 30 years, Surf. Sci. 299, 102–115 (1994)Google Scholar
  13. G.F. Rempfer, W.P. Skoczylas, O.H. Griffith: Design and performance of a high-resolution photoelectron microscope, Ultramicroscopy 36, 196–221 (1991)Google Scholar
  14. G.F. Rempfer: Unipotential electrostatic lenses—paraxial properties and aberrations of focal length and focal point, J. Appl. Phys. 57, 2385–2401 (1985)Google Scholar
  15. G.F. Rempfer, O.H. Griffith: The resolution of photoelectron microscopes with UV, X-ray, and synchrotron excitation sources, Ultramicroscopy 27, 273–300 (1989)Google Scholar
  16. W. Telieps, E. Bauer: An analytical reflection and emission UHV surface electron-microscope, Ultramicroscopy 17, 57–65 (1985)Google Scholar
  17. T. Schmidt, S. Heun, J. Slezak, J. Diaz, K.C. Prince, G. Lilienkamp, E. Bauer: SPELEEM: combining LEEM and spectroscopic imaging, Surf. Rev. Lett. 5, 1287–1296 (1998)Google Scholar
  18. B.P. Tonner, G.R. Harp: Photoelectron microscopy with synchrotron radiation, Rev. Sci. Instrum. 59, 853–858 (1988)Google Scholar
  19. J. Stöhr, Y. Wu, B.D. Hermsmeier, M.G. Samant, G.R. Harp, S. Koranda, D. Dunham, B.P. Tonner: Element-specific magnetic microscopy with circularly polarized X-rays, Science 259, 658–661 (1993)Google Scholar
  20. S. Anders, H.A. Padmore, R.M. Duarte, T. Renner, T. Stammler, A. Scholl, M.R. Scheinfein, J. Stöhr, L. Seve, B. Sinkovic: Photoemission electron microscope for the study of magnetic materials, Rev. Sci. Instrum. 70, 3973–3981 (1999)Google Scholar
  21. L.J. Heyderman, F. Nolting, C. Quitmann: X-ray photoemission electron microscopy investigation of magnetic thin film antidot arrays, Appl. Phys. Lett. 83, 1797–1799 (2003)Google Scholar
  22. W. Kuch, J. Gilles, F. Offi, S.S. Kang, S. Imada, S. Suga, J. Kirschner: Imaging microspectroscopy of Ni/Fe/Co/Cu(001) using a photoemission microscope, J. Electron Spectrosc. Relat. Phenom. 109, 249–265 (2000)Google Scholar
  23. C.M. Schneider, G. Schönhense: Investigating surface magnetism by means of photoexcitation electron emission microscopy, Rep. Prog. Phys. 65, R1785–R1839 (2002)Google Scholar
  24. D.H. Wei, Y.J. Hsu, R. Klauser, I.H. Hong, G.C. Yin, T.J. Chuang: Photoelectron microscopy projects at SRRC, Surf. Rev. Lett. 10, 617–624 (2003)Google Scholar
  25. F. Kronast, J. Schlichting, F. Radu, S.K. Mishra, T. Noll, H.A. Durr: Spin-resolved photoemission microscopy and magnetic imaging in applied magnetic fields, Surf. Interface Anal. 42, 1532–1536 (2010)Google Scholar
  26. T. Schmidt, U. Groh, R. Fink, E. Umbach: XPEEM with energy-filtering: Advantages and first results from the smart project, Surf. Rev. Lett. 9, 223–232 (2002)Google Scholar
  27. A. Doran, M. Church, T. Miller, G. Morrison, A.T. Young, A. Scholl: Cryogenic PEEM at the advanced light source, J. Electron Spectrosc. Relat. Phenom. 185, 340–346 (2012)Google Scholar
  28. A. Locatelli, L. Aballe, T.O. Mentes, M. Kiskinova, E. Bauer: Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications, Surf. Interface Anal. 38, 1554–1557 (2006)Google Scholar
  29. X.M. Cheng, D.J. Keavney: Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy (X-PEEM), Rep. Prog. Phys. 75, 026501 (2012)Google Scholar
  30. L. Aballe, M. Foerster, E. Pellegrin, J. Nicolas, S. Ferrer: The ALBA spectroscopic LEEM-PEEM experimental station: layout and performance, J. Synchrotron Radiat. 22, 745–752 (2015)Google Scholar
  31. F.Z. Guo, T. Wakita, H. Shimizu, T. Matsushita, T. Yasue, T. Koshikawa, E. Bauer, K. Kobayashi: Introduction of photoemission electron microscopes at SPring-8 for nanotechnology support, J. Phys. Condens. Matter 17, S1363–S1370 (2005)Google Scholar
  32. R. Belkhou, S. Stanescu, S. Swaraj, A. Besson, M. Ledoux, M. Hajlaoui, D. Dalle: HERMES: A soft X-ray beamline dedicated to X-ray microscopy, J. Synchrotron Radiat. 22, 968–979 (2015)Google Scholar
  33. G. Salazar-Alvarez, J.J. Kavich, J. Sort, A. Mugarza, S. Stepanow, A. Potenza, H. Marchetto, S.S. Dhesi, V. Baltz, B. Dieny, A. Weber, L.J. Heyderman, J. Nogues, P. Gambardella: Direct evidence of imprinted vortex states in the antiferromagnet of exchange biased microdisks, Appl. Phys. Lett. 95, 012510-3 (2009)Google Scholar
  34. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban: Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electron Microsc. 47, 395–405 (1998)Google Scholar
  35. G.F. Rempfer, D.M. Desloge, W.P. Skoczylas, O.H. Griffith: Simultaneous correction of spherical and chromatic aberrations with an electron mirror: An electron optical achromat, Microsc. Microanal. 3, 14–27 (1997)Google Scholar
  36. R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Degenhardt, R. Wichtendahl, H. Kuhlenbeck, W. Erlebach, K. Ihmann, R. Schlogl, H.J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner: SMART: A planned ultrahigh-resolution spectromicroscope for BESSY II, J. Electron Spectrosc. Relat. Phenom. 84, 231–250 (1997)Google Scholar
  37. P. Hartel, D. Preikszas, R. Spehr, H. Müller, H. Rose: Mirror corrector for low-voltage electron microscopes. In: Advances in Imaging and Electron Physics, Vol. 120, ed. by P. Hawkes (Elsevier, Amsterdam 2003) pp. 41–133Google Scholar
  38. R.M. Tromp, J.B. Hannon, A.W. Ellis, W. Wan, A. Berghaus, O. Schaff: A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design, Ultramicroscopy 110, 852–861 (2010)Google Scholar
  39. R. Konenkamp, R.C. Word, G.F. Rempfer, T. Dixon, L. Almaraz, T. Jones: 5.4 nm spatial resolution in biological photoemission electron microscopy, Ultramicroscopy 110, 899–902 (2010)Google Scholar
  40. J. Feng, E. Forest, A.A. MacDowell, M. Marcus, H. Padmore, S. Raoux, D. Robin, A. Scholl, R. Schlueter, P. Schmid, J. Stohr, W. Wan, D.H. Wei, Y. Wu: An x-ray photoemission electron microscope using an electron mirror aberration corrector for the study of complex materials, J. Phys. Condens. Matter 17, S1339–S1350 (2005)Google Scholar
  41. D.T. Attwood: Soft x-rays and extreme ultraviolet radiation: principles and applications (Cambridge Univ. Press, Cambridge 2000)Google Scholar
  42. B.P. Tonner, D. Dunham: Sub-micron spatial resolution of a micro-XAFS electrostatic microscope with bending magnet radiation: performance assessments and prospects for aberration correction, Nucl. Instrum. Methods Phys. Res. A 347, 436–440 (1994)Google Scholar
  43. R. Nakajima, J. Stohr, Y.U. Idzerda: Electron-yield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co, and Ni, Phys. Rev. B 59, 6421–6429 (1999)Google Scholar
  44. H. Ohara, Y. Yamamoto, K. Kajikawa, H. Ishii, K. Seki, Y. Ouchi: Effective escape depth of photoelectrons for hydrocarbon films in total electron yield measurement at the C K-edge, J. Synchrotron Radiat. 6, 803–804 (1999)Google Scholar
  45. M. Zharnikov, S. Frey, K. Heister, M. Grunze: An extension of the mean free path approach to X-ray absorption spectroscopy, J. Electron Spectrosc. Relat. Phenom. 124, 15–24 (2002)Google Scholar
  46. J. Lüning, F. Nolting, A. Scholl, H. Ohldag, J.W. Seo, J. Fompeyrine, J.P. Locquet, J. Stöhr: Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by x-ray magnetic linear dichroism spectroscopy, Phys. Rev. B 67, 214433 (2003)Google Scholar
  47. M. Marcus: The effect of sample tilt on an emission microscope, Surf. Sci. 480, 203–207 (2001)Google Scholar
  48. S.A. Nepijko, N.N. Sedov, G. Schönhense, M. Escher, X. Bao, W. Huang: Resolution deterioration in emission electron microscopy due to object roughness, Ann. Phys. 9, 441–451 (2000)Google Scholar
  49. J. Stöhr: NEXAFS Spectroscopy, Vol. 25 (Springer, Berlin 1992)Google Scholar
  50. S.G. Urquhart, A.P. Hitchcock, A.P. Smith, H.W. Ade, W. Lidy, E.G. Rightor, G.E. Mitchell: NEXAFS spectromicroscopy of polymers: overview and quantitative analysis of polyurethane polymers, J. Electron Spectrosc. Relat. Phenom. 100, 119–135 (1999)Google Scholar
  51. J. Chmelik, L. Veneklasen, G. Marx: Comparing cathode lens configurations for low energy electron microscopy, Optik 83, 155–160 (1989)Google Scholar
  52. E. Harting, F. Read: Electrostatic Lenses (Elsevier, Amsterdam 1976)Google Scholar
  53. P. Hawkes: Image Processing and Computer-Aided Design in Electron Optics (Academic Press, New York 1973)Google Scholar
  54. J. Orloff: Handbook of Charged Particle Optics (CRC, Boca Raton 1997)Google Scholar
  55. J. Zlamal, B. Lencova: Development of the program EOD for design in electron and ion microscopy, Nucl. Instrum. Methods Phys. Res. A 645, 278–282 (2011)Google Scholar
  56. D.A. Dahl: SIMION for the personal computer in reflection, Int. J. Mass Spectrom. 200, 3–25 (2000)Google Scholar
  57. C.J. Davisson, C.J. Calbick: Electron lenses, Phys. Rev. 42, 0580 (1932)Google Scholar
  58. R.N. Watts, S. Liang, Z.H. Levine, T.B. Lucatorto, F. Polack, M.R. Scheinfein: A transmission X-ray microscope based on secondary-electron imaging, Rev. Sci. Instrum. 68, 3464–3476 (1997)Google Scholar
  59. B. Lencova: Electrostatic lenses. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2008) pp. 161–208Google Scholar
  60. E. Bauer: The possibilities for analytical methods in photoemission and low-energy microscopy, Ultramicroscopy 36, 52–62 (1991)Google Scholar
  61. G. Schneider: Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast, Ultramicroscopy 75, 85–104 (1998)Google Scholar
  62. C. Jacobsen, J. Kirz, S. Williams: Resolution in soft X-ray microscopes, Ultramicroscopy 47, 55–79 (1992)Google Scholar
  63. J. Feng, H. Padmore, D.H. Wei, S. Anders, Y. Wu, A. Scholl, D. Robin: Modeling the acceleration field and objective lens for an aberration corrected photoemission electron microscope, Rev. Sci. Instrum. 73, 1514–1517 (2002)Google Scholar
  64. H. Rose: Correction of aberrations, a promising means for improving the spatial and energy resolution of energy-filtering electron microscopes, Ultramicroscopy 56, 11–25 (1994)Google Scholar
  65. O. Scherzer: Over some errors of electrons lenses, Z. Phys. 101, 593–603 (1936)Google Scholar
  66. P.W. Hawkes, E. Kasper: Principles of Electron Optics, Vol. 2 (Academic Press, New York 1996)Google Scholar
  67. J. Zach, M. Haider: Correction of spherical and chromatic aberration in a low voltage SEM, Optik 98, 112–118 (1995)Google Scholar
  68. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban: A spherical-aberration-corrected 200 kV transmission electron microscope, Ultramicroscopy 75, 53–60 (1998)Google Scholar
  69. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)Google Scholar
  70. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini: Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177–185 (2001)Google Scholar
  71. P.E. Batson, N. Dellby, O.L. Krivanek: Sub-ångstrom resolution using aberration corrected electron optics, Nature 418, 617–620 (2002)Google Scholar
  72. G. De Stasio, L. Perfetti, B. Gilbert, O. Fauchoux, M. Capozi, P. Perfetti, G. Margaritondo, B.P. Tonner: MEPHISTO spectromicroscope reaches 20 nm lateral resolution, Rev. Sci. Instrum. 70, 1740–1742 (1999)Google Scholar
  73. E. Bauer: Chemical, Structural, and Electronic Analysis of Heterogeneous Surfaces on Nanometer Scale (Kluwer, Dortrecht 1997)Google Scholar
  74. G. Schönhense, H. Spiecker: Correction of chromatic and spherical aberration in electron microscopy utilizing the time structure of pulsed excitation sources, J. Vac. Sci. Technol. B 20, 2526–2534 (2002)Google Scholar
  75. E. Bauer: Photoelectron spectromicroscopy: present and future, J. Electron Spectrosc. Relat. Phenom. 114–116, 975–987 (2001)Google Scholar
  76. V.K. Zworykin, V. Kosma: Electron Optics and the Electron Microscope (Wiley, New York 1945)Google Scholar
  77. E.G. Ramberg: Aberration correction with electron mirrors, J. Appl. Phys. 20, 183–186 (1949)Google Scholar
  78. V.M. Kel'man, L.M. Sekunova, E.M. Yakushev: Theory of axisymmetric electron mirrors I. Trajectory equations, Sov. Phys. Tech. Phys. 17, 2279 (1973)Google Scholar
  79. V.M. Kel'man, L.M. Sekunova, E.M. Yakushev: Theory of axisymmetric electron mirrors. I. Trajectory equations, Sov. Phys. Tech. Phys. 18, 1142 (1974)Google Scholar
  80. A.L. Dodin, M.B. Nesvizhskii: Accuracy of expansions in deriving the geometric aberration coefficients of cathode systems, Sov. Phys. Tech. Phys. 26, 539–541 (1981)Google Scholar
  81. G.F. Rempfer: A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics, J. Appl. Phys. 67, 6027–6040 (1990)Google Scholar
  82. G.F. Rempfer, M.S. Mauck: Correction of chromatic aberration with an electron mirror, Optik 92, 3–8 (1992)Google Scholar
  83. G.F. Rempfer, D.M. Desloge, W.P. Skoczylas, O. Hayes Griffith: Simultaneous correction of spherical and chromatic aberrations with an electron mirror: An electron optical achromat, Microsc. Microanal. 3, 14–27 (1997)Google Scholar
  84. Z. Shao, X.D. Wu: Properties of a four-electrode adjustable electron mirror as an aberration corrector, Rev. Sci. Instrum. 61, 1230–1235 (1990)Google Scholar
  85. Z. Shao, X.D. Wu: A study on hyperbolic mirrors as correctors, Optik 84, 51–54 (1990)Google Scholar
  86. H. Rose, D. Preikszas: Time-dependent perturbation formalism for calculating the aberrations of systems with large ray gradients, Nucl. Instrum. Methods Phys. Res. A 363, 301–315 (1995)Google Scholar
  87. D. Preikszas, H. Rose: Correction properties of electron mirrors, J. Electron Microsc. 46, 1–9 (1997)Google Scholar
  88. H. Rose, D. Preikszas: Outline of a versatile corrected LEEM, Optik 92, 31–44 (1992)Google Scholar
  89. W. Wan, J. Feng, H.A. Padmore, D.S. Robin: Simulation of a mirror corrector for PEEM3, Nucl. Instrum. Methods Phys. Res. A 519, 222 (2004)Google Scholar
  90. W. Wan, J. Feng, H.A. Padmore: A new separator design for aberration corrected photoemission electron microscopes, Nucl. Instrum. Methods Phys. Res. A 564, 537–543 (2006)Google Scholar
  91. J. Feng, A.A. MacDowell, R. Duarte, A. Doran, E. Forest, N. Kelez, M. Marcus, D. Munson, H. Padmore, K. Petermann, S. Raoux, D. Robin, A. Scholl, R. Schlueter, P. Schmid, J. Stohr, W. Wan, D.H. Wei, Y. Wu: An aberration corrected photoemission electron microscope at the advanced light source, AIP Conf. Proc. 705, 1070–1073 (2004)Google Scholar
  92. F. Nolting, A. Scholl, J. Stöhr, J.W. Seo, J. Fompeyrine, H. Siegwart, J.P. Locquet, S. Anders, J. Lüning, E.E. Fullerton, M.F. Toney, M.R. Scheinfein, H.A. Padmore: Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins, Nature 405, 767–769 (2000)Google Scholar
  93. J.B. Kortright, D.D. Awschalom, J. Stöhr, S.D. Bader, Y.U. Idzerda, S.S.P. Parkin, I.K. Schuller, H.C. Siegmann: Research frontiers in magnetic materials at soft X-ray synchrotron radiation facilities, J. Magn. Magn. Mater. 207, 7–44 (1999)Google Scholar
  94. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik: Absorption of circularly polarized X rays in iron, Phys. Rev. Lett. 58, 737–740 (1987)Google Scholar
  95. J. Stöhr, A. Scholl, T.J. Regan, S. Anders, J. Lüning, M.R. Scheinfein, H.A. Padmore, R.L. White: Images of the antiferromagnetic structure of a NiO(100) surface by means of X-ray magnetic linear dichroism spectromicroscopy, Phys. Rev. Lett. 83, 1862–1865 (1999)Google Scholar
  96. A. Scholl, J. Stöhr, J. Lüning, J.W. Seo, J. Fompeyrine, H. Siegwart, J.P. Locquet, F. Nolting, S. Anders, E.E. Fullerton, M.R. Scheinfein, H.A. Padmore: Observation of antiferromagnetic domains in epitaxial thin films, Science 287, 1014–1016 (2000)Google Scholar
  97. J. Vogel, W. Kuch, M. Bonfim, J. Camarero, Y. Pennec, F. Offi, K. Fukumoto, J. Kirschner, A. Fontaine, S. Pizzini: Time-resolved magnetic domain imaging by x-ray photoemission electron microscopy, Appl. Phys. Lett. 82, 2299–2301 (2003)Google Scholar
  98. S.B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stohr, H.A. Padmore: Vortex core-driven magnetization dynamics, Science 304, 420–422 (2004)Google Scholar
  99. B.T. Thole, C. Paolo, F. Sette, G. van der Laan: X-ray circular dichroism as a probe of orbital magnetization, Phys. Rev. Lett. 68, 1943–1946 (1992)Google Scholar
  100. Y. Wu, J. Stohr, B.D. Hermsmeier, M.G. Samant, D. Weller: Enhanced orbital magnetic moment on Co atoms in Co/Pd multilayers: A magnetic circular X-ray dichroism study, Phys. Rev. Lett. 69, 2307–1310 (1992)Google Scholar
  101. P. Carra, B.T. Thole, M. Altarelli, W. Xindong: X-ray circular dichroism and local magnetic fields, Phys. Rev. Lett. 70, 694–697 (1993)Google Scholar
  102. P. Kuiper, B.G. Searle, P. Rudolf, L.H. Tjeng, C.T. Chen: X-ray magnetic dichroism of antiferromagnet Fe2O3: the orientation of magnetic moments observed by Fe 2p X-ray absorption spectroscopy, Phys. Rev. Lett. 70, 1549–1552 (1993)Google Scholar
  103. D. Alders, L.H. Tjeng, F.C. Voogt, T. Hibma, G.A. Sawatzky, C.T. Chen, J. Vogel, M. Sacchi, S. Iacobucci: Temperature and thickness dependence of magnetic moments in NiO epitaxial films, Phys. Rev. B 57, 11623–11631 (1998)Google Scholar
  104. E. Arenholz, G. van der Laan, R.V. Chopdekar, Y. Suzuki: Angle-dependent Ni2+x-ray magnetic linear dichroism: interfacial coupling revisited, Phys. Rev. Lett. 98, 197201-4 (2007)Google Scholar
  105. H. Ohldag, T.J. Regan, J. Stöhr, A. Scholl, F. Nolting, J. Luning, C. Stamm, S. Anders, R.L. White: Spectroscopic identification and direct imaging of interfacial magnetic spins, Phys. Rev. Lett. 87, 247201 (2001)Google Scholar
  106. H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A.T. Young, M. Carey, J. Stöhr: Correlation between exchange bias and pinned interfacial spins, Phys. Rev. Lett. 91, 017203 (2003)Google Scholar
  107. E. Folven, A. Scholl, A. Young, S. Retterer, J. Boschker, T. Tybell, Y. Takamura, J. Grepstad: Crossover from spin-flop coupling to collinear spin alignment in antiferromagnetic/ferromagnetic nanostructures, Nano Lett. 12, 2386–2390 (2012)Google Scholar
  108. E. Folven, J. Linder, O. Gomonay, A. Scholl, A. Doran, A. Young, S. Retterer, V. Malik, T. Tybell, Y. Takamura, J. Grepstad: Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets, Phys. Rev. B 92, 057204-5 (2013)Google Scholar
  109. M.S. Lee, T.A. Wynn, E. Folven, R.V. Chopdekar, A. Scholl, A.T. Young, S.T. Retterer, J.K. Grepstad, Y. Takamura: Tailoring spin textures in complex oxide micromagnets, ACS Nano 10, 8545–8551 (2016)Google Scholar
  110. A. Farhan, P. Derlet, A. Kleibert, A. Balan, R. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, L. Heyderman: Direct observation of thermal relaxation in artificial spin ice, Phys. Rev. Lett. 111, 197201-4 (2007)Google Scholar
  111. I. Gilbert, Y.Y. Lao, I. Carrasquillo, L. O'Brien, J.D. Watts, M. Manno, C. Leighton, A. Scholl, C. Nisoli, P. Schiffer: Emergent reduced dimensionality by vertex frustration in artificial spin ice, Nature Phys. 12, 162–165 (2016)Google Scholar
  112. F. Kronast, N. Friedenberger, K. Ollefs, S. Gliga, L. Tati-Bismaths, R. Thies, A. Ney, R. Weber, C. Hassel, F.M. Romer, A.V. Trunova, C. Wirtz, R. Hertel, H.A. Durr, M. Farle: Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes, Nano Lett. 11, 1710–1715 (2011)Google Scholar
  113. B. Leung, A. Hitchcock, R. Cornelius, J. Brash, A. Scholl, A. Doran: X-ray spectromicroscopy study of protein adsorption to a polystyrene-polylactide blend, Biomacromolecules 10, 1838–1845 (2009)Google Scholar
  114. I.N. Koprinarov, A.P. Hitchcock, C.T. McCrory, R.F. Childs: Quantitative mapping of structured polymeric systems using singular value decomposition analysis of soft X-ray images, J. Phys. Chem. B 106, 5358–5364 (2002)Google Scholar
  115. R.A. Metzler, M. Abrecht, R.M. Olabisi, D. Ariosa, C.J. Johnson, B.H. Frazer, S.N. Coppersmith, P.U.P.A. Gilbert: Architecture of columnar nacre, implications for its formation mechanism, Phys. Rev. Lett. 98, 268102-4 (2007)Google Scholar
  116. P.U.P.A. Gilbert, R.A. Metzler, D. Zhou, A. Scholl, A. Doran, A. Young, M. Kunz, N. Tamura, S.N. Coppersmith: Gradual ordering in red abalone nacre, J. Am. Chem. Soc. 130, 17519–17527 (2008)Google Scholar
  117. R.T. DeVol, R.A. Metzler, L. Kabalah-Amitai, B. Pokroy, Y. Politi, A. Gal, L. Addadi, S. Weiner, A. Fernandez-Martinez, R. Demichelis, J.D. Gale, J. Ihli, F.C. Meldrum, A.Z. Blonsky, C.E. Killian, C.B. Salling, A.T. Young, M.A. Marcus, A. Scholl, A. Doran, C. Jenkins, H.A. Bechtel, P.U.P.A. Gilbert: Oxygen spectroscopy and polarization-dependent imaging contrast (PIC)-mapping of calcium carbonate minerals and biominerals, J. Phys. Chem. B 118, 8449–8457 (2014)Google Scholar
  118. G. De Stasio, B.H. Frazer, B. Gilbert, K.L. Richter, J.W. Valley: Compensation of charging in X-PEEM: A successful test on mineral inclusions in 4.4 Ga old zircon, Ultramicroscopy 98, 57–62 (2003)Google Scholar
  119. A. Locatelli, C. Wang, C. Africh, N. Stojic, T.O. Mentes, G. Comelli, N. Binggeli: Temperature-driven reversible rippling and bonding of a graphene super lattice, ACS Nano 7, 6955–6963 (2013)Google Scholar
  120. M. Escher, N. Weber, M. Merkel, C. Ziethen, P. Bernhard, G. Schonhense, S. Schmidt, F. Forster, F. Reinert, B. Kromker, D. Funnemann: Nanoelectron spectroscopy for chemical analysis: A novel energy filter for imaging x-ray photoemission spectroscopy, J. Phys. Condens. Matter 17, S1329–S1338 (2005)Google Scholar
  121. R.M. Tromp, Y. Fujikawa, J.B. Hannon, A.W. Ellis, A. Berghaus, O. Schaff: A simple energy filter for low energy electron microscopy/photoelectron emission microscopy instruments, J. Phys. Condens. Matter 21, 314007 (2009)Google Scholar
  122. H. Stoll, A. Puzic, B. van Waeyenberge, P. Fischer, J. Raabe, M. Buess, T. Haug, R. Hollinger, C. Back, D. Weiss, G. Denbeaux: High-resolution imaging of fast magnetization dynamics in magnetic nanostructures, Appl. Phys. Lett. 84, 3328–3330 (2004)Google Scholar
  123. C.M. Schneider, A. Kuksov, A. Krasyuk, A. Oelsner, D. Neeb, S.A. Nepijko, G. Schonhense, I. Monch, R. Kaltofen, J. Morais, C. de Nadai, N.B. Brookes: Incoherent magnetization rotation observed in subnanosecond time-resolving x-ray photoemission electron microscopy, Appl. Phys. Lett. 85, 2562–2564 (2004)Google Scholar
  124. C. Quitmann, J. Raabe, C. Buehler, M. Buess, S. Johnson, F. Nolting, V. Schlott, A. Streun: Measuring magnetic excitations in microstructures using X-ray microscopy, Nucl. Instrum. Methods Phys. Res. A 588, 494–501 (2008)Google Scholar
  125. S.B. Choe, Y. Acremann, A. Bauer, A. Scholl, A. Doran, J. Stohr, H.A. Padmore: P-sec time-resolved microscopy of magnetic structures using X-PEEM, AIP Conf. Proc. 705, 1391–1394 (2004)Google Scholar
  126. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono: Magnetic vortex core observation in circular dots of permalloy, Science 289, 930–932 (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley, CAUSA

Personalised recommendations