Diseases of the Pulmonary Vascular System

  • Peter Oishi
  • Jeffrey R. Fineman


Nitric Oxide Pulmonary Hypertension Pulmonary Arterial Hypertension Pulmonary Vascular Resistance Pulmonary Arterial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McIntyre TM, Zimmerman GA, Satoh K, Prescott SM. Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and adenosine triphosphate. J Clin Invest 1985;76(1):271–280.PubMedGoogle Scholar
  2. 2.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332(6163):411–415.PubMedGoogle Scholar
  3. 3.
    Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333(6174):664–666.PubMedGoogle Scholar
  4. 4.
    Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986;250(6 Pt 2):H1145–H1149.PubMedGoogle Scholar
  5. 5.
    Fiscus RR. Molecular mechanisms of endothelium-mediated vasodilation. Semin Thromb Haemost 1988;14(Suppl):12–22.Google Scholar
  6. 6.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993;329(27):2002–2012.PubMedGoogle Scholar
  7. 7.
    Fineman JR, Heymann MA, Soifer SJ. N omega-nitro-L-arginine attenuates endothelium-dependent pulmonary vasodilation in lambs. Am J Physiol 1991;260(4 Pt 2):H1299–H1306.PubMedGoogle Scholar
  8. 8.
    Dinh-Xuan AT. Endothelial modulation of pulmonary vascular tone. Eur Respir J 1992;5(6):757–762.PubMedGoogle Scholar
  9. 9.
    Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989;83(5):1774–1777.PubMedGoogle Scholar
  10. 10.
    Fineman JR, Chang R, Soifer SJ. EDRF inhibition augments pulmonary hypertension in intact newborn lambs. Am J Physiol 1992;262(5 Pt 2):H1365–H1371.PubMedGoogle Scholar
  11. 11.
    Fineman JR, Crowley MR, Heymann MA, Soifer SJ. In vivo attenuation of endothelium-dependent pulmonary vasodilation by methylene blue. J Appl Physiol 1991;71(2):735–741.PubMedGoogle Scholar
  12. 12.
    Braner DA, Fineman JR, Chang R, Soifer SJ. M8B 22948, a cGMP phosphodiesterase inhibitor, is a pulmonary vasodilator in lambs. Am J Physiol 1993;264(1 Pt 2):H252–H258.PubMedGoogle Scholar
  13. 13.
    Kourembanas S, McQuillan LP, Leung GK, Faller DV. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 1993;92(1):99–104. 1PubMedGoogle Scholar
  14. 14.
    Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation 2004;109(2):159–165.PubMedGoogle Scholar
  15. 15.
    Matsuura A, Kawashima S, Yamochi W, Hirata K, Yamaguchi T, Emoto N, et al. Vascular endothelial growth factor increases endothelin- converting enzyme expression in vascular endothelial cells. Biochem Biophys Res Commun 1997;235(3):713–716.PubMedGoogle Scholar
  16. 16.
    Cassin S, Kristova V, Davis T, Kadowitz P, Gause G. Tone-dependent responses to endothelin in the isolated perfused fetal sheep pulmonary circulation in situ. J Appl Physiol 1991;70(3):1228–1234.PubMedGoogle Scholar
  17. 17.
    Wong J, Vanderford PA, Fineman JR, Chang R, Soifer SJ. Endothelin-1 produces pulmonary vasodilation in the intact newborn lamb. Am J Physiol 1993;265(4 Pt 2):H1318–H1325.PubMedGoogle Scholar
  18. 18.
    Wong J, Vanderford PA, Fineman JR, Soifer SJ. Developmental effects of endothelin-1 on the pulmonary circulation in sheep. Pediatr Res 1994;36(3):394–401.PubMedGoogle Scholar
  19. 19.
    Bradley LM, Czaja JF, Goldstein RE. Circulatory effects of endothelin in newborn piglets. Am J Physiol 1990;259(5 Pt 2):H1613–H1617.PubMedGoogle Scholar
  20. 20.
    Perreault T, De Marte J. Maturational changes in endothelium-derived relaxations in newborn piglet pulmonary circulation. Am J Physiol 1993;264(2 Pt 2):H302–H309.PubMedGoogle Scholar
  21. 21.
    Rudolph AM, Heymann MA. Circulatory changes during growth in the fetal lamb. Circ Res 1970;26(3):289–299.PubMedGoogle Scholar
  22. 22.
    Celermajer DS, Cullen S, Deanfield JE. Impairment of endothelium-dependent pulmonary artery relaxation in children with congenital heart disease and abnormal pulmonary hemodynamics. Circulation 1993;87(2):440–446.PubMedGoogle Scholar
  23. 23.
    Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 1995;333(4):214–221.PubMedGoogle Scholar
  24. 24.
    Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 1993;328(24):1732–1739.PubMedGoogle Scholar
  25. 25.
    Reddy VM, Wong J, Liddicoat JR, Johengen M, Chang R, Fineman JR. Altered endothelium-dependent responses in lambs with pulmonary hypertension and increased pulmonary blood flow. Am J Physiol 1996;271(2 Pt 2):H562–H570.PubMedGoogle Scholar
  26. 26.
    Levin DL, Rudolph AM, Heymann MA, Phibbs RH. Morphological development of the pulmonary vascular bed in fetal lambs. Circulation 1976;53(1):144–151.PubMedGoogle Scholar
  27. 27.
    Iwamoto HS, Teitel D, Rudolph AM. Effects of birth-related events on blood flow distribution. Pediatr Res 1987;22(6):634–640.PubMedGoogle Scholar
  28. 28.
    Rudolph AM. Fetal and neonatal pulmonary circulation. Annu Rev Physiol 1979;41:383–395.PubMedGoogle Scholar
  29. 29.
    Dawes GS, Mott JC, Widdicombe JG, Wyatt DG. Changes in the lungs of the new-born lamb. J Physiol 1953;121(1):141–162.PubMedGoogle Scholar
  30. 30.
    Heyman MA, Soifer S. Control of the fetal and neonatal pulmonary circulation. In: Weir EK, Reeves JT, eds. Pulmonary Vascular Physiology and Pathophysiology. New York: Dekker; 1989.Google Scholar
  31. 31.
    Rudolph AM. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res 1985;57(6):811–821.PubMedGoogle Scholar
  32. 32.
    Fineman JR, Soifer SJ, Heymann MA. Regulation of pulmonary vascular tone in the perinatal period. Annu Rev Physiol 1995;57: 115–134.PubMedGoogle Scholar
  33. 33.
    Enhorning G, Adams FH, Norman A. Effect of lung expansion on the fetal lamb circulation. Acta Paediatr Scand 1966;55(5):441–451.PubMedGoogle Scholar
  34. 34.
    Leffler CW, Hessler JR, Green RS. The onset of breathing at birth stimulates pulmonary vascular prostacyclin synthesis. Pediatr Res 1984;18(10):938–942.PubMedGoogle Scholar
  35. 35.
    Tiktinsky MH, Morin FC, 3rd. Increasing oxygen tension dilates fetal pulmonary circulation via endothelium-derived relaxing factor. Am J Physiol 1993;265(1 Pt 2):H376–H3780.PubMedGoogle Scholar
  36. 36.
    Shaul PW, Farrar MA, Zellers TM. Oxygen modulates endothelium-derived relaxing factor production in fetal pulmonary arteries. Am J Physiol 1992;262(2 Pt 2):H355–H364.PubMedGoogle Scholar
  37. 37.
    Shaul PW, Farrar MA, Magness RR. Pulmonary endothelial nitric oxide production is developmentally regulated in the fetus and newborn. Am J Physiol 1993;265(4 Pt 2):H1056–H1063.PubMedGoogle Scholar
  38. 38.
    Cornfield DN, Chatfield BA, McQueston JA, McMurtry IF, Abman SH. Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am J Physiol 1992;262(5 Pt 2):H1474– H1481.PubMedGoogle Scholar
  39. 39.
    Black SM, Johengen MJ, Ma ZD, Bristow J, Soifer SJ. Ventilation and oxygenation induce endothelial nitric oxide synthase gene expression in the lungs of fetal lambs. J Clin Invest 1997;100(6):1448–1458.PubMedGoogle Scholar
  40. 40.
    Fineman JR, Wong J, Morin FC, 3rd, Wild LM, Soifer SJ. Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest 1994;93(6):2675–2683.PubMedGoogle Scholar
  41. 41.
    Beghetti M, Black SM, Fineman JR. Endothelin-1 in congenital heart disease. Pediatr Res 2005;57(5 Pt 2):16R–20R.PubMedGoogle Scholar
  42. 42.
    Black S, Fineman J, Johengen M, Bristow J, Soifer S. Increased pulmonary blood flow alters the molecular regulation of vascular reactivity in the lamb. Chest 1998;114(1 Suppl):39S.PubMedGoogle Scholar
  43. 43.
    Black SM, Bekker JM, Johengen MJ, Parry AJ, Soifer SJ, Fineman JR. Altered regulation of the ET-1 cascade in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 2000;47(1):97–106.PubMedGoogle Scholar
  44. 44.
    Black SM, Bekker JM, McMullan DM, Parry AJ, Ovadia B, Reinhartz O, et al. Alterations in nitric oxide production in 8-week-old lambs with increased pulmonary blood flow. Pediatr Res 2002;52(2):233– 244.PubMedGoogle Scholar
  45. 45.
    Black SM, Fineman JR, Steinhorn RH, Bristow J, Soifer SJ. Increased endothelial NOS in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol 1998;275(5 Pt 2):H1643– H1651.PubMedGoogle Scholar
  46. 46.
    Black SM, Mata-Greenwood E, Dettman RW, Ovadia B, Fitzgerald RK, Reinhartz O, et al. Emergence of smooth muscle cell endothelin B–mediated vasoconstriction in lambs with experimental congenital heart disease and increased pulmonary blood flow. Circulation 2003; 108(13):1646–1654.PubMedGoogle Scholar
  47. 47.
    Black SM, Sanchez LS, Mata-Greenwood E, Bekker JM, Steinhorn RH, Fineman JR. sGC and PDE5 are elevated in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2001;281(5):L1051–L1057.PubMedGoogle Scholar
  48. 48.
    Fineman JR, Wong J, Mikhailov T, Vanderford PA, Jerome HE, Soifer SJ. Altered endothelial function in lambs with pulmonary hypertension and acute lung injury. Pediatr Pulmonol 1999;27(3):147–156.PubMedGoogle Scholar
  49. 49.
    Mata-Greenwood E, Meyrick B, Steinhorn RH, Fineman JR, Black SM. Alterations in TGF-beta1 expression in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2003;285(1):L209–L221.PubMedGoogle Scholar
  50. 50.
    Ovadia B, Reinhartz O, Fitzgerald R, Bekker JM, Johengen MJ, Azakie A, et al. Alterations in ET-1, not nitric oxide, in 1-week-old lambs with increased pulmonary blood flow. Am J Physiol Heart Circ Physiol 2003;284(2):H480–H490.PubMedGoogle Scholar
  51. 51.
    Reddy VM, Meyrick B, Wong J, Khoor A, Liddicoat JR, Hanley FL, et al. In utero placement of aortopulmonary shunts. A model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs. Circulation 1995;92(3):606–613.Google Scholar
  52. 52.
    Steinhorn RH, Fineman JR. The pathophysiology of pulmonary hypertension in congenital heart disease. Artif Organs 1999;23(11): 970–974.PubMedGoogle Scholar
  53. 53.
    Steinhorn RH, Russell JA, Lakshminrusimha S, Gugino SF, Black SM, Fineman JR. Altered endothelium-dependent relaxations in lambs with high pulmonary blood flow and pulmonary hypertension. Am J Physiol Heart Circ Physiol 2001;280(1):H311–H317.PubMedGoogle Scholar
  54. 54.
    Wong J, Reddy VM, Hendricks-Munoz K, Liddicoat JR, Gerrets R, Fineman JR. Endothelin-1 vasoactive responses in lambs with pulmonary hypertension and increased pulmonary blood flow. Am J Physiol 1995;269(6 Pt 2):H1965–H1972.PubMedGoogle Scholar
  55. 55.
    Abman SH, Shanley PF, Accurso FJ. Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs. J Clin Invest 1989;83(6):1849–1858.PubMedGoogle Scholar
  56. 56.
    Haworth SG, Reid L. Persistent fetal circulation: newly recognized structural features. J Pediatr 1976;88(4 Pt 1):614–620.PubMedGoogle Scholar
  57. 57.
    Murphy JD, Rabinovitch M, Goldstein JD, Reid LM. The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr 1981;98(6):962–967.PubMedGoogle Scholar
  58. 58.
    Oishi P, Fineman JR. Pharmacologic therapy for persistent pulmonary hypertension of the newborn: as "poly’’ as the disease itself. Pediatr Crit Care Med 2004;5(1):94–96.PubMedGoogle Scholar
  59. 59.
    Reid LM. Structure and function in pulmonary hypertension. New perceptions. Chest 1986;89(2):279–288.PubMedGoogle Scholar
  60. 60.
    Rosenberg AA, Kennaugh J, Koppenhafer SL, Loomis M, Chatfield BA, Abman SH. Elevated immunoreactive endothelin-1 levels in newborn infants with persistent pulmonary hypertension. J Pediatr 1993;123(1): 109–114.PubMedGoogle Scholar
  61. 61.
    Adnot S, Raffestin B, Eddahibi S, Braquet P, Chabrier PE. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest 1991;87(1):155– 162.PubMedGoogle Scholar
  62. 62.
    Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 1992;327(2):70–75.PubMedGoogle Scholar
  63. 63.
    Jernigan NL, Walker BR, Resta TC. Pulmonary PKG-1 is upregulated following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2003;285(3):L634–L642.PubMedGoogle Scholar
  64. 64.
    Steinhorn RH, Morin FC, 3rd, Fineman JR. Models of persistent pulmonary hypertension of the newborn (PPHN) and the role of cyclic guanosine monophosphate (GMP) in pulmonary vasorelaxation. Semin Perinatol 1997;21(5):393–408.PubMedGoogle Scholar
  65. 65.
    Rudolph AM, Auld PA. Physical factors affecting normal and serotonin-constricted pulmonary vessels. Am J Physiol 1960;198:864– 872.PubMedGoogle Scholar
  66. 66.
    Rudolph AM, Yuan S. Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest 1966;45(3): 399–411.PubMedGoogle Scholar
  67. 67.
    Marshall C, Marshall B. Site and sensitivity for stimulation of hypoxic pulmonary vasoconstriction. J Appl Physiol 1983;55(3):711–716.PubMedGoogle Scholar
  68. 68.
    Custer JR, Hales CA. Influence of alveolar oxygen on pulmonary vasoconstriction in newborn lambs versus sheep. Am Rev Respir Dis 1985;132(2):326–331.PubMedGoogle Scholar
  69. 69.
    Cutaia M, Rounds S. Hypoxic pulmonary vasoconstriction. Physiologic significance, mechanism, and clinical relevance. Chest 1990;97(3): 706–718.Google Scholar
  70. 70.
    Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol 2005;98(1):390–403.PubMedGoogle Scholar
  71. 71.
    Schreiber MD, Heymann MA, Soifer SJ. Increased arterial pH, not decreased PaCO2, attenuates hypoxia-induced pulmonary vasoconstriction in newborn lambs. Pediatr Res 1986;20(2):113–117.PubMedGoogle Scholar
  72. 72.
    Cartwright D, Gregory GA, Lou H, Heyman MA. The effect of hypocarbia on the cardiovascular system of puppies. Pediatr Res 1984;18(8):685–690.PubMedGoogle Scholar
  73. 73.
    Cornfield DN, Resnik ER, Herron JM, Reinhartz O, Fineman JR. Pulmonary vascular K+ channel expression and vasoreactivity in a model of congenital heart disease. Am J Physiol Lung Cell Mol Physiol 2002;283(6):L1210–L1219.PubMedGoogle Scholar
  74. 74.
    Colebatch HJ, Dawes GS, Goodwin JW, Nadeau RA. The nervous control of the circulation in the foetal and newly expanded lungs of the lamb. J Physiol 1965;178(3):544–562.PubMedGoogle Scholar
  75. 75.
    Rudolph AM, Heyman MA, Lewis AB. Physiology and pharmacology of the pulmonary circulation in the fetus and newborn. In: Hodson WA, ed. Lung Biology and Disease. Development of the Lung. New York: Dekker.Google Scholar
  76. 76.
    Roos A. Poiseuille’s law and its limitations in vascular systems. Med Thorac 1962;19:224–238.PubMedGoogle Scholar
  77. 77.
    Caro CG. Mechanics of the pulmonary circulation. In: Caro CG, ed. Advances in Pulmonary Physiology. London: Edwin Arnold; 1966.Google Scholar
  78. 78.
    Prandtl L, Tietjens OG. Applied Hydro- and Aeromechanics. New York: Dover; 1957.Google Scholar
  79. 79.
    Rudolph AM. Congenital Diseases of the Heart: Clinical-Physiological Considerations, 2nd ed. Armonk, NY: Futura; 2001.Google Scholar
  80. 80.
    Agarwal JB, Paltoo R, Palmer WH. Relative viscosity of blood at varying hematocrits in pulmonary circulation. J Appl Physiol 1970; 29(6):866–871.PubMedGoogle Scholar
  81. 81.
    Benis AM, Usami S, Chien S. Effect of hematocrit and inertial losses on pressure-flow relations in the isolated hindpaw o the dog. Circ Res 1970;27(6):1047–1068.PubMedGoogle Scholar
  82. 82.
    Culver BH, Butler J. Mechanical influences on the pulmonary microcirculation. Annu Rev Physiol 1980;42:187–198.PubMedGoogle Scholar
  83. 83.
    Permutt S, Caldini P, Maseri A. Recruitment vs. distensibility in the pulmonary vascular bed. In: Fishman AP, Hecht HH, eds. The Pulmonary Circulation and Interstitial Space. Chicago: University of Chicago Press; 1969.Google Scholar
  84. 84.
    Baile EM, Pare PD, Brooks LA, Hogg JC. Relationship between regional lung volume and regional pulmonary vascular resistance. J Appl Physiol 1982;52(4):914–920.PubMedGoogle Scholar
  85. 85.
    Whittenberger JL, Mc GM, Berglund E, Borst HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 1960;15:878–882.PubMedGoogle Scholar
  86. 86.
    Bush PA, Gonzalez NE, Ignarro LJ. Biosynthesis of nitric oxide and citrulline from L-arginine by constitutive nitric oxide synthase present in rabbit corpus cavernosum. Biochem Biophys Res Commun 1992;186(1):308–314.PubMedGoogle Scholar
  87. 87.
    Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 1987;61(6):866–879.PubMedGoogle Scholar
  88. 88.
    Ignarro LJ, Ross G, Tillisch J. Pharmacology of endothelium- derived nitric oxide and nitrovasodilators. West J Med 1991;154(1): 51–62.PubMedGoogle Scholar
  89. 89.
    Ignarro LJ, Harbison RG, Wood KS, Kadowitz PJ. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J Pharmacol Exp Ther 1986;237(3): 893–900.PubMedGoogle Scholar
  90. 90.
    Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 1986;78(1):1–5.PubMedGoogle Scholar
  91. 91.
    Mulsch A, Bassenge E, Busse R. Nitric oxide synthesis in endothelial cytosol: evidence for a calcium-dependent and a calcium-independent mechanism. Naunyn Schmiedebergs Arch Pharmacol 1989;340(6 Pt 2):767–770.PubMedGoogle Scholar
  92. 92.
    Brashers VL, Peach MJ, Rose CE, Jr. Augmentation of hypoxic pulmonary vasoconstriction in the isolated perfused rat lung by in vitro antagonists of endothelium-dependent relaxation. J Clin Invest 1988;82(5):1495–1502.PubMedGoogle Scholar
  93. 93.
    Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 1990;348(6303):730–732.PubMedGoogle Scholar
  94. 94.
    Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 1990;348(6303):732–735.PubMedGoogle Scholar
  95. 95.
    Rubanyi GM, ed. Endothelin. New York: Oxford University Press for the American Physiological Society; 1992.Google Scholar
  96. 96.
    Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990;323(1):27–36.PubMedGoogle Scholar
  97. 97.
    Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 1998;78(1):53–97.PubMedGoogle Scholar
  98. 98.
    Rabinovitch M, Bothwell T, Hayakawa BN, Williams WG, Trusler GA, Rowe RD, et al. Pulmonary artery endothelial abnormalities in patients with congenital heart defects and pulmonary hypertension. A correlation of light with scanning electron microscopy and transmission electron microscopy. Lab Invest 1986;55(6):632–653.Google Scholar
  99. 99.
    Dinh Xuan AT, Higenbottam TW, Clelland C, Pepke-Zaba J, Cremona G, Wallwork J. Impairment of pulmonary endothelium-dependent relaxation in patients with Eisenmenger’s syndrome. Br J Pharmacol 1990;99(1):9–10.PubMedGoogle Scholar
  100. 100.
    Meyrick B, Gamble W, Reid L. Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol 1980;239(5):H692–H702.PubMedGoogle Scholar
  101. 101.
    Yoshibayashi M, Nishioka K, Nakao K, Saito Y, Matsumura M, Ueda T, et al. Plasma endothelin concentrations in patients with pulmonary hypertension associated with congenital heart defects. Evidence for increased production of endothelin in pulmonary circulation. Circulation 1991;84(6):2280–2285.Google Scholar
  102. 102.
    Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA, 3rd, Loyd JE, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat Genet 2000; 26(1):81–84.Google Scholar
  103. 103.
    Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 2000;37(10): 741–745.PubMedGoogle Scholar
  104. 104.
    Newman JH, Wheeler L, Lane KB, Loyd E, Gaddipati R, Phillips JA, 3rd, et al. Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med 2001;345(5):319–324.PubMedGoogle Scholar
  105. 105.
    Humbert M, Deng Z, Simonneau G, Barst RJ, Sitbon O, Wolf M, et al. BMPR2 germline mutations in pulmonary hypertension associated with fenfluramine derivatives. Eur Respir J 2002;20(3):518– 523.PubMedGoogle Scholar
  106. 106.
    Rabinovitch M, Haworth SG, Castaneda AR, Nadas AS, Reid LM. Lung biopsy in congenital heart disease: a morphometric approach to pulmonary vascular disease. Circulation 1978;58(6):1107–1122.PubMedGoogle Scholar
  107. 107.
    Meyrick B, Reid L. Ultrastructural findings in lung biopsy material from children with congenital heart defects. Am J Pathol 1980;101(3): 527–542.PubMedGoogle Scholar
  108. 108.
    Hislop A, Haworth SG, Shinebourne EA, Reid L. Quantitative structural analysis of pulmonary vessels in isolated ventricular septal defect in infancy. Br Heart J 1975;37(10):1014–1021.PubMedGoogle Scholar
  109. 109.
    Haworth SG. Pulmonary vascular disease in different types of congenital heart disease. Implications for interpretation of lung biopsy findings in early childhood. Br Heart J 1984;52(5):557–571.PubMedGoogle Scholar
  110. 110.
    Hoffman JI, Rudolph AM, Heymann MA. Pulmonary vascular disease with congenital heart lesions: pathologic features and causes. Circulation 1981;64(5):873–877.PubMedGoogle Scholar
  111. 111.
    Burrows FA, Klinck JR, Rabinovitch M, Bohn DJ. Pulmonary hypertension in children: perioperative management. Can Anaesth Soc J 1986;33(5):606–628.PubMedGoogle Scholar
  112. 112.
    Wheller J, George BL, Mulder DG, Jarmakani JM. Diagnosis and management of postoperative pulmonary hypertensive crisis. Circulation 1979;60(7):1640–1644.PubMedGoogle Scholar
  113. 113.
    Rowe RD, Hoffman T. Transient myocardial ischemia of the newborn infant: a form of severe cardiorespiratory distress in full-term infants. J Pediatr 1972;81(2):243–250.PubMedGoogle Scholar
  114. 114.
    Turner-Gomes SO, Izukawa T, Rowe RD. Persistence of atrioventricular valve regurgitation and electrocardiographic abnormalities following transient myocardial ischemia of the newborn. Pediatr Cardiol 1989;10(4):191–194.PubMedGoogle Scholar
  115. 115.
    Bancalari E, Jesse MJ, Gelband H, Garcia O. Lung mechanics in congenital heart disease with increased and decreased pulmonary blood flow. J Pediatr 1977;90(2):192–195.PubMedGoogle Scholar
  116. 116.
    Day RW, Allen EM, Witte MK. A randomized, controlled study of the 1-hour and 24-hour effects of inhaled nitric oxide therapy in children with acute hypoxemic respiratory failure. Chest 1997;112(5):1324– 1331.PubMedGoogle Scholar
  117. 117.
    Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. The Neonatal Inhaled Nitric Oxide Study Group. N Engl J Med 1997;336(9):597–604.Google Scholar
  118. 118.
    Atz AM, Wessel DL. Inhaled nitric oxide in the neonate with cardiac disease. Semin Perinatol 1997;21(5):441–155.PubMedGoogle Scholar
  119. 119.
    Clark RH, Kueser TJ, Walker MW, Southgate WM, Huckaby JL, Perez JA, et al. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N Engl J Med 2000;342(7):469–474.PubMedGoogle Scholar
  120. 120.
    Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, Hauser DL, Criner GJ, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit Care Med 1998;26(1): 15–23.Google Scholar
  121. 121.
    Dobyns EL, Cornfield DN, Anas NG, Fortenberry JD, Tasker RC, Lynch A, et al. Multicenter randomized controlled trial of the effects of inhaled nitric oxide therapy on gas exchange in children with acute hypoxemic respiratory failure. J Pediatr 1999;134(4):406–412.PubMedGoogle Scholar
  122. 122.
    Fineman JR, Zwass MS. Inhaled nitric oxide therapy for persistent pulmonary hypertension of the newborn. Acta Paediatr Jpn 1995; 37(4):425–430.PubMedGoogle Scholar
  123. 123.
    Karamanoukian HL, Glick PL, Zayek M, Steinhorn RH, Zwass MS, Fineman JR, et al. Inhaled nitric oxide in congenital hypoplasia of the lungs due to diaphragmatic hernia or oligohydramnios. Pediatrics 1994;94(5):715–718.PubMedGoogle Scholar
  124. 124.
    Kinsella JP, Truog WE, Walsh WF, Goldberg RN, Bancalari E, Mayock DE, et al. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 1997;131(1 Pt 1):55–62.PubMedGoogle Scholar
  125. 125.
    Lunn RJ. Inhaled nitric oxide therapy. Mayo Clin Proc 1995;70(3):247– 255.PubMedGoogle Scholar
  126. 126.
    Roberts JD, Jr., Fineman JR, Morin FC, 3rd, Shaul PW, Rimar S, Schreiber MD, et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med 1997;336(9):605–610.PubMedGoogle Scholar
  127. 127.
    Russell IA, Zwass MS, Fineman JR, Balea M, Rouine-Rapp K, Brook M, et al. The effects of inhaled nitric oxide on postoperative pulmonary hypertension in infants and children undergoing surgical repair of congenital heart disease. Anesth Analg 1998;87(1):46–51.PubMedGoogle Scholar
  128. 128.
    Schreiber MD, Gin-Mestan K, Marks JD, Huo D, Lee G, Srisuparp P. Inhaled nitric oxide in premature infants with the respiratory distress syndrome. N Engl J Med 2003;349(22):2099–2107.PubMedGoogle Scholar
  129. 129.
    Heidersbach RS, Johengen MJ, Bekker JM, Fineman JR. Inhaled nitric oxide, oxygen, and alkalosis: dose-response interactions in a lamb model of pulmonary hypertension. Pediatr Pulmonol 1999;28(1): 3–11.PubMedGoogle Scholar
  130. 130.
    Stephenson LW, Edmunds LH, Jr., Raphaely R, Morrison DF, Hoffman WS, Rubis LJ. Effects of nitroprusside and dopamine on pulmonary arterial vasculature in children after cardiac surgery. Circulation 1979;60(2 Pt 2):104–110.PubMedGoogle Scholar
  131. 131.
    Rubis LJ, Stephenson LW, Johnston MR, Nagaraj S, Edmunds LH, Jr. Comparison of effects of prostaglandin E1 and nitroprusside on pulmonary vascular resistance in children after open-heart surgery. Ann Thorac Surg 1981;32(6):563–570.PubMedGoogle Scholar
  132. 132.
    Wimmer M, Schlemmer M, Ebner F. Hemodynamic effects of nife-dipine and oxygen in children with pulmonary hypertension. Cardiovasc Drugs Ther 1988;2(5):661–668.PubMedGoogle Scholar
  133. 133.
    Bush A, Busst C, Booth K, Knight WB, Shinebourne EA. Does prostacyclin enhance the selective pulmonary vasodilator effect of oxygen in children with congenital heart disease? Circulation 1986;74(1):135– 144.PubMedGoogle Scholar
  134. 134.
    Uglov FG, Davydenko VV, Orlovskii PI, Grigor’ev EE, Bushmarin ON. [Intravascular hemolysis in patients with artificial heart valves]. Vestn Khir Im I I Grek 1986;136(4):135–141.PubMedGoogle Scholar
  135. 135.
    Weesner KM. Hemodynamic effects of prostaglandin E1 in patients with congenital heart disease and pulmonary hypertension. Cathet Cardiovasc Diagn 1991;24(1):10–15.PubMedGoogle Scholar
  136. 136.
    Kermode J, Butt W, Shann F. Comparison between prostaglandin E1 and epoprostenol (prostacyclin) in infants after heart surgery. Br Heart J 1991;66(2):175–178.PubMedGoogle Scholar
  137. 137.
    Brook MM, Fineman JR, Bolinger AM, Wong AF, Heymann MA, Soifer SJ. Use of ATP-MgCl2 in the evaluation and treatment of children with pulmonary hypertension secondary to congenital heart defects. Circulation 1994;90(3):1287–1293.PubMedGoogle Scholar
  138. 138.
    Stevenson DK, Kasting DS, Darnall RA, Jr., Ariagno RL, Johnson JD, Malachowski N, et al. Refractory hypoxemia associated with neonatal pulmonary disease: the use and limitations of tolazoline. J Pediatr 1979;95(4):595–599.PubMedGoogle Scholar
  139. 139.
    Tripp ME, Drummond WH, Heymann MA, Rudolph AM. Hemodynamic effects of pulmonary arterial infusion of vasodilators in newborn lambs. Pediatr Res 1980;14(12):1311–1315.PubMedGoogle Scholar
  140. 140.
    Starling MB, Neutze JM, Elliott RL, Elliott RB. Comparative studies on the hemodynamic effects of prostaglandin E1 prostacyclin, and tolazoline upon elevated pulmonary vascular resistance in neonatal swine. Prostaglandins Med 1981;7(5):349–361.PubMedGoogle Scholar
  141. 141.
    Radermacher P, Huet Y, Pluskwa F, Herigault R, Mal H, Teisseire B, et al. Comparison of ketanserin and sodium nitroprusside in patients with severe ARDS. Anesthesiology 1988;68(1):152–157.PubMedGoogle Scholar
  142. 142.
    Radermacher P, Santak B, Becker H, Falke KJ. Prostaglandin E1 and nitroglycerin reduce pulmonary capillary pressure but worsen ventilation-perfusion distributions in patients with adult respiratory distress syndrome. Anesthesiology 1989;70(4):601–606.PubMedGoogle Scholar
  143. 143.
    Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 1981;63(1):87–95.PubMedGoogle Scholar
  144. 144.
    Melot C, Lejeune P, Leeman M, Moraine JJ, Naeije R. Prostaglandin E1 in the adult respiratory distress syndrome. Benefit for pulmonary hypertension and cost for pulmonary gas exchange. Am Rev Respir Dis 1989;139(1):106–110.PubMedGoogle Scholar
  145. 145.
    Radermacher P, Santak B, Wust HJ, Tarnow J, Falke KJ. Prostacyclin for the treatment of pulmonary hypertension in the adult respiratory distress syndrome: effects on pulmonary capillary pressure and ventilation-perfusion distributions. Anesthesiology 1990;72(2):238– 244.PubMedGoogle Scholar
  146. 146.
    De Wet CJ, Affleck DG, Jacobsohn E, Avidan MS, Tymkew H, Hill LL, et al. Inhaled prostacyclin is safe, effective, and affordable in patients with pulmonary hypertension, right heart dysfunction, and refractory hypoxemia after cardiothoracic surgery. J Thorac Cardiovasc Surg 2004;127(4):1058–1067.PubMedGoogle Scholar
  147. 147.
    Hache M, Denault A, Belisle S, Robitaille D, Couture P, Sheridan P, et al. Inhaled epoprostenol (prostacyclin) and pulmonary hypertension before cardiac surgery. J Thorac Cardiovasc Surg 2003;125(3):642– 649.PubMedGoogle Scholar
  148. 148.
    Kelly LK, Porta NF, Goodman DM, Carroll CL, Steinhorn RH. Inhaled prostacyclin for term infants with persistent pulmonary hypertension refractory to inhaled nitric oxide. J Pediatr 2002;141(6): 830–832.PubMedGoogle Scholar
  149. 149.
    Weston MW, Isaac BF, Crain C. The use of inhaled prostacyclin in nitroprusside-resistant pulmonary artery hypertension. J Heart Lung Transplant 2001;20(12):1340–1344.PubMedGoogle Scholar
  150. 150.
    Hache M, Denault AY, Belisle S, Couture P, Babin D, Tetrault F, et al. Inhaled prostacyclin (PGI2) is an effective addition to the treatment of pulmonary hypertension and hypoxia in the operating room and intensive care unit. Can J Anaesth 2001;48(9):924–929.PubMedGoogle Scholar
  151. 151.
    Fiser SM, Cope JT, Kron IL, Kaza AK, Long SM, Kern JA, et al. Aerosolized prostacyclin (epoprostenol) as an alternative to inhaled nitric oxide for patients with reperfusion injury after lung transplantation. J Thorac Cardiovasc Surg 2001;121(5):981–982.PubMedGoogle Scholar
  152. 152.
    Della Rocca G, Coccia C, Costa MG, Pompei L, Di Marco P, Vizza CD, et al. Inhaled aerosolized prostacyclin and pulmonary hypertension during anesthesia for lung transplantation. Transplant Proc 2001; 33(1–2):1634–1636.PubMedGoogle Scholar
  153. 153.
    Abe Y, Tatsumi K, Sugito K, Ikeda Y, Kimura H, Kuriyama T. Effects of inhaled prostacyclin analogue on chronic hypoxic pulmonary hypertension. J Cardiovasc Pharmacol 2001;37(3):239–251.PubMedGoogle Scholar
  154. 154.
    van Heerden PV, Barden A, Michalopoulos N, Bulsara MK, Roberts BL. Dose-response to inhaled aerosolized prostacyclin for hypoxemia due to ARDS. Chest 2000;117(3):819–827.PubMedGoogle Scholar
  155. 155.
    Max M, Rossaint R. Inhaled prostacyclin in the treatment of pulmonary hypertension. Eur J Pediatr 1999;158 Suppl 1:S23– S26.PubMedGoogle Scholar
  156. 156.
    Olschewski H, Ghofrani HA, Walmrath D, Schermuly R, Temmesfeld-Wollbruck B, Grimminger F, et al. Inhaled prostacyclin and iloprost in severe pulmonary hypertension secondary to lung fibrosis. Am J Respir Crit Care Med 1999;160(2):600–607.PubMedGoogle Scholar
  157. 157.
    Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 1995;75(4):725–748.PubMedGoogle Scholar
  158. 158.
    Kato R, Sato J, Nishino T. Milrinone decreases both pulmonary arterial and venous resistances in the hypoxic dog. Br J Anaesth 1998;81(6):920–924.PubMedGoogle Scholar
  159. 159.
    Chen EP, Bittner HB, Davis RD, Jr., Van Trigt P 3rd. Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann Thorac Surg 1997;63(3):814– 821.PubMedGoogle Scholar
  160. 160.
    Chen EP, Bittner HB, Davis RD, Van Trigt P. Hemodynamic and inotropic effects of milrinone after heart transplantation in the setting of recipient pulmonary hypertension. J Heart Lung Transplant 1998;17(7):669–678.PubMedGoogle Scholar
  161. 161.
    Chang AC, Atz AM, Wernovsky G, Burke RP, Wessel DL. Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med 1995;23(11):1907–1914.PubMedGoogle Scholar
  162. 162.
    Hoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 2003;107(7):996–1002.PubMedGoogle Scholar
  163. 163.
    Watanabe H, Ohashi K, Takeuchi K, Yamashita K, Yokoyama T, Tran QK, et al. Sildenafil for primary and secondary pulmonary hypertension. Clin Pharmacol Ther 2002;71(5):398–402.PubMedGoogle Scholar
  164. 164.
    Humpl T, Reyes JT, Holtby H, Stephens D, Adatia I. Beneficial effect of oral sildenafil therapy on childhood pulmonary arterial hypertension: twelve-month clinical trial of a single-drug, open-label, pilot study. Circulation 2005;111(24):3274–3280.PubMedGoogle Scholar
  165. 165.
    Shekerdemian LS, Ravn HB, Penny DJ. Interaction between inhaled nitric oxide and intravenous sildenafil in a porcine model of meconium aspiration syndrome. Pediatr Res 2004;55(3):413– 418.PubMedGoogle Scholar
  166. 166.
    Stocker C, Penny DJ, Brizard CP, Cochrane AD, Soto R, Shekerdemian LS. Intravenous sildenafil and inhaled nitric oxide: a randomised trial in infants after cardiac surgery. Intensive Care Med 2003;29(11):1996– 2003.PubMedGoogle Scholar
  167. 167.
    Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo- controlled study. Lancet 2001;358(9288):1119–1123.PubMedGoogle Scholar
  168. 168.
    Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 2002;346(12):896–903.PubMedGoogle Scholar
  169. 169.
    Kouchoukos NT, Blackstone EH, Kirklin JW. Surgical implications of pulmonary hypertension in congenital heart disease. Adv Cardiol 1978(22):225–231.PubMedGoogle Scholar
  170. 170.
    Mentzer RM, Alegre CA, Nolan SP. The effects of dopamine and isoproterenol on the pulmonary circulation. J Thorac Cardiovasc Surg 1976;71(6):807–814.PubMedGoogle Scholar
  171. 171.
    Holloway EL, Polumbo RA, Harrison DC. Acute circulatory effects of dopamine in patients with pulmonary hypertension. Br Heart J 1975;37(5):482–485.PubMedGoogle Scholar
  172. 172.
    Martinez AM, Padbury JF, Thio S. Dobutamine pharmacokinetics and cardiovascular responses in critically ill neonates. Pediatrics 1992; 89(1):47–51.PubMedGoogle Scholar
  173. 173.
    Perkin RM, Levin DL, Webb R, Aquino A, Reedy J. Dobutamine: a hemodynamic evaluation in children with shock. J Pediatr 1982;100(6): 977–983.PubMedGoogle Scholar
  174. 174.
    Crowley MR, Fineman JR, Soifer SJ. Effects of vasoactive drugs on thromboxane A2 mimetic-induced pulmonary hypertension in new-born lambs. Pediatr Res 1991;29(2):167–172.PubMedGoogle Scholar
  175. 175.
    Rozkovec A, Montanes P, Oakley CM. Factors that influence the outcome of primary pulmonary hypertension. Br Heart J 1986;55(5): 449–458.PubMedGoogle Scholar
  176. 176.
    Rich S, Lam W. Atrial septostomy as palliative therapy for refractory primary pulmonary hypertension. Am J Cardiol 1983;51(9):1560– 1561.PubMedGoogle Scholar
  177. 177.
    Mullins CE, Nihill MR, Vick GW, 3rd, Ludomirsky A, O’Laughlin MP, Bricker JT, et al. Double balloon technique for dilation of valvular or vessel stenosis in congenital and acquired heart disease. J Am Coll Cardiol 1987;10(1):107–114.PubMedGoogle Scholar
  178. 178.
    Hausknecht MJ, Sims RE, Nihill MR, Cashion WR. Successful palliation of primary pulmonary hypertension by atrial septostomy. Am J Cardiol 1990;65(15):1045–1046.PubMedGoogle Scholar
  179. 179.
    Kerstein D, Levy PS, Hsu DT, Hordof AJ, Gersony WM, Barst RJ. Blade balloon atrial septostomy in patients with severe primary pulmonary hypertension. Circulation 1995;91(7):2028–2035.PubMedGoogle Scholar
  180. 180.
    Sandoval J, Gaspar J, Pulido T, Bautista E, Martinez-Guerra ML, Zeballos M, et al. Graded balloon dilation atrial septostomy in severe primary pulmonary hypertension. A therapeutic alternative for patients nonresponsive to vasodilator treatment. J Am Coll Cardiol 1998;32(2):297–304.PubMedGoogle Scholar
  181. 181.
    Higenbottam T, Wheeldon D, Wells F, Wallwork J. Long-term treatment of primary pulmonary hypertension with continuous intravenous epoprostenol (prostacyclin). Lancet 1984;1(8385):1046–1047.PubMedGoogle Scholar
  182. 182.
    Barst RJ, Rubin LJ, McGoon MD, Caldwell EJ, Long WA, Levy PS. Survival in primary pulmonary hypertension with long-term con-tinuous intravenous prostacyclin. Ann Intern Med 1994;121(6): 409–415.PubMedGoogle Scholar
  183. 183.
    Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 1996;334(5):296–302.PubMedGoogle Scholar
  184. 184.
    Shapiro SM, Oudiz RJ, Cao T, Romano MA, Beckmann XJ, Georgiou D, et al. Primary pulmonary hypertension: improved long-term effects and survival with continuous intravenous epoprostenol infusion. J Am Coll Cardiol 1997;30(2):343–349.PubMedGoogle Scholar
  185. 185.
    McLaughlin VV, Genthner DE, Panella MM, Rich S. Reduction in pulmonary vascular resistance with long-term epoprostenol (prostacyclin) therapy in primary pulmonary hypertension. N Engl J Med 1998;338(5):273–277.PubMedGoogle Scholar
  186. 186.
    Barst RJ, Maislin G, Fishman AP. Vasodilator therapy for primary pulmonary hypertension in children. Circulation 1999;99(9):1197– 1208.PubMedGoogle Scholar
  187. 187.
    Widlitz A, Barst RJ. Pulmonary arterial hypertension in children. Eur Respir J 2003;21(1):155–176.PubMedGoogle Scholar
  188. 188.
    McLaughlin VV, Sitbon O, Badesch DB, Barst RJ, Black C, Galie N, et al. Survival with first-line bosentan in patients with primary pulmonary hypertension. Eur Respir J 2005;25(2):244–249.PubMedGoogle Scholar
  189. 189.
    Keller RL, Hamrick SE, Kitterman JA, Fineman JR, Hawgood S. Treatment of rebound and chronic pulmonary hypertension with oral sildenafil in an infant with congenital diaphragmatic hernia. Pediatr Crit Care Med 2004;5(2):184–187.PubMedGoogle Scholar
  190. 190.
    Bohn D, Tamura M, Perrin D, Barker G, Rabinovitch M. Ventilatory predictors of pulmonary hypoplasia in congenital diaphragmatic hernia, confirmed by morphologic assessment. J Pediatr 1987;111(3): 423–431.PubMedGoogle Scholar
  191. 191.
    Naeye RL, Shochat SJ, Whitman V, Maisels MJ. Unsuspected pulmonary vascular abnormalities associated with diaphragmatic hernia. Pediatrics 1976;58(6):902–906.PubMedGoogle Scholar
  192. 192.
    Levin DL. Morphologic analysis of the pulmonary vascular bed in congenital left-sided diaphragmatic hernia. J Pediatr 1978;92(5):805– 809.PubMedGoogle Scholar
  193. 193.
    Dibbins AW, Wiener ES. Mortality from neonatal diaphragmatic hernia. J Pediatr Surg 1974;9(5):653–662.PubMedGoogle Scholar
  194. 194.
    Bloss RS, Aranda JV, Beardmore HE. Vasodilator response and prediction of survival in congenital diaphragmatic hernia. J Pediatr Surg 1981;16(2):118–121.PubMedGoogle Scholar
  195. 195.
    Fox WW, Gewitz MH, Dinwiddie R, Drummond WH, Peckham GJ. Pulmonary hypertension in the perinatal aspiration syndromes. Pediatrics 1977;59(2):205–211.PubMedGoogle Scholar
  196. 196.
    Shankaran S, Farooki ZQ, Desai R. beta-hemolytic streptococcal infection appearing as persistent fetal circulation. Am J Dis Child 1982;136(8):725–727.PubMedGoogle Scholar
  197. 197.
    Reece EA, Moya F, Yazigi R, Holford T, Duncan C, Ehrenkranz RA. Persistent pulmonary hypertension: assessment of perinatal risk factors. Obstet Gynecol 1987;70(5):696–700.PubMedGoogle Scholar
  198. 198.
    Soifer SJ, Kaslow D, Roman C, Heymann MA. Umbilical cord compression produces pulmonary hypertension in newborn lambs: a model to study the pathophysiology of persistent pulmonary hypertension in the newborn. J Dev Physiol 1987;9(3):239–252.PubMedGoogle Scholar
  199. 199.
    Levin DL, Mills LJ, Weinberg AG. Hemodynamic, pulmonary vascular, and myocardial abnormalities secondary to pharmacologic constriction of the fetal ductus arteriosus. A possible mechanism for persistent pulmonary hypertension and transient tricuspid insufficiency in the newborn infant. Circulation 1979;60(2):360–364.Google Scholar
  200. 200.
    Morin FC, 3rd. Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr Res 1989;25(3):245–250.PubMedGoogle Scholar
  201. 201.
    Wild LM, Nickerson PA, Morin FC, 3rd. Ligating the ductus arteriosus before birth remodels the pulmonary vasculature of the lamb. Pediatr Res 1989;25(3):251–257.PubMedGoogle Scholar
  202. 202.
    McQueston JA, Kinsella JP, Ivy DD, McMurtry IF, Abman SH. Chronic pulmonary hypertension in utero impairs endothelium-dependent vasodilation. Am J Physiol 1995;268(1 Pt 2):H288–H294.PubMedGoogle Scholar
  203. 203.
    Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorn RH, Morin FC, 3rd. Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am J Physiol 1997;272(5 Pt 1):L1005–L1012.PubMedGoogle Scholar
  204. 204.
    Manchester D, Margolis HS, Sheldon RE. Possible association between maternal indomethacin therapy and primary pulmonary hypertension of the newborn. Am J Obstet Gynecol 1976;126(4):467– 469.PubMedGoogle Scholar
  205. 205.
    Levin DL, Fixler DE, Morriss FC, Tyson J. Morphologic analysis of the pulmonary vascular bed in infants exposed in utero to prostaglandin synthetase inhibitors. J Pediatr 1978;92(3):478–483.PubMedGoogle Scholar
  206. 206.
    Fox WW, Berman LS, Downes JJ, Jr., Peckham GJ. The therapeutic application of end-expiratory pressure in the meconium aspiration syndrome. Pediatrics 1975;56(2):214–217.PubMedGoogle Scholar
  207. 207.
    Truog WE, Lyrene RK, Standaert TA, Murphy J, Woodrum DE. Effects of PEEP and tolazoline infusion on respiratory and inert gas exchange in experimental meconium aspiration. J Pediatr 1982;100(2):284– 290.PubMedGoogle Scholar
  208. 208.
    Auten RL, Notter RH, Kendig JW, Davis JM, Shapiro DL. Surfactant treatment of full-term newborns with respiratory failure. Pediatrics 1991;87(1):101–107.PubMedGoogle Scholar
  209. 209.
    Henry GW, Stevens DC, Schreiner RL, Grosfeld JL, Ballantine TV. Respiratory paralysis to improve oxygenation and mortality in large newborn infants with respiratory distress. J Pediatr Surg 1979; 14(6):761–767.PubMedGoogle Scholar
  210. 210.
    Toomasian JM, Snedecor SM, Cornell RG, Cilley RE, Bartlett RH. National experience with extracorporeal membrane oxygenation for newborn respiratory failure. Data from 715 cases. ASAIO Trans 1988;34(2):140–147.PubMedGoogle Scholar
  211. 211.
    O’Rourke PP, Crone RK, Vacanti JP, Ware JH, Lillehei CW, Parad RB, et al. Extracorporeal membrane oxygenation and conventional medical therapy in neonates with persistent pulmonary hypertension of the newborn: a prospective randomized study. Pediatrics 1989;84(6): 957–963.PubMedGoogle Scholar
  212. 212.
    Meinert CL. Extracorporeal membrane oxygenation trials. Pediatrics 1990;85(3):365–366.PubMedGoogle Scholar
  213. 213.
    Bahrami KR, Van Meurs KP. ECMO for neonatal respiratory failure. Semin Perinatol 2005;29(1):15–23.PubMedGoogle Scholar
  214. 214.
    Reid LM. The pulmonary circulation: remodeling in growth and disease. The 1978 J. Burns Amberson lecture. Am Rev Respir Dis 1979;119(4):531–546.Google Scholar
  215. 215.
    Rabinovitch M, Keane JF, Norwood WI, Castaneda AR, Reid L. Vascular structure in lung tissue obtained at biopsy correlated with pulmonary hemodynamic findings after repair of congenital heart defects. Circulation 1984;69(4):655–667.PubMedGoogle Scholar
  216. 216.
    Haworth SG, Reid L. Quantitative structural study of pulmonary circulation in the newborn with aortic atresia, stenosis, or coarctation. Thorax 1977;32(2):121–128.PubMedGoogle Scholar
  217. 217.
    Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 1958;18(4 Part 1):533– 547.PubMedGoogle Scholar
  218. 218.
    Clapp S, Perry BL, Farooki ZQ, Jackson WL, Karpawich PP, Hakimi M, et al. Down’s syndrome, complete atrioventricular canal, and pulmonary vascular obstructive disease. J Thorac Cardiovasc Surg 1990;100(1):115–121.PubMedGoogle Scholar
  219. 219.
    Hallidie-Smith KA, Hollman A, Cleland WP, Bentall HH, Goodwin JF. Effects of surgical closure of ventricular septal defects upon pulmonary vascular disease. Br Heart J 1969;31(2):246–260.PubMedGoogle Scholar
  220. 220.
    Wessel DL, Adatia I, Giglia TM, Thompson JE, Kulik TJ. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation 1993;88(5 Pt 1):2128–2138.PubMedGoogle Scholar
  221. 221.
    Atz AM, Adatia I, Lock JE, Wessel DL. Combined effects of nitric oxide and oxygen during acute pulmonary vasodilator testing. J Am Coll Cardiol 1999;33(3):813–819.PubMedGoogle Scholar
  222. 222.
    Balzer DT, Kort HW, Day RW, Corneli HM, Kovalchin JP, Cannon BC, et al. Inhaled Nitric Oxide as a Preoperative Test (INOP Test I): the INOP Test Study Group. Circulation 2002;106(12 Suppl 1):I76– I81.PubMedGoogle Scholar
  223. 223.
    Beghetti M, Adatia I. Inhaled nitric oxide and congenital cardiac disease. Cardiol Young 2001;11(2):142–152.PubMedGoogle Scholar
  224. 224.
    Yoshimura N, Yamaguchi M, Oka S, Yoshida M, Murakami H, Kagawa T, et al. Inhaled nitric oxide therapy after Fontan-type operations. Surg Today 2005;35(1):31–35.PubMedGoogle Scholar
  225. 225.
    Kawakami H, Ichinose F. Inhaled nitric oxide in pediatric cardiac surgery. Int Anesthesiol Clin 2004;42(4):93–100.PubMedGoogle Scholar
  226. 226.
    Miller OI, Tang SF, Keech A, Pigott NB, Beller E, Celermajer DS. Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: a randomised double-blind study. Lancet 2000;356(9240):1464–1469.PubMedGoogle Scholar
  227. 227.
    Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004;43(12 Suppl S):5S–12S.PubMedGoogle Scholar
  228. 228.
    D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991;115(5):343–349.PubMedGoogle Scholar
  229. 229.
    Yamaki S, Wagenvoort CA. Comparison of primary plexogenic arteriopathy in adults and children. A morphometric study in 40 patients. Br Heart J 1985;54(4):428–434.PubMedGoogle Scholar
  230. 230.
    Sandoval J, Bauerle O, Gomez A, Palomar A, Martinez Guerra ML, Furuya ME. Primary pulmonary hypertension in children: clinical characterization and survival. J Am Coll Cardiol 1995;25(2):466– 474.PubMedGoogle Scholar
  231. 231.
    Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med 1987;107(2):216–223.PubMedGoogle Scholar
  232. 232.
    Barst RJ, Stalcup SA, Steeg CN, Hall JC, Frosolono MF, Cato AE, et al. Relation of arachidonate metabolites to abnormal control of the pulmonary circulation in a child. Am Rev Respir Dis 1985;131(1):171– 177.PubMedGoogle Scholar
  233. 233.
    Newman CW, Jacobson GP, Hug GA, Weinstein BE, Malinoff RL. Practical method for quantifying hearing aid benefit in older adults. J Am Acad Audiol 1991;2(2):70–75.PubMedGoogle Scholar
  234. 234.
    Stewart DJ, Levy RD, Cernacek P, Langleben D. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med 1991;114(6):464–469.PubMedGoogle Scholar
  235. 235.
    Giaid A. Nitric oxide and endothelin-1 in pulmonary hypertension. Chest 1998;114(3 Suppl):208S–212S.PubMedGoogle Scholar
  236. 236.
    Yuan JX, Aldinger AM, Juhaszova M, Wang J, Conte JV, Jr., Gaine SP, et al. Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 1998;98(14):1400–1406.PubMedGoogle Scholar
  237. 237.
    Rabinovitch M, Andrew M, Thom H, Trusler GA, Williams WG, Rowe RD, et al. Abnormal endothelial factor VIII associated with pulmonary hypertension and congenital heart defects. Circulation 1987;76(5): 1043–1052.PubMedGoogle Scholar
  238. 238.
    Geggel RL, Carvalho AC, Hoyer LW, Reid LM. von Willebrand factor abnormalities in primary pulmonary hypertension. Am Rev Respir Dis 1987;135(2):294–299.PubMedGoogle Scholar
  239. 239.
    Fuster V, Steele PM, Edwards WD, Gersh BJ, McGoon MD, Frye RL. Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 1984;70(4):580–587.PubMedGoogle Scholar
  240. 240.
    Frank H, Mlczoch J, Huber K, Schuster E, Gurtner HP, Kneussl M. The effect of anticoagulant therapy in primary and anorectic drug-induced pulmonary hypertension. Chest 1997;112(3):714– 721.PubMedGoogle Scholar
  241. 241.
    Thompson BT, Spence CR, Janssens SP, Joseph PM, Hales CA. Inhibition of hypoxic pulmonary hypertension by heparins of differing in vitro antiproliferative potency. Am J Respir Crit Care Med 1994;149(6): 1512–1517.PubMedGoogle Scholar
  242. 242.
    Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992;327(2):76–81.PubMedGoogle Scholar
  243. 243.
    Saji T, Ozawa Y, Ishikita T, Matsuura H, Matsuo N. Short-term hemodynamic effect of a new oral PGI2 analogue, beraprost, in primary and secondary pulmonary hypertension. Am J Cardiol 1996;78(2):244– 247.PubMedGoogle Scholar
  244. 244.
    Nagaya N, Uematsu M, Okano Y, Satoh T, Kyotani S, Sakamaki F, et al. Effect of orally active prostacyclin analogue on survival of outpatients with primary pulmonary hypertension. J Am Coll Cardiol 1999;34(4):1188–1192.PubMedGoogle Scholar
  245. 245.
    Hoeper MM, Schwarze M, Ehlerding S, Adler-Schuermeyer A, Spiekerkoetter E, Niedermeyer J, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med 2000;342(25):1866–1870.PubMedGoogle Scholar
  246. 246.
    Higenbottam TW, Butt AY, Dinh-Xaun AT, Takao M, Cremona G, Akamine S. Treatment of pulmonary hypertension with the continuous infusion of a prostacyclin analogue, iloprost. Heart 1998;79(2): 175–179.PubMedGoogle Scholar
  247. 247.
    Rich S, Seidlitz M, Dodin E, Osimani D, Judd D, Genthner D, et al. The short-term effects of digoxin in patients with right ventricular dysfunction from pulmonary hypertension. Chest 1998;114(3):787–792.PubMedGoogle Scholar
  248. 248.
    Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metallo-proteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 2000;105(1): 21–34.PubMedGoogle Scholar
  249. 249.
    Cowan KN, Heilbut A, Humpl T, Lam C, Ito S, Rabinovitch M. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med 2000;6(6):698–702.PubMedGoogle Scholar
  250. 250.
    Barst RJ. Role of atrial septostomy in the treatment of pulmonary vascular disease. Thorax 2000;55(2):95–96.PubMedGoogle Scholar
  251. 251.
    Mallory GB, Spray TL. Paediatric lung transplantation. Eur Respir J 2004;24(5):839–845.PubMedGoogle Scholar
  252. 252.
    Mendeloff EN, Meyers BF, Sundt TM, Guthrie TJ, Sweet SC, de la Morena M, et al. Lung transplantation for pulmonary vascular disease. Ann Thorac Surg 2002;73(1):209–219.PubMedGoogle Scholar
  253. 253.
    Boucek MM, Edwards LB, Keck BM, Trulock EP, Taylor DO, Hertz MI. Registry for the International Society for Heart and Lung Transplantation: seventh official pediatric report—2004. J Heart Lung Transplant 2004;23(8):933–947.PubMedGoogle Scholar
  254. 254.
    Grover RF, Vogel JH, Voigt GC, Blount SG Jr. Reversal of high altitude pulmonary hypertension. Am J Cardiol 1966;18(6):928–932.PubMedGoogle Scholar
  255. 255.
    Tucker A, McMurtry IF, Reeves JT, Alexander AF, Will DH, Grover RF. Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude. Am J Physiol 1975;228(3):762–767.PubMedGoogle Scholar
  256. 256.
    Meyrick B, Reid L. Endothelial and subintimal changes in rat hilar pulmonary artery during recovery from hypoxia. A quantitative ultrastructural study. Lab Invest 1980;42(6):603–615.Google Scholar
  257. 257.
    Hultgren HN, Grover RF, Hartley LH. Abnormal circulatory responses to high altitude in subjects with a previous history of high-altitude pulmonary edema. Circulation 1971;44(5):759–770.PubMedGoogle Scholar
  258. 258.
    Hanaoka M, Kubo K, Yamazaki Y, Miyahara T, Matsuzawa Y, Kobayashi T, et al. Association of high-altitude pulmonary edema with the major histocompatibility complex. Circulation 1998;97(12): 1124–1128.PubMedGoogle Scholar
  259. 259.
    Cornfield DN, Reeve HL, Tolarova S, Weir EK, Archer S. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc Natl Acad Sci USA 1996;93(15): 8089–8094.PubMedGoogle Scholar
  260. 260.
    Wang Y, Coceani F. Isolated pulmonary resistance vessels from fetal lambs. Contractile behavior and responses to indomethacin and endothelin-1. Circ Res 1992;71(2):320–330.PubMedGoogle Scholar
  261. 261.
    Ivy DD, Parker TA, Kinsella JP, Abman SH. Endothelin A receptor blockade decreases pulmonary vascular resistance in premature lambs with hyaline membrane disease. Pediatr Res 1998;44(2):175–180.PubMedGoogle Scholar
  262. 262.
    Chang JK, Moore P, Fineman JR, Soifer SJ, Heymann MA. K+ channel pulmonary vasodilation in fetal lambs: role of endothelium-derived nitric oxide. J Appl Physiol 1992;73(1):188–194.PubMedGoogle Scholar
  263. 263.
    Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342(18):1334–1349.PubMedGoogle Scholar
  264. 264.
    Zapol WM, Snider MT. Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 1977;296(9):476–480.PubMedGoogle Scholar
  265. 265.
    Tomashefski JF Jr, Davies P, Boggis C, Greene R, Zapol WM, Reid LM. The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 1983;112(1):112–126.PubMedGoogle Scholar
  266. 266.
    Erdmann AJ, 3rd, Vaughan TR, Jr., Brigham KL, Woolverton WC, Staub NC. Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep. Circ Res 1975;37(3):271–284.PubMedGoogle Scholar
  267. 267.
    Sibbald WJ, Driedger AA, Myers ML, Short AI, Wells GA. Biventricular function in the adult respiratory distress syndrome. Chest 1983;84(2):126–134.PubMedGoogle Scholar
  268. 268.
    Katz R, Pollack M, Spady D. Cardiopulmonary abnormalities in severe acute respiratory failure. J Pediatr 1984;104(3):357–364.PubMedGoogle Scholar
  269. 269.
    Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993;328(6):399–405.PubMedGoogle Scholar
  270. 270.
    Fioretto JR, de Moraes MA, Bonatto RC, Ricchetti SM, Carpi MF. Acute and sustained effects of early administration of inhaled nitric oxide to children with acute respiratory distress syndrome. Pediatr Crit Care Med 2004;5(5):469–474.PubMedGoogle Scholar
  271. 271.
    Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, Criner GJ, Davis K Jr, et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 2004;291(13):1603– 1609.PubMedGoogle Scholar
  272. 272.
    Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 1999;25(9):911--919.Google Scholar

Copyright information

© Springer-Verlag London 2009

Authors and Affiliations

  • Peter Oishi
    • 1
  • Jeffrey R. Fineman
    • 2
  1. 1.Instructor, Department of Pediatrics, Division of Critical Care MedicineUniversity of California, San Francisco, UCSF Children’s HospitalSan FranciscoUSA
  2. 2.Medical Director, Cardiac Intensive Care UnitUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations