Foundations and Formalizations of Self-organization

  • Daniel Polani
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Mutual Information Unstable Manifold Statistical Complexity Independent Component Analysis Observer Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adami, C. (1998). Introduction to Artificial Life. Springer, New York.CrossRefGoogle Scholar
  2. Ashby, W. R. (1947). Principles of the self-organizing dynamic system. J. Gen. Psychol., 37:125–128.CrossRefGoogle Scholar
  3. Ay, N., and Krakauer, D. C. (2006). Information geometric theories for robust biological networks. J. Theor. Biology. 125(2):93–121.Google Scholar
  4. Ay, N., and Polani, D. (2007). Information flows in causal networks. Advances in Complex Systems. In Press.Google Scholar
  5. Ay, N., and Wennekers, T. (2003). Dynamical properties of strongly interacting Markov chains. Neural Networks, 16(10):1483–1497.CrossRefGoogle Scholar
  6. Baas, N. A., and Emmeche, C. (1997). On emergence and explanation. Intellectica, 2(25): 67–83.Google Scholar
  7. Bar-Yam, Y. (1997). Dynamics of Complex Systems. Studies in Nonlinearity. Westview, Boulder, CO.zbMATHGoogle Scholar
  8. Bennett, C. H., and Landauer, R. (1985). The fundamental limits of computation. Scientific American, pages 253(1):48–56.CrossRefGoogle Scholar
  9. Bertschinger, N., Olbrich, E., Ay, N., and Jost, J. (2006). Autonomy: An information theoretic perspective. In Proceedings of the Workshop on Artificial Autonomy at Alife X, Bloomington, IN, pages 7–12.Google Scholar
  10. Comon, P. (1991). Independent component analysis. In Proceedings of the International Signal Processing Workshop on Higher-order Statistics, Chamrousse, France, pages 111–120.Google Scholar
  11. Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics, and induction. Physica D, pages 11–54.Google Scholar
  12. Crutchfield, J. P., and Young, K. (1989). Inferring statistical complexity. Phys. Rev. Lett., 63:105–108.MathSciNetCrossRefGoogle Scholar
  13. Emmeche, C., Køppe, S., and Stjernfelt, F. (2000). Levels, emergence, and three versions of downward causation. In Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V., editors, Downward Causation. Minds, Bodies and Matter, pages 13–34. Aarhus University Press, Århus.Google Scholar
  14. Golubitsky, M., and Stewart, I. (2003). The Symmetry Perspective. Birkhäuser, Basel.zbMATHGoogle Scholar
  15. Grassberger, P. (1986). Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys., 25:907–938.MathSciNetCrossRefGoogle Scholar
  16. Haken, H. (1983). Advanced synergetics. Springer, Berlin.CrossRefGoogle Scholar
  17. Harvey, I. (2000). The 3 Es of artificial life: Emergence, embodiment and evolution. Invited talk at Artificial Life VII, 1-6. August, Portland, Oregon, USA.Google Scholar
  18. Helbing, D., Buzna, L., Johansson, A., and Werner, T. (2005). Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39(1): 1–24.CrossRefGoogle Scholar
  19. Hoyle, R. (2006). Pattern Formation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  20. Jetschke, G. (1989). 1 Mathematik der Selbstorganisation. Vieweg, Braunschweig.CrossRefGoogle Scholar
  21. Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2004). Organization of the information flow in the perception-action loop of evolved agents. In Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware, pages 177–180. IEEE Computer Society.Google Scholar
  22. Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005). Empowerment: A universal agent-centric measure of control. In Proceedings of the IEEE Congress on Evolutionary Computation, 2–5 September 2005, Edinburgh, Scotland (CEC 2005), pages 128–135. IEEE.Google Scholar
  23. Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5:183–191.MathSciNetCrossRefGoogle Scholar
  24. Mees, A. I. (1981). Dynamics of feedback systems. Wiley, New York.zbMATHGoogle Scholar
  25. Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik, 12:30–39.CrossRefGoogle Scholar
  26. Meinhardt, H. (1982). Models of Biological Pattern Formation. Academic, New York.Google Scholar
  27. Pask, G. (1960). The natural history of networks. In Yovits, M. C., and Cameron, S., editors (1960). Self-Organizing Systems – Proceedings of an Interdisciplinary Conference, on Computer Science and Technology and their Application, 5–6 May 1959. Pergamon, New York.Google Scholar
  28. Polani, D. (2003). Measuring self-organization via observers. In Banzhaf, W., Christaller, T., Ziegler, J., Dittrich, P., Kim, J. T., Lange, H., Martinetz, T., and Schweitzer, F., editors, Advances in Artificial Life (Proceedings of the 7th European Conference on Artificial Life, Dortmund, September 14–17, 2003), Springer, Berlin, Heidelberg.Google Scholar
  29. Polani, D. (2004). Defining emergent descriptions by information preservation. InterJournal Complex Systems, 1102.Google Scholar
  30. Polani, D. (2006). Emergence, intrinsic structure of information, and agenthood. InterJournal Complex Systems, 1937.Google Scholar
  31. Prigogine, I., and Nicolis, G. (1977). Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York.zbMATHGoogle Scholar
  32. Prokopenko, M., Gerasimov, V., and Tanev, I. (2006). Evolving spatiotemporal coordination in a modular robotic system. In Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J. C. T., Marocco, D., Meyer, J.-A., Miglino, O., and Parisi, D., editors, From Animals to Animats 9: 9th International Conference on the Simulation of Adaptive Behavior (SAB 2006), Rome, Italy, volume 4095 of Lecture Notes in Computer Science, pages 558–569. Springer. Berlin, Heidelberg.CrossRefGoogle Scholar
  33. Rasmussen, S., Baas, N., Mayer, B., Nilsson, M., and Olesen, M. W.(2001). Ansatz for dynamical hierarchies. Artificial Life, 7:329–353.CrossRefGoogle Scholar
  34. Reichl, L. (1980). A Modern Course in Statistical Physics. University of Texas Press, Austin.zbMATHGoogle Scholar
  35. Shalizi, C. R. (2001). Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. PhD thesis, University of Wisconsin, Madison.Google Scholar
  36. Shalizi, C. R., and Crutchfield, J. P. (2002). Information bottlenecks, causal states, and statistical relevance bases: How to represent relevant information in memoryless transduction. Advances in Complex Systems, 5(1):91–95.CrossRefGoogle Scholar
  37. Shalizi, C. R., Shalizi, K. L., and Haslinger, R. (2004). Quantifying self-organization with optimal predictors. Physical Review Letters, 93(11):118701.CrossRefGoogle Scholar
  38. Slonim, N., Friedman, N., , and Tishby, T. (2001). Agglomerative multivariate information bottleneck. In Neural Information Processing Systems (NIPS 01), pages 929–936, La Jolla.Google Scholar
  39. Slonim, N., S. Atwal, G., Tkačik, G., and Bialek, W. (2005). Estimating mutual information and multi-information in large networks. arXiv:cs.IT/0502017.Google Scholar
  40. Spitzner, A., and Polani, D. (1998). Order parameters for self-organizing maps. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of the 8th International Conference on Artificial Neural Networks (ICANN 98), Skövde, Sweden, volume 2, pages 517–522. Springer, Berlin.Google Scholar
  41. Tishby, N., Pereira, F. C., and Bialek, W. (1999). The information bottleneck method. In Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, IL, Urbana-Champaign.Google Scholar
  42. Tononi, G., Sporns, O., and Edelman, G. M. (1994). A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proceedings of the Natural Academy of Sciences, U.S.A., 91:5033–5037.Google Scholar
  43. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. B, 327:37–72.MathSciNetzbMATHGoogle Scholar
  44. Walter, W. G. (1951). A machine that learns. Scientific American, pages 185(2):60–63.CrossRefGoogle Scholar
  45. Yovits, M. C., and Cameron, S., editors (1960). Self-Organizing Systems – Proceedings of an Interdisciplinary Conference, on Computer Science and Technology and their Application, 5-6 May 1959. Pergamon, New York .Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Daniel Polani

There are no affiliations available

Personalised recommendations