Advertisement

Prédispositions génétiques au sepsis grave

  • S. Lavergne
  • J.-P. Mira
Chapter
  • 598 Downloads
Part of the Le point sur … book series (POINT)

Résumé

Le sepsis est la première cause de décès en réanimation. Le pronostic de ce syndrome est lié à l’adéquation du traitement entrepris (antibiothérapie et mesures de réanimation rapides et adaptées), à l’agressivité du micro-organisme responsable de l’infection et au terrain de l’hôte (pathologies sous-jacentes: diabète, alcoolisme chronique, cirrhose…). En dehors de ces facteurs bien connus, il existe clairement une susceptibilité individuelle à l’infection qui pourrait expliquer pourquoi certains patients développent des tableaux cliniques dramatiques quand ils sont en contact avec un pathogène.

Réfénces

  1. 1.
    Poltorak A, He X, Smirnova I et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–8PubMedCrossRefGoogle Scholar
  2. 2.
    Cooper AM, Dalton DK, Stewart TA et al. (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178: 2243–7PubMedCrossRefGoogle Scholar
  3. 3.
    Cooper AM, Magram J, Ferrante J et al. (1997) Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 186: 39–45PubMedCrossRefGoogle Scholar
  4. 4.
    Sorensen TI, Nielsen GG, Andersen PK et al. (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318: 727–32PubMedCrossRefGoogle Scholar
  5. 5.
    Comstock GW (1978) Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117: 621–4PubMedGoogle Scholar
  6. 6.
    Fine PE (1981) Immunogenetics of susceptibility to leprosy, tuberculosis, and leishmaniasis. An epidemiological perspective. Int J Lepr Other Mycobact Dis 49: 437–54PubMedGoogle Scholar
  7. 7.
    Malaty HM, Graham DY, Isaksson I et al. (2000) Are genetic influences on peptic ulcer dependent or independent of genetic influences for influences for helicobacter pylori infection? Arch Intern Med 160: 105–9PubMedCrossRefGoogle Scholar
  8. 8.
    Jepson AP, Banya WA, Sisay-Joof F et al. (1995) Genetic regulation of fever in Plasmodium falciparum malaria in Gambian twin children. J Infect Dis 172(1): 316–9PubMedCrossRefGoogle Scholar
  9. 9.
    Chang J, Naif HM, Li S et al. (1996) Twin studies demonstrate a host cell genetic Effect on productive human immunodeficiency virus infection of human monocytes and macrophages in vitro. Journal of Virology 70: 7792–803PubMedGoogle Scholar
  10. 10.
    Buckley RH (2000) Primary immunodeficiency diseases due to defects in lymphocytes. N Engl J Med 343: 1313–24PubMedCrossRefGoogle Scholar
  11. 11.
    Andrews T, Sullivan KE (2003) Infections of patients with inherited defects in phagocytic function. Clin Microbiol Rev 16(4): 597–621PubMedCrossRefGoogle Scholar
  12. 12.
    Lin MT, Albertson TE (2004) Genomic polymorphisms in sepsis. Crit Care Med 32(2): 569–79PubMedCrossRefGoogle Scholar
  13. 13.
    Garred P, J Strom J, Quist L et al. (2003) Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic Inflammatory response syndrome. J Infect Dis 188(9): 1394–403PubMedCrossRefGoogle Scholar
  14. 14.
    Neth O, Hann I, Turner MW et al. (2001) Deficiency of mannose-binding lectin and burden of infection in children with malignancy: a prospective study. Lancet 358: 614–8PubMedCrossRefGoogle Scholar
  15. 15.
    Hibbert ML, Sumiya M, Summerfield JA et al. (1999) Association of variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease. Meningococcal Research Group. Lancet 353: 1049–53CrossRefGoogle Scholar
  16. 16.
    Roy S, Knox K, Segal S et al. (2002) MBL genotype and risk of invasive pneumococcal disease: a case control study. Lancet 359: 1569–73PubMedCrossRefGoogle Scholar
  17. 17.
    Hubacek JA, Stuber F, Frohlich D et al. (2001) Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: genderspecifi c genetic predisposition to sepsis. Crit Care Med 29: 557–61PubMedCrossRefGoogle Scholar
  18. 18.
    Lorenz E, Mira JP, Frees KL et al. (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162: 1028–32PubMedCrossRefGoogle Scholar
  19. 19.
    Lorenz E, Mira JP, Cornish KL et al. (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68: 6398–401PubMedCrossRefGoogle Scholar
  20. 20.
    Read RC, Pullin J, Gregory S et al. (2001) A functional polymorphism of toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J Infect Dis 184: 640–2PubMedCrossRefGoogle Scholar
  21. 21.
    Gibot S, Cariou A, Drouet L et al. (2002) Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 30: 969–73PubMedCrossRefGoogle Scholar
  22. 22.
    Hubacek JA, Stuber F, Frohlich D et al. (2000) The common functional C(-159)T polymorphism within the promoter region of the lipopolysaccharide receptor CD14 is not associated with sepsis development or mortality. Genes Immun 1: 405–7PubMedCrossRefGoogle Scholar
  23. 23.
    Platonov AE, Shipulin GA, Vershinia IV et al. (1998) Association of human Fc gamma RIIa (CD32) polymorphism with susceptibility to and severity of meningococcal disease. Clin Infect Dis 27: 746–50PubMedCrossRefGoogle Scholar
  24. 24.
    Yee AM, Phan HM, Zuniga R et al. (2000) Association between FcgammaRIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin Infect Dis 30: 25–8PubMedCrossRefGoogle Scholar
  25. 25.
    Saleh M, Vaillancourt JP, Graham RK et al. (2004) Differential modulation of endotoxin responsivness by human caspase-12 polymorphisms. Nature 429(6987): 75–9PubMedCrossRefGoogle Scholar
  26. 26.
    Tabrizi AR, Zehnbauer BA, Freeman BD et al. (2001) Genetic markers in sepsis. J Am Coll Surg 192: 106–17PubMedCrossRefGoogle Scholar
  27. 27.
    Holmes CL, Russel JA, Walley KR (2003) Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 124(3): 1103–15PubMedCrossRefGoogle Scholar
  28. 28.
    Fang XM, Schroder S, Hoeft A et al. (1999) Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med 27: 1330–4PubMedCrossRefGoogle Scholar
  29. 29.
    Schluter B, Raufhake C, Erren M et al. (2002) Effect of the interleukin-6 promoter polymorphism (-174G/C) on the incidence and outcome of sepsis. Crit Care Med 30: 32–7PubMedCrossRefGoogle Scholar
  30. 30.
    Lowe PR, Galley HF, Abdel-Fattah A et al. (2003) Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in critically ill patients. Crit Care Med 31: 34–8PubMedCrossRefGoogle Scholar
  31. 31.
    Mira JP, Cariou A, Grall F et al. (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282: 561–8PubMedCrossRefGoogle Scholar
  32. 32.
    Tang GJ, Huang SL, Yien HW et al. (2000) Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med 28: 2733–6PubMedCrossRefGoogle Scholar
  33. 33.
    Stüber F, Petersen M, Bokelmann F et al. (1996) A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 24: 381–4PubMedCrossRefGoogle Scholar
  34. 34.
    Davis EG, Eichenberger MR, Grant BS et al. (2000) Microsatellite marker of interferongamma receptor 1 gene correlates with infection following major trauma. Surgery 128: 301–5PubMedCrossRefGoogle Scholar
  35. 35.
    Texereau J, Pene F, Chiche JD et al. (2004) Importance of hemostatic gene polymorphisms for susceptibility and outcome of severe sepsis. Crit Care Med 32 (5 suppl): S313–9CrossRefGoogle Scholar
  36. 36.
    Hermans PW, Hibberd ML, Booy R et al. (1999) 4G/5G promoter polymorphism in the plasminogen-activator_inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet 354: 556–60PubMedCrossRefGoogle Scholar
  37. 37.
    Westendorp RG, Hottenga JJ, Slagboom PE (1999) Variation in plasminogen-activatorinhibitor-1 gene and risk of meningococcal septic shock. Lancet 354: 561–3PubMedCrossRefGoogle Scholar
  38. 38.
    Menges T, Hermans PW, Little SG et al. (2001) Plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism and prognosis of severely injured patients. Lancet 357: 1096–7PubMedCrossRefGoogle Scholar
  39. 39.
    Emonts M, Hazelzet JA, De Groot R et al. (2003) Host genetic determinants of neisseria meningitidis infections. Lancet Infect Dis 3(9): 565–77PubMedCrossRefGoogle Scholar
  40. 40.
    Kerlin BA, Yan SB, Isermann BH et al. (2003) Survival advantage associated with heterozygous factor V leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 102: 3085–92PubMedCrossRefGoogle Scholar
  41. 41.
    Harding D, Baines PB, Brull D et al. (2002) Severity of meningococcal disease in children and the angiotensin-converting enzyme gene polymorphism. Am J Respir Crit Care Med 165: 1103–6PubMedCrossRefGoogle Scholar
  42. 42.
    Cariou A, Chiche JD, Charpentier J et al. (2002) The era of genomics: impact on sepsis clinical trial design. Crit Care Med 30: S341–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2011

Authors and Affiliations

  • S. Lavergne
  • J.-P. Mira

There are no affiliations available

Personalised recommendations