Advertisement

Future Technological Advances in Cardiac CT

  • Thomas G. Flohr
  • Thomas Allmendinger
  • Herbert Bruder
  • Chris Schwemmer
  • Steffen Kappler
  • Bernhard SchmidtEmail author
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

In this short overview of future technological advances in cardiac computed tomography (CT), we focus on technical challenges in cardiac CT – temporal resolution, spatial resolution, and low radiation dose. We show how they have been addressed so far and where technical progress may lead us in the future. Then, we introduce new CT system concepts that may be promising for cardiac CT. Finally we briefly touch new aspects of cardiac CT imaging, aimed at deriving more than just anatomical information from a CT scan of the heart.

Keywords

Cardiac CT technological advances Technological advances in cardiac CT Cardiac computed tomography Phase-contrast CT First-pass enhancement scanning Dynamic perfusion CT CT systems with photon-counting detectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flohr TG, De Cecco CN, Schmidt B, Wang R, Schoepf UJ, Meinel FG. Computed tomographic assessment of coronary artery disease: state-of-the-art imaging techniques. Radiol Clin N Am. 2015;53(2):271–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Flohr T, Ohnesorge B. Heart rate adaptive optimization of spatial and temporal resolution for ECG-gated multi-slice spiral CT of the heart. JCAT. 2001;25(6):907–23.Google Scholar
  3. 3.
    Leschka S, Wildermuth S, Boehm T, Desbiolles L, Husmann L, Plass A, Koepfli P, Schepis T, Marincek B, Kaufmann PA, Alkadhi H. Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology. 2006;241(2):378–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süß C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Küttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16(2):256–68.PubMedCrossRefGoogle Scholar
  5. 5.
    McCollough CH, Schmidt B, Yu L, Primak A, Ulzheimer S, Bruder H, Flohr TG. Measurement of temporal resolution in dual source CT. Med Phys. 2008;35(2):764–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Matt D, Scheffel H, Leschka S, Flohr TG, Marincek B, Kaufmann PA, Alkadhi H. Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol. 2007;189(3):567–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Ropers U, Ropers D, Pflederer T, Anders K, Kuettner A, Stilianakis NI, Komatsu S, Kalender W, Bautz W, Daniel WG, Achenbach S. Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol. 2007;50(25):2393–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis T, Frauenfelder T, Schertler T, Husmann L, Grunenfelder J, Genoni M, Kaufmann PA, Marincek B, Leschka S. Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol. 2006;16(12):2739–47.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Weustink AC, Neefjes LA, Kyrzopoulos S, van Straten M, Neoh Eu R, Meijboom WB, van Mieghem CA, Capuano E, Dijkshoorn ML, Cademartiri F, Boersma E, de Feyter PJ, Krestin GP, Mollet NR. Impact of heart rate frequency and variability on radiation exposure, image quality, and diagnostic performance in dual-source spiral CT coronary angiography. Radiology. 2009;253(3):672–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Li M, Zhang GM, Zhao JS, Jiang ZW, Peng ZH, Jin ZT, Sun G. Diagnostic performance of dual-source CT coronary angiography with and without heart rate control: systematic review and meta-analysis. Clin Radiol. 2014;69(2):163–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Besson GM. New CT system architectures for high temporal resolution with applications to improved geometric dose efficiency and cardiac imaging. Med Phys. 2015;42(5):2668–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang G, Yu H, Ye Y. A scheme for multisource interior tomography. Med Phys. 2009;36(8):3575–81.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. JACC. 1990;15:827–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Budoff M, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation. 1996;93:898–904.PubMedCrossRefGoogle Scholar
  15. 15.
    Yoneyama K, Vavere AL, Cerci R, Ahmed R, Arai AE, Niinuma H, Rybicki FJ, Rochitte CE, Clouse ME, George RT, Lima JA, Arbab-Zadeh A. Influence of image acquisition settings on radiation dose and image quality in coronary angiography by 320-detector volume computed tomography: the CORE320 pilot experience. Heart Int. 2012;7(2):e11.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tang J, Hsieh J, Chen GH. Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): performance studies. Med Phys. 2010;37(8):4377–88.PubMedCrossRefGoogle Scholar
  17. 17.
    Schöndube H, Allmendinger T, Stierstorfer K, Bruder H, Flohr T. Evaluation of a novel CT image reconstruction algorithm with enhanced temporal resolution, in medical imaging 2011: physics of medical imaging, vol. 7961. Lake Buena Vista/Florida: SPIE; 2011. p. 79611N.Google Scholar
  18. 18.
    Bhagalia R, Pack JD, Miller JV, Iatrou M. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography. Med Phys. 2012;39(7):4245–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Tang Q, Cammin J, Srivastava S, Taguchi K. A fully four-dimensional, iterative motion estimation and compensation method for cardiac CT. Med Phys. 2012;39(7):4291–305.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rohkohl C, Bruder H, Stierstorfer K, Flohr T. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Med Phys. 2013;40(3):031901.PubMedCrossRefGoogle Scholar
  21. 21.
    Fuchs TA, Stehli J, Dougoud S, Fiechter M, Sah BR, Buechel RR, Bull S, Gaemperli O, Kaufmann PA. Impact of a new motion-correction algorithm on image quality of low-dose coronary CT angiography in patients with insufficient heart rate control. Acad Radiol. 2014;21(3):312–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Maass C, Hofmann C, Kachelriess M. TRI-PICCS in single source and dual source CT, in IEEE NSS-MIC (nuclear science symposium- medical imaging conference). Knoxville: NSS/MIC; 2010. p. 2805–10.Google Scholar
  23. 23.
    Apfaltrer P, Schoendube H, Schoepf UJ, Allmendinger T, Tricarico F, Schindler A, Vogt S, Sunnegårdh J, Stierstorfer K, Henzler T, Fink C, Bruder H, Flohr TG, Ebersberger U. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: initial patient experience. Eur J Radiol. 2013;82(2):270–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Isola AA, Ziegler A, Koehler T, Niessen WJ, Grass M. Motion-compensated iterative cone-beam CT image reconstruction with adapted blobs as basis functions. Phys Med Biol. 2008;53(23):6777–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Hahn J, Bruder H, Allmendinger T, Stierstorfer K, Flohr T, et al. Reduction of motion artifacts in cardiac CT based on partial angle reconstructions from short scan data. Proceedings SPIE 9783, medical imaging 2016: physics of medical imaging, 97831A (March 25, 2016).Google Scholar
  26. 26.
    Andreini D, Pontone G, Mushtaq S, Bertella E, Conte E, Segurini C, Baggiano A, Bartorelli AL, Annoni A, Formenti A, Petullà M, Beltrama V, Fiorentini C, Pepi M. Low-dose CT coronary angiography with a novel IntraCycle motion-correction algorithm in patients with high heart rate or heart rate variability. Eur Heart J Cardiovasc Imaging. 2015;16(10):1093–100.PubMedCrossRefGoogle Scholar
  27. 27.
    Sheta HM, Egstrup K, Husic M, Heinsen LJ, Lambrechtsen J. Impact of a motion correction algorithm on quality and diagnostic utility in unselected patients undergoing coronary CT angiography. Clin Imaging. 2016;40(2):217–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Sheta HM, Egstrup K, Husic M, Heinsen LJ, Nieman K, Lambrechtsen J. Impact of a motion correction algorithm on image quality in patients undergoing CT angiography: a randomized controlled trial. Clin Imaging. 2017;42:1–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Vanhecke TE, Madder RD, Weber JE, Bielak LF, Peyser PA, Chinnaiyan KM. Development and validation of a predictive screening tool for uninterpretable coronary CT angiography results. Circ Cardiovasc Imaging. 2011;4(5):490–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Maintz D, Seifarth H, Raupach R, Flohr T, Rink M, Sommer T, Ozgün M, Heindel W, Fischbach R. 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol. 2006;16(4):818–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Maintz D, Burg MC, Seifarth H, Bunck AC, Ozgün M, Fischbach R, Jürgens KU, Heindel W. Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT. Eur Radiol. 2009;19(1):42–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Carrabba N, Schuijf JD, de Graaf FR, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: a meta-analysis. J Nucl Cardiol. 2010;17(3):470–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fuchs TA, Stehli J, Fiechter M, Dougoud S, Sah BR, Gebhard C, Bull S, Gaemperli O, Kaufmann PA. First in vivo head-to-head comparison of high-definition versus standard-definition stent imaging with 64-slice computed tomography. Int J Cardiovasc Imaging. 2013;29(6):1409–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Gassenmaier T, Petri N, Allmendinger T, et al. Next generation coronary CT angiography: in vitro evaluation of 27 coronary stents. Eur Radiol. 2014;24(11):2953–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys. 2013;40(10):100901.  https://doi.org/10.1118/1.4820371. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Taguchi K. Energy-sensitive photon counting detector-based X-ray computed tomography. Radiol Phys Technol. 2017;10(1):8–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Menke J, Unterberg-Buchwald C, Staab W, Sohns JM, Seif Amir Hosseini A, Schwarz A. Head-to-head comparison of prospectively triggered vs retrospectively gated coronary computed tomography angiography: meta-analysis of diagnostic accuracy, image quality, and radiation dose. Am Heart J. 2013;165(2):154–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Neefjes LA, Dharampal AS, Rossi A, Nieman K, Weustink AC, Dijkshoorn ML, Ten Kate GJ, Dedic A, Papadopoulou SL, van Straten M, Cademartiri F, Krestin GP, de Feyter PJ, Mollet NR. Image quality and radiation exposure using different low-dose scan protocols in dual-source CT coronary angiography: randomized study. Radiology. 2011;261(3):779–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Yin WH, Lu B, Hou ZH, Li N, Han L, Wu YJ, Niu HX, Silverman JR, Nicola De Cecco C, Schoepf UJ. Detection of coronary artery stenosis with sub-milliSievert radiation dose by prospectively ECG-triggered high-pitch spiral CT angiography and iterative reconstruction. Eur Radiol. 2013;23(11):2927–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Morsbach F, Gordic S, Desbiolles L, Husarik D, Frauenfelder T, Schmidt B, Allmendinger T, Wildermuth S, Alkadhi H, Leschka S. Performance of turbo high-pitch dual-source CT for coronary CT angiography: first ex vivo and patient experience. Eur Radiol. 2014;24(8):1889–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Chinnaiyan KM, Bilolikar AN, Walsh E, Wood D, DePetris A, Gentry R, Boura J, Abbara S, Al-Mallah M, Bis K, Boswell G, Gallagher M, Arunakul IO, Halliburton S, Jacobs J, Lesser J, Schoepf UJ, Valeti US, Raff GL. CT dose reduction using prospectively triggered or fast-pitch spiral technique employed in cardiothoracic imaging (the CT dose study). J Cardiovasc Comput Tomogr. 2014;8(3):205–14.PubMedCrossRefGoogle Scholar
  42. 42.
    McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin N Am. 2009;47(1):27–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Meinel FG, Canstein C, Schoepf UJ, Sedlmaier M, Schmidt B, Harris BS, Flohr TG, De Cecco CN. Image quality and radiation dose of low tube voltage 3rd generation dual-source coronary CT angiography in obese patients: a phantom study. Eur Radiol. 2014;24(7):1643–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Vonder M, Pelgrim GJ, Huijsse SE, Meyer M, Greuter MJ, Henzler T, Flohr TG, Oudkerk M, Vliegenthart R. Feasibility of spectral shaping for detection and quantification of coronary calcifications in ultra-low dose CT. Eur Radiol. 2017;27(5):2047–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Tesche C, De Cecco CN, Vliegenthart R, Albrecht MH, Varga-Szemes A, Duguay TM, Ebersberger U, Bayer RR 2nd, Canstein C, Schmidt B, Allmendinger T, Litwin SE, Morris PB, Flohr TG, Hoffmann E, Schoepf UJ. Accuracy and radiation dose reduction using low-voltage computed tomography coronary artery calcium scoring with tin filtration. Am J Cardiol. 2017;119(4):675–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34(11):4526–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Stehli J, Fuchs TA, Bull S, Clerc OF, Possner M, Buechel RR, Gaemperli O, Kaufmann PA. Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure: comparison with invasive coronary angiography. J Am Coll Cardiol. 2014;64(8):772–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Layritz C, Schmid J, Achenbach S, Ulzheimer S, Wuest W, May M, Ropers D, Klinghammer L, Daniel WG, Pflederer T, Lell M. Accuracy of prospectively ECG-triggered very low-dose coronary dual-source CT angiography using iterative reconstruction for the detection of coronary artery stenosis: comparison with invasive catheterization. Eur Heart J Cardiovasc Imaging. 2014;15(11):1238–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Schuhbaeck A, Achenbach S, Layritz C, Eisentopf J, Hecker F, Pflederer T, Gauss S, Rixe J, Kalender W, Daniel WG, Lell M, Ropers D. Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose <0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction. Eur Radiol. 2013;23(3):597–606.PubMedCrossRefGoogle Scholar
  50. 50.
    Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process. 2006;15(12):3736–45.PubMedCrossRefGoogle Scholar
  51. 51.
    Ghadrdan S, Alirezaie J, Dillenseger JL, Babyn P. Low-dose computed tomography image denoising based on joint wavelet and sparse representation. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3325–8.PubMedGoogle Scholar
  52. 52.
    Pfeiffer F, Weitkamp T, Bunk O, David C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys. 2006;2:258–61.CrossRefGoogle Scholar
  53. 53.
    Raupach R, Flohr T. Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging. Med Phys. 2012;39(8):4761–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Hetterich H, Willner M, Habbel C, Herzen J, Hoffmann VS, Fill S, Hipp A, Marschner M, Schüller U, Auweter S, Massberg S, Reiser MF, Pfeiffer F, Saam T, Bamberg F. X-ray phase-contrast computed tomography of human coronary arteries. Investig Radiol. 2015;50(10):686–94.CrossRefGoogle Scholar
  55. 55.
    Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld MK, Henderson G, Jones EC, Malayeri AA, Folio LR, Bluemke DA. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology. 2016;279(1):239–45.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Roessl E, et al. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52:4679–96.PubMedCrossRefGoogle Scholar
  57. 57.
    Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R. Multienergy photon-counting K-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology. 2008;249(3):1010–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJ, Proksa R, Fayad ZA. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256(3):774–82.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kappler S, Niederlöhner D, Stierstorfer K, Flohr T. Contrast-enhancement, image noise and dual-energy simulations for quantum-counting clinical CT. Proc SPIE Med Imaging Conf. 2010;7622:76223H.Google Scholar
  60. 60.
    Barber WC, et al. Characterization of a novel photon counting detector for clinical CT: count rate, energy resolution, and noise performance. Proc SPIE Med Imaging Conf. 2009;7258:725824.CrossRefGoogle Scholar
  61. 61.
    Kappler S, et al. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT. Proc SPIE Med Imaging Conf. 2012;8313:83130X.Google Scholar
  62. 62.
    Yu Z, Leng S, Jorgensen SM, Li Z, Gutjahr R, Chen B, Halaweish AF, Kappler S, Yu L, Ritman EL, McCollough CH. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol. 2016;61(4):1572–95.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gutjahr R, Halaweish AF, Yu Z, Leng S, Yu L, Li Z, Jorgensen SM, Ritman EL, Kappler S, McCollough CH. Human imaging with photon counting-based computed tomography at clinical dose levels: contrast-to-noise ratio and cadaver studies. Investig Radiol. 2016;51(7):421–9.CrossRefGoogle Scholar
  64. 64.
    Stolzmann P, Donati OF, Scheffel H, Azemaj N, Baumueller S, Plass A, Kozerke S, Leschka S, Grünenfelder J, Boesiger P, Marincek B, Alkadhi H. Low-dose CT coronary angiography for the prediction of myocardial ischaemia. Eur Radiol. 2010;20(1):56–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Bastarrika G, Lee YS, Huda W, Ruzsics B, Costello P, Schoepf UJ. CT of coronary artery disease. Radiology. 2009;253(2):317–38.PubMedCrossRefGoogle Scholar
  66. 66.
    Bucher AM, De Cecco CN, Schoepf UJ, Wang R, Meinel FG, Binukrishnan SR, Spearman JV, Vogl TJ, Ruzsics B. Cardiac CT for myocardial ischaemia detection and characterization-comparative analysis. Br J Radiol. 2014;24:20140159.CrossRefGoogle Scholar
  67. 67.
    George RT, Arbab-Zadeh A, Miller JM, Vavere AL, Bengel FM, Lardo AC, Lima JA. Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging. 2012;5(3):333–40.PubMedCrossRefGoogle Scholar
  68. 68.
    George RT, Mehra VC, Chen MY, Kitagawa K, Arbab-Zadeh A, Miller JM, Matheson MB, Vavere AL, Kofoed KF, Rochitte CE, Dewey M, Yaw TS, Niinuma H, Brenner W, Cox C, Clouse ME, Lima JA, Di Carli M. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease: a head-to-head comparison from the CORE320 multicenter diagnostic performance study. Radiology. 2014;272(2):407–16.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ruzsics B, Schwarz F, Schoepf UJ, et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol. 2009;104(3):318–26.PubMedCrossRefGoogle Scholar
  70. 70.
    Ko SM, Choi JW, Song MG, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011;21:26–35.PubMedCrossRefGoogle Scholar
  71. 71.
    Mahnken AH, Klotz E, Pietsch H, Schmidt B, Allmendinger T, Haberland U, Kalender WA, Flohr T. Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: preliminary animal experience. Investig Radiol. 2010;45(6):298–305.Google Scholar
  72. 72.
    Rossi A, Dharampal A, Wragg A, Davies LC, van Geuns RJ, Anagnostopoulos C, Klotz E, Kitslaar P, Broersen A, Mathur A, Nieman K, Hunink MG, de Feyter PJ, Petersen SE, Pugliese F. Diagnostic performance of hyperaemic myocardial blood flow index obtained by dynamic computed tomography: does it predict functionally significant coronary lesions? Eur Heart J Cardiovasc Imaging. 2014;15(1):85–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Bamberg F, Becker A, Schwarz F, Marcus RP, Greif M, von Ziegler F, Blankstein R, Hoffmann U, Sommer WH, Hoffmann VS, Johnson TR, Becker HC, Wintersperger BJ, Reiser MF, Nikolaou K. Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology. 2011;260(3):689–98.PubMedCrossRefGoogle Scholar
  74. 74.
    Kim SM, Cho YK, Choe YH. Adenosine-stress dynamic myocardial perfusion imaging using 128-slice dual-source CT in patients with normal body mass indices: effect of tube voltage, tube current, and iodine concentration on image quality and radiation dose. Int J Cardiovasc Imaging. 2014;30(Suppl 2):95–103.PubMedCrossRefGoogle Scholar
  75. 75.
    Meinel FG, Wichmann JL, Schoepf UJ, Pugliese F, Ebersberger U, Lo GG, Choe YH, Wang Y, Tesche C, Segreto S, Kunz WG, Thierfelder KM, Bamberg F, De Cecco CN. Global quantification of left ventricular myocardial perfusion at dynamic CT imaging: prognostic value. J Cardiovasc Comput Tomogr. 2017;11(1):16–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Meinel FG, Pugliese F, Schoepf UJ, Ebersberger U, Wichmann JL, Lo GG, Choe YH, Wang Y, Segreto S, Bamberg F, De Cecco CN. Prognostic value of stress dynamic myocardial perfusion CT in a multicenter population with known or suspected coronary artery disease. AJR Am J Roentgenol. 2017;8:W1–9.Google Scholar
  77. 77.
    Min JK, Berman DS, Budoff MJ, Jaffer FA, Leipsic J, Leon MB, Mancini GB, Mauri L, Schwartz RS, Shaw LJ. Rationale and design of the DeFACTO (determination of fractional flow reserve by anatomic computed tomographic AngiOgraphy) study. J Cardiovasc Comput Tomogr. 2011;5(5):301–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Panchal HB, Veeranki SP, Bhatheja S, Barry N, Mahmud E, Budoff M, Lavine SJ, Mamudu HM, Paul TK. Fractional flow reserve using computed tomography for assessing coronary artery disease: a meta-analysis. J Cardiovasc Med (Hagerstown). 2016;17(9):694–700.CrossRefGoogle Scholar
  80. 80.
    Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, Hlatky MA, PLATFORM Investigators. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: The PLATFORM Study. J Am Coll Cardiol. 2016;68(5):435–45.PubMedCrossRefGoogle Scholar
  81. 81.
    Chinnaiyan KM, Akasaka T, Amano T, Bax JJ, Blanke P, De Bruyne B, Kawasaki T, Leipsic J, Matsuo H, Morino Y, Nieman K, Norgaard BL, Patel MR, Pontone G, Rabbat M, Rogers C, Sand NP, Raff G. Rationale, design and goals of the heart flow assessing diagnostic value of non-invasive FFRCT in coronary care (ADVANCE) registry. J Cardiovasc Comput Tomogr. 2017;11(1):62–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P, Comaniciu D. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985). 2016;121(1):42–52.CrossRefGoogle Scholar
  83. 83.
    Yang DH, Kim YH, Roh JH, Kang JW, Ahn JM, Kweon J, Lee JB, Choi SH, Shin ES, Park DW, Kang SJ, Lee SW, Lee CW, Park SW, Park SJ, Lim TH. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart J Cardiovasc Imaging. 2017;18:432–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Coenen A, Rossi A, Lubbers MM, Kurata A, Kono AK, Chelu RG, Segreto S, Dijkshoorn ML, Wragg A, van Geuns RM, Pugliese F, Nieman K. Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. JACC Cardiovasc Imaging. 2017. pii: S1936-878X(16)30975–5.  https://doi.org/10.1016/j.jcmg.2016.09.028.
  85. 85.
    Nakazato R, Park HB, Berman DS, Gransar H, Koo BK, Erglis A, Lin FY, Dunning AM, Budoff MJ, Malpeso J, Leipsic J, Min JK. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging. 2013;6(6):881–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Chow BJ, Small G, Yam Y, Chen L, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang H-J, Cheng V, Chinnaiyan K, Delago A, Dunning A, Hadamitzky M, Hausleiter J, Kaufmann P, Lin F, Maffei E, Raff GL, Shaw LJ, Villines TC, Min JK. Incremental prognostic value of cardiac CT in CAD using CONFIRM (COroNary computed tomography angiography evaluation for clinical outcomes: an international multicenter registry). Circ Cardiovasc Imaging. 2011;4:463–72.PubMedCrossRefGoogle Scholar
  87. 87.
    Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38(7):500–7.PubMedGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Thomas G. Flohr
    • 1
  • Thomas Allmendinger
    • 1
  • Herbert Bruder
    • 1
  • Chris Schwemmer
    • 1
  • Steffen Kappler
    • 1
  • Bernhard Schmidt
    • 1
    Email author
  1. 1.Department of Computed TomographySiemens Healthcare GmbHForchheimGermany

Personalised recommendations