Learning Mutation Strategies for Evolution and Adaptation of a Simulated Snakebot

  • Ivan Tanev
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Genetic Programming Production Rule Central Pattern Generator Grammar Rule Grammatical Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrusenko Y. (2001). Russian Culture Navigator: Miturich-Khlebnikovs: Art Trade Runs in the Family, available at: Scholar
  2. Angeline, P. J. (1994). Genetic programming and emergent intelligence. In Kinnear, K.E. Jr., editor, Advances in Genetic Programming, pages 75–98, MIT Press, Cambridge, MA.Google Scholar
  3. Antonisse, J. (1991). A grammar-based genetic algorithm. In G.J.E. Rawlins, editor, Foundations of the Genetic Algorithm Workshop (FOGA), pages 193–204. Bloomington USA Morgan Kaufmann, CA.Google Scholar
  4. Bongard, J.C., and Lipson H. (2004). Automated damage diagnosis and recovery for remote robotics. In IEEE Proceedings of the 2004 International Conference on Robotics and Automation (ICRA 2004), pages 3545–3550. IEEE, New York.Google Scholar
  5. Bosman, P., and de Jong, E. (2004). Learning probabilistic tree grammars for genetic programming. In Proceedings of the 8th International Conference on Parallel Problem Solving from Nature PPSN-04, pages 192–201. Birmingham, UK; Springer.Google Scholar
  6. Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. (2000). Extensible Markup Language (XML) 1.0, Second Edition, W3C Recommendation, available at Scholar
  7. Caporale, L. H. (2003). Darwin in the Genome: Molecular Strategies in Biological Evolution. McGraw-Hill/Contemporary Books, New York.Google Scholar
  8. Dowling, K. (1997). Limbless Locomotion: Learning to Crawl with a Snake Robot. Doctoral dissertation, Technical Report CMU-RI-TR-97-48. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  9. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addision-Wesley,Google Scholar
  10. Hirose, S. (1993). Biologically Inspired Robots: Snake-like Locomotors and Manipulators. Oxford University Press. Oxford.Google Scholar
  11. Kamio, S., Mitsuhashi, H., and Iba, H. (2003). Integration of genetic programming and reinforcement learning for real robots. In E. Cantù-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. K. Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, J. F. Miller, editors, Proceedings of the Genetic and Evolutionary Computations Conference (GECCO 2003), pages 470–482, Springer, Berlin.Google Scholar
  12. Kimura, H., Yamashita, T., and Kobayashi, S. (2001). Reinforcement learning of walking behavior for a four-legged robot. In Proceedings of 40th IEEE Conference on Decision and Control, Orlando, FL, pages 411–416.Google Scholar
  13. Kirschner, M.W. and Gerhart, J.C. (2005). The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, New Haven, CT.Google Scholar
  14. Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA.zbMATHGoogle Scholar
  15. Ito, K., Kamegawa, K. and Matsuno, F. (2003). Extended QDSEGA for controlling real robots—acquisition of locomotion patterns for snake-like robot. In IEEE Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2003), pages 791–796. IEEE, New York.Google Scholar
  16. Levitan, I. B., and Kaczmarek, L. K. (2002). The Neuron: Cell and Molecular Biology. Oxford University Press, New YorkGoogle Scholar
  17. Mahdavi, S., and Bentley, P.J. (2003). Evolving motion of robots with muscles. In Proceedings of EvoROB2003, the 2nd European Workshop on Evolutionary Robotic (EuroGP 2003), pages 655–664. Essex, UK.Google Scholar
  18. O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language, Kluwer, Norwell, USA.CrossRefGoogle Scholar
  19. Pelikan M., Goldberg D. E., and Cantù-Paz, E. (1999). BOA: The Bayesian optimization algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), Orlando, USA pages 525–532.Google Scholar
  20. Prokopenko, M., Gerasimov, V., and Tanev, I. (2006). Evolving spatiotemporal coordination in a modular robotic system. In Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J. C. T., Marocco, D., Meyer, J.-A., Miglino, O., and Parisi, D., editors, From Animals to Animats 9: 9th International Conference on the Simulation of Adaptive Behavior (SAB 2006), Rome, Italy, September 25–29 2006, volume 4095 of Lecture Notes in Computer Science, pages 558–569. Springer.Google Scholar
  21. Salustowicz, R. and Schmidhuber, J. (1997). Probabilistic incremental program evolution. Evolutionary Computation, MIT Press, 5(2):123–141.CrossRefGoogle Scholar
  22. Shan Y., McKay, R.I, and Baxter R. (2004). Grammar model-based program evolution. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation, 20-23 June, Portland, Oregon, pages 478–485.Google Scholar
  23. Smith, R. (2006). Open Dynamics Engine, available at Scholar
  24. Takamura, S., Hornby, G. S., Yamamoto, T., Yokono, J. and Fujita, M. (2000). Evolution of dynamic gaits for a robot. In Proceedings of the IEEE International Conference on Consumer Electronics, pages 192–193, Los Angeles.Google Scholar
  25. Tanev, I., and Ray, T. (2005). Evolution of sidewinding locomotion of simulated limbless, wheelless robots. Artificial Life and Robotics, 9:117–122, Springer, Tokyo.CrossRefGoogle Scholar
  26. Tanev, I., Ray, T., and Buller, A. (2005). Automated evolutionary design, robustness and adaptation of sidewinding locomotion of simulated snake-like robot, IEEE Transactions on Robotics, 21:632–645.CrossRefGoogle Scholar
  27. Tanev, I. (2006). Interactive learning of mutation strategies in genetic programming. In Proceedings of the 5th Joint Symposium between Chonnam National University and Doshisha University, Chonnam University, Kwangju, Korea, pages 83–87. Chonnam Univ. Press.Google Scholar
  28. Wong, M. L. (2005). Evolving recursive programs by using adaptive grammar based genetic programming, Genetic Programming and Evolvable Machines, 6:421–455.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Ivan Tanev

There are no affiliations available

Personalised recommendations