Drugs in Cardiac CT

  • Sebastian Rogowski
  • Virginia W. Lesslie
  • Ullrich EbersbergerEmail author
Part of the Contemporary Medical Imaging book series (CMI)


In spite of the advances in scanner technology in coronary CT angiography (CCTA), image quality is still influenced by heart rate (HR) and the consistency of the cardiac cycle. Additionally, HR is related to the diagnostic value and level of radiation exposure of CCTA (Stolzmann et al., AJR Am J Roentgenol 197:851e858, 2011; Matt et al., AJR Am J Roentgenol 189:567e573, 2007; Dewey et al., Circulation 120:867e875, 2009). The reason for pharmaceutical intervention in patients’ CCTA examinations for the assessment of coronary disease (CAD) and myocardial perfusion is the reduction of HR and the instigation of coronary vasodilatation in order to achieve maximal coronary flow. The current guidelines propose a HR of <65 bpm before imaging (Abbara et al., J Cardiovasc Comput Tomogr 3:190–204, 2009).


Medication in cardiac CT Coronary CT angiography CT myocardial perfusion imaging β-Blockers in controlling heart rate Pharmacological stress agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stolzmann P, Goetti RP, Maurovich-Horvat P, et al. Predictors of image quality in high-pitch coronary CT angiography. AJR Am J Roentgenol. 2011;197:851e858.CrossRefGoogle Scholar
  2. 2.
    Matt D, Scheffel H, Leschka S, et al. Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol. 2007;189:567e573.CrossRefGoogle Scholar
  3. 3.
    Dewey M, Zimmermann E, Deissenrieder F, et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation. 2009;120:867e875.CrossRefGoogle Scholar
  4. 4.
    Abbara S, Arbab-Zadeh A, Callister T, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3:190–204.CrossRefGoogle Scholar
  5. 5.
    Groen JM, Greuter MJ, van Ooijen PM, Willems TP, Oudkerk M. Initial results on visualization of coronary artery stents at multiple heart rates on a moving heart phantom using 64-MDCT. J Comput Assist Tomogr. 2006;30:812–7.CrossRefGoogle Scholar
  6. 6.
    Pannu H, Alvarez W, Fishman E. Beta-blockers for cardiac CT: a primer for the radiologist. Am J Roentgenol. 2006;186:S341–5.CrossRefGoogle Scholar
  7. 7.
    Mahabadi AA, Achenbach S, Burgstahler C, et al. Safety, efficacy, and indications of beta-adrenergic receptor blockade to reduce heart rate prior to coronary CT angiography. Radiology. 2010;257:614e623.CrossRefGoogle Scholar
  8. 8.
    Le Jemtel TH, Padeletti M, Jelic S. Diagnostic and therapeutic challenges in patients with coexistent chronic obstructive pulmonary disease and chronic heart failure. J Am Coll Cardiol. 2007;49:171–82.CrossRefGoogle Scholar
  9. 9.
    López-Sendón J, Swedberg K, McMurray J, et al. Expert consensus document on beta-adrenergic receptor blockers. Eur Heart J. 2004;25:1341–62.CrossRefGoogle Scholar
  10. 10.
    Westfall TC, Westfall DP. Beta adrenergic receptor antagonists. In: Brunton LL, editor. Goodman & Gilman’s the pharmacological basis of therapeutics. New York: The McGraw-Hill; 2011.Google Scholar
  11. 11.
    Wiest D. Esmolol. A review of its therapeutic efficacy and pharmacokinetic characteristics. Clin Pharmacokinet. 1995;28:190e202.CrossRefGoogle Scholar
  12. 12.
    Wiest DB, Haney JS. Clinical pharmacokinetics and therapeutic efficacy of esmolol. Clin Pharmacokinet. 2012;51:347e356.CrossRefGoogle Scholar
  13. 13.
    Degertekin M, Gemici G, Kaya Z, et al. Safety and efficacy of patient preparation with intravenous esmolol before 64-slice computed tomography coronary angiography. Coron Artery Dis. 2008;19:33e36.CrossRefGoogle Scholar
  14. 14.
    Maffei E, Palumbo AA, Martini C, et al. “In-house” pharmacological management for computed tomography coronary angiography: heart rate reduction, timing and safety of different drugs used during patient preparation. Eur Radiol. 2009;19:2931e2940.CrossRefGoogle Scholar
  15. 15.
    Bois P, Bescond J, Renaudon B, Lenfant J. Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol. 1996;118:1051–7.CrossRefGoogle Scholar
  16. 16.
    DiFrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature. 1986;324:470–3.CrossRefGoogle Scholar
  17. 17.
    Gardiner SM, Kemp PA, March JE, Bennett T. Acute and chronic cardiac and regional haemodynamic effects of the novel bradycardic agent, S16257, in conscious rats. Br J Pharmacol. 1995;115:579–86.CrossRefGoogle Scholar
  18. 18.
    Ragueneau I, Laveille C, Jochemsen R, Resplandy G, Funck-Brentano C, Jaillon P. Pharmacokinetic-pharmacodynamic modeling of the effects of ivabradine, a direct sinus node inhibitor, on heart rate in healthy volunteers. Clin Pharmacol Ther. 1998;64:192–203.CrossRefGoogle Scholar
  19. 19.
    Guaricci AI, Schuijf JD, Cademartiri F, et al. Incremental value and safety of oral ivabradine for heart rate reduction in computed tomography coronary angiography. Int J Cardiol. 2012;156(1):28–33.CrossRefGoogle Scholar
  20. 20.
    Cademartiri F, Garot J, Tendera M, et al. Intravenous ivabradine for control of heart rate during coronary CT angiography: a randomized, double-blind, placebo-controlled trial. J Cardiovasc Comput Tomogr. 2015;9(4):286–94.CrossRefGoogle Scholar
  21. 21.
    Guaricci AI, et al. Heart rate control with oral ivabradine in computed tomography coronary angiography: a randomized comparison of 7.5 mg vs 5 mg regimen. Int J Cardiol. 2012;168(1):362–8. more.CrossRefGoogle Scholar
  22. 22.
    Ignarro LJ, Napoli C, Loscalzo J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ Res. 2002;90:21–8.CrossRefGoogle Scholar
  23. 23.
    Jost S, Rafflenbeul W, Reil GH, et al. Reproducible uniform coronary vasomotor tone with nitrocompounds: prerequisite of quantitative coronary angiographic trials. Catheter Cardiovasc Diagn. 1990;20:168–73.CrossRefGoogle Scholar
  24. 24.
    Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (committee on coronary angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol. 1999;33:1756–824.CrossRefGoogle Scholar
  25. 25.
    Johnson PT, Eng J, Pannu HK, Fishman EK. 64-MDCT angiography of the coronary arteries: nationwide survey of patient preparation practice. AJR Am J Roentgenol. 2008;190:743–7.CrossRefGoogle Scholar
  26. 26.
    Khan M, Cummings KW, Gutierrez FR, Bhalla S, Woodard PK, Saeed IM. Contraindications and side effects of commonly used medications in coronary CT angiography. Int J Cardiovasc Imaging. 2011;27:441–9.CrossRefGoogle Scholar
  27. 27.
    Blankstein R, Shturman LD, Rogers IS, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol. 2009;54:1072–84.CrossRefGoogle Scholar
  28. 28.
    Cury RC, Magalhaes TA, Borges AC, et al. Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol. 2010;106:310–5.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Sebastian Rogowski
    • 1
  • Virginia W. Lesslie
    • 2
  • Ullrich Ebersberger
    • 1
    • 2
    Email author
  1. 1.Department of Cardiology and Intensive Care MedicineHeart Center Munich-BogenhausenMunichGermany
  2. 2.Division of Cardiovascular Imaging, Department of Radiology and Radiological ScienceMedical University of South CarolinaCharlestonUSA

Personalised recommendations