Maternal Cardiovascular Involvement

  • Maya Reddy
  • Annie Kroushev
  • Kirsten Palmer
  • Daniel Rolnik
  • Fabricio Da Silva Costa


Pregnancy is a physiological stress test that is reliant on adequate adaptation of the maternal cardiovascular system. Alterations to blood volume, cardiac output and total vascular resistance are keys to meeting the metabolic demands of the mother and fetus and allowing for adequate perfusion of the uteroplacental unit. Failure of these haemodynamic adaptations can contribute to various disorders of pregnancy, including pre-eclampsia (PE) and fetal growth restriction (FGR). This chapter will explore the methods used to measure maternal cardiac function. We will focus on how they can be used to assess both physiological cardiovascular adaptations during pregnancy and maladaptations that may contribute to pathological processes such as fetal growth restriction.


Maternal haemodynamics Fetal growth restriction Cardiovascular physiology Pre-eclampsia 


  1. 1.
    Prefumo F, Muiesan ML, Perini R, Paini A, Bonzi B, Lojacono A, et al. Maternal cardiovascular function in pregnancies complicated by intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;31:65–71.CrossRefGoogle Scholar
  2. 2.
    Beltramo F, Menteer J, Razavi A, Khemani RG, Szmuszkovicz J, Newth CJ, et al. Validation of an ultrasound cardiac output monitor as a bedside tool for pediatric patients. Pediatr Cardiol. 2016;37:177–83.CrossRefGoogle Scholar
  3. 3.
    van Lelyveld-Haas LE, van Zanten AR, Borm GF, Tjan DH. Clinical validation of the non-invasive cardiac output monitor USCOM-1A in critically ill patients. Eur J Anaesthesiol. 2008;25:917–24.CrossRefGoogle Scholar
  4. 4.
    Vinayagam D, Patey O, Thilaganathan B, Khalil A. Cardiac output assessment in pregnancy: comparison of two automated monitors with echocardiography. Ultrasound Obstet Gynecol. 2017;49:32–8.CrossRefGoogle Scholar
  5. 5.
    McNamara H, Barclay P, Sharma V. Accuracy and precision of the ultrasound cardiac output monitor (USCOM 1A) in pregnancy: comparison with three-dimensional transthoracic echocardiography. Br J Anaesth. 2014;1:669–76.CrossRefGoogle Scholar
  6. 6.
    Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197–203.CrossRefGoogle Scholar
  7. 7.
    Iacobaeus C, Andolf E, Thorsell M, Bremme K, Jörneskog G, Östlund E, et al. Longitudinal study of vascular structure and function during normal pregnancy. Ultrasound Obstet Gynecol. 2017;49:46–53.CrossRefGoogle Scholar
  8. 8.
    Franz MB, Burgmann M, Neubauer A, Zeisler H, Sanani R, Gottsauner-Wolf M, et al. Augmentation index and pulse wave velocity in normotensive and pre-eclamptic pregnancies. Acta Obstet Gynecol Scand. 2013;92:960–6.CrossRefGoogle Scholar
  9. 9.
    Townsend RR, Black HR, Chirinos JA, Feig PU, Ferdinand KC, Germain M, et al. Clinical use of pulse wave analysis: proceedings from a symposium sponsored by North American Artery. J Clin Hypertens. 2015;17:503–13.CrossRefGoogle Scholar
  10. 10.
    Pereira T, Correia C, Cardoso J. Novel methods for pulse wave velocity measurement. J Med Biol Eng. 2015;35:555–65.CrossRefGoogle Scholar
  11. 11.
    Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.CrossRefGoogle Scholar
  12. 12.
    Cornette J, Roos-Hesselink JW. Normal cardiovascular adaptation to pregnancy. In: Stergiopoulos K, Brown D, editors. Evidence-based cardiology consult. London: Springer; 2014.Google Scholar
  13. 13.
    Hunter S, Robson SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68:540–3.CrossRefGoogle Scholar
  14. 14.
    Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Phys. 1989;256:H1060–5.Google Scholar
  15. 15.
    Savu O, Jurcut R, Giusca S, van Mieghem T, Gussi I, Popescu BA, et al. Morphological and functional adaptation of the maternal heart during pregnancy. Circ Cardiovasc Imaging. 2012;5:289–97.CrossRefGoogle Scholar
  16. 16.
    Sanghavi M, Rutherford JD. Cardiovascular physiology of pregnancy. Circulation. 2014;130:1003–8.CrossRefGoogle Scholar
  17. 17.
    Grindheim G, Estensen ME, Langesaeter E, Rosseland LA, Toska K. Changes in blood pressure during healthy pregnancy: a longitudinal cohort study. J Hypertens. 2012;30:342–50.CrossRefGoogle Scholar
  18. 18.
    Vasapollo B, Novelli GP, Valensise H. Total vascular resistance and left ventricular morphology as screening tools for complications in pregnancy. Hypertension. 2008;51:1020–6.CrossRefGoogle Scholar
  19. 19.
    Pritchard JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26:393–9.CrossRefGoogle Scholar
  20. 20.
    Khalil A, Maiz N, Garcia-Mandujano R, Penco JM, Nicolaides KH. Longitudinal changes in maternal serum placental growth factor and soluble fms-like tyrosine kinase-1 in women at increased risk of pre-eclampsia. Ultrasound Obstet Gynecol. 2016;47:324–31.CrossRefGoogle Scholar
  21. 21.
    Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376:631–44.CrossRefGoogle Scholar
  22. 22.
    Vasapollo B, Valensise H, Novelli GP, Larciprete G, Di Pierro G, Altomare F, et al. Abnormal maternal cardiac function and morphology in pregnancies complicated by intrauterine fetal growth restriction. Ultrasound Obstet Gynecol. 2002;20:452–7.CrossRefGoogle Scholar
  23. 23.
    Mahendru AA, Foo FL, McEniery CM, Everett TR, Wilkinson IB, Lees CC. Change in maternal cardiac output from preconception to midpregnancy is associated with birth weight in healthy pregnancies. Ultrasound Obstet Gynecol. 2017;49:78–84.CrossRefGoogle Scholar
  24. 24.
    Guy GP, Ling HZ, Machuca M, Poon LC, Nicolaides KH. Maternal cardiac function at 35–37 weeks’ gestation: relationship with birth weight. Ultrasound Obstet Gynecol. 2017;49:67–72.CrossRefGoogle Scholar
  25. 25.
    Bamfo JE, Kametas NA, Chambers JB, Nicolaides KH. Maternal cardiac function in fetal growth-restricted and non-growth-restricted small-forgestational age pregnancies. Ultrasound Obstet Gynecol. 2007;29:51–7.CrossRefGoogle Scholar
  26. 26.
    de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49:177–87.CrossRefGoogle Scholar
  27. 27.
    Salas SP, Rosso P, Espinoza R, Robert JA, Valdes G, Donoso E. Maternal plasma volume expansion and hormonal changes in women with idiopathic fetal growth retardation. Obstet Gynecol. 1993;81:1029–33.PubMedGoogle Scholar
  28. 28.
    Laskowska M, Leszczynska-Gorzelak B, Laskowska K, Oleszczuk J. Evaluation of the renin-angiotensin-aldosterone system in pregnancy complicated by preeclampsia with and without intrauterine growth retardation. Ann Univ Mariae Curie Sklodowska Med. 2004;59:451–6.PubMedGoogle Scholar
  29. 29.
    Duvekot JJ, Cheriex EC, Pieters FA, Peeters LL. Severely impaired fetal growth is preceded by maternal hemodynamic maladaptation in very early pregnancy. Acta Obstet Gynecol Scand. 1995;74:693–7.CrossRefGoogle Scholar
  30. 30.
    De Paco C, Kametas N, Rencoret G, Strobl I, Nicolaides KH. Maternal cardiac output between 11 and 13 weeks of gestation in the prediction of preeclampsia and small for gestational age. Obstet Gynecol. 2008;111:292–300.CrossRefGoogle Scholar
  31. 31.
    Stott D, Bolten M, Salman M, Paraschiv D, Clark K, Kametas NA. Maternal demographics and hemodynamics for the prediction of fetal growth restriction at booking, in pregnancies at high risk for placental insufficiency. Acta Obstet Gynecol Scand. 2016;95:329–38.CrossRefGoogle Scholar
  32. 32.
    Bamfo JE, Kametas NA, Chambers JB, Nicolaides KH. Maternal cardiac function in normotensive and pre-eclamptic intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;32:682–6.CrossRefGoogle Scholar
  33. 33.
    Hedberg E, Radberg C. Maternal heart volume and prematurity. Acta Obstet Gynecol Scand. 1962;41:48–56.CrossRefGoogle Scholar
  34. 34.
    Valensise H, Vasapollo B, Novelli GP, Larciprete G, Romanini ME, Arduini D, et al. Maternal diastolic function in asymptomatic pregnant women with bilateral notching of the uterine artery waveform at 24 weeks’ gestation: a pilot study. Ultrasound Obstet Gynecol. 2001;18:450–5.CrossRefGoogle Scholar
  35. 35.
    Vasapollo B, Valensise H, Novelli GP, Altomare F, Galante A, Arduini D. Abnormal maternal cardiac function precedes the clinical manifestation of fetal growth restriction. Ultrasound Obstet Gynecol. 2004;24:23–9.CrossRefGoogle Scholar
  36. 36.
    Ghossein-Doha C, Khalil A, Lees CC. Maternal hemodynamics: a 2017 update. Ultrasound Obstet Gynecol. 2017;49:10–4.CrossRefGoogle Scholar
  37. 37.
    Khalil A, Akolekar R, Syngelaki A, Elkhouli M, Nicolaides KH. Maternal hemodynamics at 11-13 weeks’ gestation and risk of pre-eclampsia. Ultrasound Obstet Gynecol. 2012;40:28–34.CrossRefGoogle Scholar
  38. 38.
    Yuan LJ, Xue D, Duan YY, Cao TS, Yang HG, Zhou N. Carotid arterial intima-media thickness and arterial stiffness in pre-eclampsia: analysis with a radiofrequency ultrasound technique. Ultrasound Obstet Gynecol. 2013;42:644–52.CrossRefGoogle Scholar
  39. 39.
    Khalil A, Sodre D, Syngelaki A, Akolekar R, Nicolaides KH. Maternal hemodynamics at 11-13 weeks of gestation in pregnancies delivering small for gestational age neonates. Fetal Diagn Ther. 2012;32:231–8.CrossRefGoogle Scholar
  40. 40.
    Stergiotou I, Bijnens B, Cruz-Lemini M, Figueras F, Gratacos E, Crispi F. Maternal subclinical vascular changes in fetal growth restriction with and without pre-eclampsia. Ultrasound Obstet Gynecol. 2015;46:706–12.CrossRefGoogle Scholar
  41. 41.
    Melo NA, Araujo Junior E, Helfer TM, Caetano AC, Zamarian AC, Moron AF, et al. Assessment of maternal Doppler parameters of ophthalmic artery in fetuses with growth restriction in the third trimester of pregnancy: a case-control study. J Obstet Gynaecol Res. 2015;41:1330–6.CrossRefGoogle Scholar
  42. 42.
    Gurgel Alves JA, Maia e Holanda Moura SB, Araujo Junior E, Tonni G, Martins WP, Da Silva Costa F. Predicting small for gestational age in the first trimester of pregnancy using maternal ophthalmic artery Doppler indices. J Matern Fetal Neonatal Med. 2016;29:1190–4.CrossRefGoogle Scholar
  43. 43.
    Diniz AL, Moron AF, dos Santos MC, Sass N, Pires CR, Debs CL. Ophthalmic artery Doppler as a measure of severe pre-eclampsia. Int J Gynaecol Obstet. 2008;100:216–20.CrossRefGoogle Scholar
  44. 44.
    Gurgel Alves JA, Praciano de Sousa PC, Maia e Holanda Moura SB, Kane SC, da Silva Costa F. First-trimester maternal ophthalmic artery Doppler analysis for prediction of pre-eclampsia. Ultrasound Obstet Gynecol. 2014;44:411–8.CrossRefGoogle Scholar
  45. 45.
    Kalafat E, Laoreti A, Khalil A, Da Silva CF, Thilaganathan B. Ophthalmic artery Doppler prediction of preeclampsia: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51:731–7.CrossRefGoogle Scholar
  46. 46.
    Thilaganathan B. Placental syndromes: getting to the heart of the matter. Ultrasound Obstet Gynecol. 2017;49:7–9.CrossRefGoogle Scholar
  47. 47.
    Crovetto F, Crispi F, Scazzocchio E, et al. First-trimester screening for early and late small-for-gestational-age neonates using maternal serum biochemistry, blood pressure and uterine artery Doppler. Ultrasound Obstet Gynecol. 2014;43:34–40.CrossRefGoogle Scholar
  48. 48.
    Mifsud W, Sebire NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther. 2014;36:117–28.CrossRefGoogle Scholar
  49. 49.
    Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. BMJ. 2013;346:f108.CrossRefGoogle Scholar
  50. 50.
    Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–6.CrossRefGoogle Scholar
  51. 51.
    Pariente G, Sheiner E, Kessous R, Michael S, Shoham-Vardi I. Association between delivery of a small-for-gestational-age neonate and longterm maternal cardiovascular morbidity. Int J Gynaecol Obstet. 2013;123:68–71.CrossRefGoogle Scholar
  52. 52.
    Grand’Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy: a systematic review and meta-analysis. Hypertension. 2016;68:1447–58.CrossRefGoogle Scholar
  53. 53.
    Wu P, Haththotuwa R, Kwok CS, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10:e003497.CrossRefGoogle Scholar
  54. 54.
    Hillman SL, Kubba T, Williams DJ. Delivery of small-for-gestational-age neonate and association with early-onset impaired maternal endothelial function. Ultrasound Obstet Gynecol. 2017;49:150–4.CrossRefGoogle Scholar
  55. 55.
    Kanagalingam MG, Nelson SM, Freeman DJ, et al. Vascular dysfunction and alteration of novel and classic cardiovascular risk factors in mothers of growth restricted offspring. Atherosclerosis. 2009;205:244–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maya Reddy
    • 1
  • Annie Kroushev
    • 1
  • Kirsten Palmer
    • 1
  • Daniel Rolnik
    • 1
  • Fabricio Da Silva Costa
    • 1
  1. 1.Department of Obstetrics and GynaecologyMonash University and Perinatal Services, Monash Medical CentreMelbourneAustralia

Personalised recommendations